
Automated State Feature Learning for Actor-Critic
Reinforcement Learning through NEAT

Yiming Peng, Gang Chen, Sco� Holdaway, Yi Mei, Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington
yiming.peng,aaron.chen,sco�.holdaway,yi.mei,mengjie.zhang@ecs.vuw.ac.nz

ABSTRACT
Actor-Critic (AC) algorithms are important approaches to solving
sophisticated reinforcement learning problems. However, the learn-
ing performance of these algorithms rely heavily on good state
features that are o�en designed manually. To address this issue,
we propose to adopt an evolutionary approach based on NeuroEvo-
lution of Augmenting Topology (NEAT) to automatically evolve
neural networks that directly transform the raw environmental
inputs into state features. Following this idea, we have success-
fully developed a new algorithm called NEAT+AC which combines
Regular-gradient Actor-Critic (RAC) with NEAT. It can simultane-
ously learn suitable state features as well as good policies that are
expected to signi�cantly improve the reinforcement learning per-
formance. Preliminary experiments on two benchmark problems
con�rm that our new algorithm can clearly outperform the baseline
algorithm, i.e., NEAT.

CCS CONCEPTS
•Computing methodologies→Neural networks; •Computer
systems organization→ Embedded systems; Redundancy; Ro-
botics;

KEYWORDS
NeuroEvolution, NEAT, Actor-Critic, Reinforcement Learning, Fea-
ture Extraction, Feature Learning

ACM Reference format:
Yiming Peng, Gang Chen, Sco� Holdaway, Yi Mei, Mengjie Zhang. 2017.
Automated State Feature Learning for Actor-Critic Reinforcement Learning
through NEAT. In Proceedings of GECCO ’17 Companion, Berlin, Germany,
July 15-19, 2017, 2 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3076035

1 INTRODUCTION
Reinforcement Learning (RL) aims to learn an optimal policy for
sequential action selection while observing states in an unknown
environment [7]. As an important RL algorithm family, Actor-Critic
Reinforcement Learning (ACRL) algorithms are designed to directly
search e�ective policies (a.k.a., actor) guided by value functions
(a.k.a, critic) [2].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3076035

Many ACRL algorithms usually assume the availability of suit-
able state features that are immediately accessible during reinforce-
ment learning. However, for e�ective RL, these state features must
be carefully designed with the support of domain experts via a
time-consuming and error-prone procedure [1]. During the proce-
dure, even for experienced domain experts, important state feature
information may be overlooked, resulting in serious degradation of
learning performance [4, 8].

To address this important issue, state-of-the-art learning algo-
rithms have considered switching across di�erent parametric func-
tions (e.g. Radial Basis Function networks) [3] or optimizing some
prede�ned score functions [5]. �ese techniques inevitably require
substantial domain knowledge. Additionally, when neural networks
are chosen as the feature base, its topology also requires to be well
designed prior to the activation of any learning algorithms.

�ese new issues motivate us to consider exploiting an Neu-
roEvolution based approach towards fully automated state feature
learning which can be performed simultaneously with any ACRL
algorithm. Speci�cally, we are interested in a major EC method
for NeuroEvolution, i.e, NeuroEvolution of Augmenting Topology
(NEAT). �is is because of several reasons: 1) Neural Networks
(NNs) are well recognized as good feature bases for various learn-
ing paradigms including RL [1]. 2) NEAT has a strong capability of
evolving both structure and weights simultaneously for e�ective
reinforcement learning. 3) NEAT introduces a unique innovation
number to each individual to preserve useful structural innovations
for future learning. 4) NEAT adopts a strategy to evolve increas-
ingly complicated NNs starting from the simplest structures. �ese
properties are very important for our feature learning tasks.

Goals: Motivated by this understanding, the overall goal of
this research is to develop a new algorithm (NEAT+AC) based
on NEAT and Regular-gradient Actor-Critic (RAC) algorithm [2].
�rough the seamless integration of NEAT and AC, we can learn
good features, in the mean time use the learned features to identify
desirable policies.

2 NEAT+AC
As seen in Figure 1, our NEAT+AC algorithm consists of four phases,
including initialization, evolution, evaluation, and termination.

Initialization: Similar to the standard NEAT, NEAT+AC also
starts with a population with a �xed number of randomly generated
individuals. Each individual is designed di�erently from that of the
standard NEAT. Since it is composed of three main parts, a NN, an
actor and a critic.

Evolution: Aimed at searching good features, we use the stan-
dard evolutionary operators de�ned in [6], including crossover and
mutation, to evolve solely the state feature extraction function ϕ (~s).

135

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

TD errorInitial
Population

Is termination
condition met?

Select the best
Individual

true

Actor

Environment

State Features action

reward

Critic

An
actor

A
critic

false

An individual

A Neural
Network

Figure 1: �e proposed NEAT+AC algorithm.

Evaluation: In this phase, we compute the �tness value with
respect to each individual in hope of discovering good features, and
in the meantime gradually improve the performance of the corre-
sponding policies. �e �tness is de�ned as the average cumulative
rewards obtainable through simulation over all training episodes,
i.e., N . f itness ← R̃

eд . �e policy search is conducted by following
RAC.

Termination: Since NEAT+AC consists of two components
(NEAT and RAC), each of them has a termination condition. �e
feature learning process terminates either when the prede�ned
maximum number of generations is reached, or when the highest
�tness value cannot be further improved over 50 consecutive gen-
erations. Meanwhile, the RAC learning process terminates when
the maximum number of training episodes is reached.

3 EXPERIMENTAL RESULTS
To verify any signi�cant performance di�erence, we conduct 30
independent runs for both learning algorithms on each benchmark
problem. In these runs, the population size and the number of gen-
erations are both set to 100. Also, while evaluating any individual in
one single generation, 5000 training episodes need to be performed.
Each episode contains 200 steps. A�er every generation, 50 inde-
pendent tests will be conducted to verify the learning e�ectiveness
of the evolved NN with the highest �tness.

Promising experimental results have been collected on theMoun-
tain Car problem [7] and the Cart Pole problem [7]. Figure 2 shows
that NEAT+AC performs signi�cantly be�er than NEAT on the Cart
Pole problem. �is is supported by as a statistical test with a p-value
of 1.18366 × 10−11. �e Mountain Car problem, on the other hand,
is much harder for NEAT+AC than for NEAT, as NEAT considers
only three optimal actions, while NEAT+AC must learn to select
suitable actions from a continuous range. However, Figure 3 shows
that NEAT+AC performs comparable with NEAT. Both algorithms
reach the optimal solution very quickly (within 10 generations).

4 CONCLUSIONS
In this paper, we have successfully achieved the research goal of
evolving useful NNs as feature extrators which accept raw state
information as their input and subsequently produce a vector of
state features to be subsequently utilized by RAC to learn desir-
able policies. It is clearly evidenced in the experiment results that
NEAT+AC is an e�ective algorithm for reinforcement learning.
Meanwhile, NEAT+AC is purposefully designed to ensure that ev-
ery newly evolved NN will always be trained for the same number
of episodes, starting from identical initial se�ings. In view of this

0 10 20 30 40 50 60 70 80 90 100

Number of Generations

0

20

40

60

80

100

120

140

A
ve

ra
g

e
 s

te
p

s

Average Balance Steps Per Generation

NEAT NEAT+AC

Figure 2: Average Balancing Steps Per Generation on the Cart
Pole problem

0 10 20 30 40 50 60 70 80 90 100

Number of Generations

0

200

400

600

800

1000

A
ve

ra
g

e
 s

te
p

s

Average Steps to Reach Goal Region

NEAT NEAT+AC

Figure 3: Average Steps Per Generation on the Mountain Car
problem

fact, the steady improvement of learning performance during the
evolutionary process, as witnessed in our experiments, con�rms
that NEAT+AC is capable of learning useful state features embodied
in NNs.

�ere is a big room for future research. We plan to conduct more
comprehensive experiments involving a wide range of benchmark
problems to truly understand the real e�cacy of NEAT+AC.We will
also study the possibility of exploiting other cu�ing-edge reinforce-
ment learning algorithms under the same NEAT-based learning
framework.

REFERENCES
[1] Yoshua Bengio, Aaron Courville, and Pierre Vincent. 2013. Representation learn-

ing: A review and new perspectives. Pa�ern Analysis and Machine Intelligence,
IEEE Transactions on 35, 8 (2013), 1798–1828.

[2] Shalabh Bhatnagar, Richard S. Su�on, Mohammad Ghavamzadeh, and Mark Lee.
2009. Natural actor-critic algorithms. Automatica 45, 11 (2009), 2471–2482.

[3] George Konidaris, Sarah Osentoski, and Philip �omas. 2011. Value Function
Approximation in Reinforcement Learning using the Fourier Basis. Proceedings
of the Twenty-Fi�h Conference on Arti�cial Intelligence (2011), 380–385.

[4] Ishai Menache, Shie Mannor, and Nahum Shimkin. 2005. Basis function adapta-
tion in temporal di�erence reinforcement learning. Annals of Operations Research
134, 1 (2005), 215–238.

[5] Ronald Parr, Christopher Painter-Wake�eld, and Lihong Li. 2007. Analyzing
feature generation for value-function approximation. Proceedings of the 24th
International Conference on Machine Learning (ICML) (2007), 737–744.

[6] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural network
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[7] Richard S Su�on and Andrew G Barto. 1998. Reinforcement Learning : An
Introduction.

[8] M Wiering and M van O�erlo. 2012. Reinforcement Learning: State-of-the-Art.
Springer Berlin Heidelberg.

136

	Abstract
	1 Introduction
	2 NEAT+AC
	3 Experimental Results
	4 Conclusions
	References

