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1 INTRODUCTION

Selection hyper-heuristics are methods that are typically used to

solve computationally hard optimisation problems (see [1]). A se-

lection hyper-heuristic selects heuristics from a given set of low

level heuristics, deciding which heuristic to apply at a given point

during the optimisation process. �e sequences of low level heuris-

tic selections and objective function values that result from the ap-

plication of a simple selection hyper-heuristic to the HyFlex prob-

lem set (see [3]) are used to construct an o�ine learning database.

�e intention is to select e�ective subsequences of heuristics from

this database and use them as inputs to machine learning algo-

rithms in order to improve optimisation.

�e purpose of this study is to algorithmically identify and anal-

yse the similarities and dissimilarities that occur between the se-

quences of the database. By employing a suitable measure of simi-

larity, the sequences of the o�ine database can be grouped or clus-

tered according to the view of the similarity algorithm. It can be

shown that by using a well-known algorithm from bioinformatics

more commonly used to explore the conserved regions of DNA se-

quences, the Smith-Waterman algorithm (see [4]), it is possible to

characterise problems using only the sequence of heuristic choices

made by the hyper-heuristic. �e Smith-Waterman algorithm is

able to provide a measure of the level of similarity between two

strings operating over any alphabet, and is used here to de�ne a dis-

tance function between sequences of heuristics which is then used

to perform a cluster analysis. �e results presented here show that

the Smith-Waterman algorithm is able separate the o�ine database

into distinct problem domains.

�e automatic separation and identi�cation of problem domains

from sequences of heuristics is important because it demonstrates
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that there are subsequences of heuristics that are common to each

problem domain, and that these subsequences vary between do-

mains. �is strengthens the thesis that subsequences of heuristics

play an important role in the optimisation process. In addition, the

identi�cation of a (similar) problem domain can improve the choice

of learning algorithm, learning algorithm parameterisation, and

training data. For example, in [5] a k-nearest neighbour classi�er

is used to identify problems in an o�ine database that are similar

to a target problembased on a set ofmeasurable problem character-

istics. �ismetaknowledge is then used to retrieve further problem

speci�c information which is used to optimise the performance of

a planning algorithm. �e method described here di�ers from con-

ventional metalearning approaches to algorithm selection in that,

as only sequences of low level heuristic classes are employed, no

problem speci�c information is required, preserving the domain

barrier.

2 HYFLEX AND THE OFFLINE LEARNING

DATABASE

�e Hyper-heuristics Flexible framework (or HyFlex, see [3]) is

an implementation of 4 computationally hard benchmark problem

domains:

(1) 1D bin packing (BP),

(2) permutation �ow shop (PFS),

(3) boolean satis�ability (SAT), and

(4) personnel scheduling (PS).

Each problem domain contains 10 distinct problems of varying

complexity. HyFlex hides all problem speci�c information such

as the solution representations, the solution constructions, and the

low level heuristic implementations. Each HyFlex domain has four

general classes of low level heuristic:

(1) mutation (M) which perturbs a solution randomly,

(2) crossover (C) which constructs a new solution from two

or more existing solutions,

(3) ruin and recreate (R) which destroys a given solution par-

tially and then rebuilds the deleted parts, and

(4) local search (L) that incorporates an iterative improvement

process and returns a non-worsening solution.

�e actual number and implementation of the low level heuristics

di�ers between problem domains.

A simple hyper-heuristic is executed for 150 selections, 40 times

on each of the 10 HyFlex problems in each domain. �e result-

ing 1600 sequences of heuristic selections and objective function

values are used to construct the o�ine database. �e number of

40 trials was chosen because for a su�ciently large number (say
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n > 30) the central limit theorem ensures that the arithmetic mean

of any results will be approximately normally distributed, regard-

less of the underlying distribution. �is allows robust statistics to

be calculated for each problem. �e number of 150 selections was

chosen a�er experimental observations indicated that no major im-

provements in objective function occurred beyond this point.

3 THE SMITH-WATERMAN ALGORITHM

�e goal is to compare sequences of heuristic classes to obtain an

understanding of the problem space from an algorithmic perspec-

tive. However, the comparison of sequences is not straightforward.

For example, using the Hamming distance, two otherwise identi-

cal binary strings will appear dissimilar, that is score a high Ham-

ming distance, if one string is shi�ed by one character in either

direction. �e Smith-Waterman algorithm (see [4]) is intended to

overcome this because it a�empts to identify similar regions of

any given pair of strings. In bioinformatics, the Smith-Waterman

algorithm is used to analyse the arrangement of DNA/RNA or pro-

tein sequences. �e algorithm performs a local sequence alignment

by use of dynamic programming; instead of looking at the whole

sequence, the Smith-Waterman algorithm compares subsequences

of all possible lengths and optimises a similarity measure. A large

similarity score produced by the algorithm implies that the strings

are very similar. A similarity score of 0 implies that the two strings

have no symbols in common. �e similarity measure is de�ned by

a similarity matrix and a set of gap penalties. �e similarity matrix

de�nes the positive score for matching two symbols or the cost of

mismatching two symbols. �e gap penalties specify the score or

cost of opening up a gap in a string and extending that gap in order

to improve the �t with another string. Although the similarity ma-

trix and gap penalties can be adjusted to alter the behaviour of the

algorithm, in general it is not known which values are best suited

for optimisation problems. In this study the similarity matrix is

L C R M

L 3 −2 −2 −2

C −2 3 −2 −2

R −2 −2 3 −2

M −2 −2 −2 3

while the gap open and gap extend penalties are −3 and −1 respec-

tively.

In this paper two distance functions, de�ned on sequences of

heuristic selections, are considered: a distance function based on

the Smith-Waterman algorithm and for comparison purposes, the

Hamming distance.

�e Smith-Waterman algorithm can be used to construct a sim-

ple notion of distance d between sequences. In symbols

d(s1, s2) = maxSW − sw(s1, s2)

where maxSW is the maximum value that can be a�ained by the

Smith-Waterman function sw on the subsequences under consid-

eration. A low d value indicate that two sequences are similar or

close. In this study the maximum Smith-Waterman score over the

1600 sequences of the database is 357. �is function should only

be loosely interpreted as a distance function as it is not a metric in

the formal sense.

4 CLUSTER ANALYSIS

A k-medoid clustering algorithm employing the Smith-Waterman

and Hamming distances is used to separate the entire o�ine learn-

ing database of 1600 sequences into 4 clusters corresponding to the

4 HyFlex domains. For clustering purposes, only the sequence se-

lections up to and including the minimum objective function value

are used, as these are the selections that are used as learning al-

gorithm inputs. �e accuracy of the resulting clusters are evalu-

ated using the four commonly used measures: purity, normalised

mutual information (NMI), Rand index, and the F5 (see [2]). For

each measure, the worst clusterings have values close to 0 while

a perfect clustering has a value of 1. �e results shown in table 1

demonstrate that the Smith-Waterman distance is superior in each

measure.

Table 1: A comparison of clustering accuracy.

Distance Purity NMI Rand F5

S-W 0.8269 0.5954 0.7951 0.8001

Hamming 0.5350 0.2955 0.6185 0.7320

5 CONCLUSIONS

�is experiment demonstrates that the sequences of heuristic se-

lections produced by a simple hyper-heuristic on the HyFlex prob-

lems contain subsequences that are common to each problem do-

main and that di�er signi�cantly between problem domains. �ese

similarities and di�erences can be identi�ed automatically using

the Smith-Waterman algorithm. Speci�cally, the clusters produced

by a k-medoid cluster algorithm using Smith-Waterman are more

accurate than those produced using the Hamming distance across

4 standard accuracy measures. �e existence of discernible sub-

sequences of heuristics in the database lends weight to the argu-

ment that the ordering of a subsequence is crucial to search e�-

cacy and this ordering varies with problem domain. �e ability

to identify (similar) problem domains from a sample of heuristic

selections can also be used to guide the choice of learning algo-

rithm and learning algorithm parameters for unseen problems or

those with novel heuristic sets without requiring problem speci�c

information. �ese results demonstrate the suitability of the Smith-

Waterman algorithm as ameasure of sequence similarity for o�ine

learning applications.
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A Classi�cation of Hyper-heuristic Approaches. Springer US. 449–468 pages.
[2] C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information

Retrieval. Cambridge University Press.
[3] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker, M. Gendreau,

G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic, and E. K. Burke. 2012. HyFlex:
A Benchmark Framework for Cross-Domain Heuristic Search. In Evolutionary
Computation in Combinatorial Optimization, J. K. Hao andM. Middendorf (Eds.).
Springer Berlin Heidelberg, 136–147.

[4] T. F. Smith and M. S. Waterman. 1981. Identi�cation of common molecular
subsequences. Journal of molecular biology 147, 1 (1981), 195–197.

[5] G. Tsoumakas, D. Vrakas, N. Bassiliades, and I. Vlahavas. 2004. Using the k
Nearest Problems for Adaptive Multicriteria Planning. In in Proceedings of the
3rd Hellenic Conference on Arti�cial Intelligence, SETN04. Springer, 132–141.

120


	1 Introduction
	2 HyFlex and the Offline Learning Database
	3 The Smith-Waterman Algorithm
	4 Cluster Analysis
	5 Conclusions
	References

