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ABSTRACT
One-Class Classi�cation (OCC) for anomaly detection is a method
for anomaly detection that constructs a classi�er from only normal
examples. Classi�er systems such as Kernel Density Estimation
(KDE) and Support Vector Machine (SVM) typically do well at this
task, but can be slow when classifying new instances. Previous
work has used Genetic Programming (GP) to learn the density from
KDE, with results o�en out-performing those of one-class SVM
(OCSVM) and KDE based OCC (OCKDE). However, the search is
computationally expensive, and it su�ers from a need to tune many
parameters. In this paper, we will introduce the Late Acceptance
Hill-Climbing (LAHC) and Step Counting Hill-Climbing (SCHC)
algorithms as GP alternatives. �ese are simple hill-climbing algo-
rithms, with speci�c methods to avoid local optima, and far less
parameters to tune. �e results demonstrate that the proposed
models are competitive with standard GP, and o�en out-perform
OCSVM. �eir query-time is much less than that of OCSVM, and
does not scale with the size of training data.
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1 INTRODUCTION
One-class classi�cation is a common approach for anomaly de-
tection, especially in the network security domain [1, 5]. Recent
approaches have applied GP and arti�cial neural networks for this
task [4–7]. In previous work [5] we employed standard GP to learn
the density function produced from KDE. A one-class classi�er con-
structed from KDE classi�es anomalies well, but its computational
cost at query-time is potentially high, especially on large training
sets. We combined di�erent strengths from KDE and GP by using
GP to learn this density. �e resulting model can classify as well as
OCKDE. Its computational cost at query-time is also reduced rela-
tive to KDE, not scaling with the size of training data. However, the
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classi�er su�ers from the weaknesses of computationally expensive
global search at training time and tuning many parameters.

In this paper, two recently introduced local search heuristic
algorithms [2, 3], LAHC and SCHC, are now introduced as simpler
alternative search methods for GP. �ese simple systems perform
remarkably well compared to a simple hill-climber. In comparison
to a full GP system, they are straightforward, and depend only
single parameter, history length. �ese new GP algorithms will be
used as symbolic regression techniques for learning the density
function. �us, the proposed models will inherit the advantages of
local search heuristic algorithms, few parameters and simplicity,
and the OCC ability of KDE.

2 LAHC-GP AND SCHC-GP
LAHC-GP presented in Algorithm 1 is an iterative process, which
starts with an initial GP individual s , and an initial list of L �tness
values F̂k ,k ∈ {0...L − 1}. At each iteration, a new candidate s∗ is
created from the current one s through sub-tree mutation. If its
�tness values F (s∗) is not worse than that of the individual from
L steps previously F̂v or that of the current one F (s), s∗ will be
accepted as the new current s . �e slot F̂v is then updated with the
current �tness. It will stop a�er a �xed number of iterations.

Algorithm 1 Late Acceptance Hill-Climbing Genetic Programming
1: Produce an initial individual s
2: Calculate an initial �tness function F(s)
3: Specify L
4: for all k ∈ {0...L − 1} do F̂k ← F (s)
5: Initial iteration I ← 0
6: while a stopping condition is NOT met do
7: s∗ ← Mutation(s)
8: Calculate �tness function F (s∗)
9: v ← I mod L
10: if F (s∗) ≤ F̂v∨F (s∗) ≤ F (s) then accept candidate (s ← s∗)
11: else reject candidate (s ← s)
12: Insert �tness value into the list F̂v ← F (s)
13: Increment the iteration I ← I + 1

SCHC-GP described in Algorithm 2 is very similar to LAHC-GP.
However, the algorithm uses a �tness bound Bc instead of a list, and
a counternc . At each iteration, if a candidate’s �tness value is be�er
than Bc or not worse than the current �tness, the candidate will be
accepted as the new current one, the counter will be increased. Bc
will be updated with the current �tness value if the counter exceeds
Lc steps. It will stop a�er a �xed number of iterations.
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Algorithm 2 Step Counting Hill-Climbing Genetic Programming
1: Produce an initial individual s
2: Calculate an initial �tness function F(s)
3: Initial �tness bound Bc ← F (s)
4: Initial counter nc ← 0
5: Specify Lc
6: while a stopping condition is NOT met do
7: s∗ ← Mutation(s)
8: Calculate �tness function F (s∗)
9: if F (s∗) < Bc∨F (s∗) ≤ F (s) then accept candidate (s ← s∗)
10: Increment the counter nc ← nc + 1
11: else reject candidate (s ← s)
12: if nc ≥ Lc then
13: update the bound Bc ← F (s)
14: reset the counter nc ← 0

Table 1: �e performance of the �ve classi�ers

Method C-heart ACA1 WBC WDBC R2L
OCSVM 0.759 0.820 0.991 0.950 0.859
OCKDE 0.773 0.835 0.991 0.953 0.900
OCGP 0.800 0.833 0.993 0.948 0.881
LAHC-GP 0.788 0.823 0.991 0.949 0.899
SCHC-GP 0.789 0.828 0.991 0.949 0.897

3 EXPERIMENTS
Our experiments are to compare LAHC-GP and SCHC-GP with
OCGP, OCSVM, and OCKDE. �erefore, we will reproduce the
experimental results as reported in [5]. We will also employ the
same datasets, the same parameter se�ings of KDE and one-class
SVM as in [5] for these experiments.

�e �rst experiment is to tune the history length L and Lc based
on the training errors2. �us, we choose L = 300, Lc = 200. Fitness
evaluation budget (the number of iterations) is equal to population
size × number of generation of OCGP3, 200000. �e performance
of the proposed models are evaluated on the datasets under two
measurements, the Area Under ROC Curve (AUC) and query-time.
�e AUC values of the �ve classi�ers are shown in Table 1 and
Fig 1a. �e average query-times4 are plo�ed against the size of
training sets shown in Fig 1b, and aspects of the computational cost
at the query-time are also reported in Table 2.

4 DISCUSSION RESULTS AND CONCLUSIONS
Table 1 shows that LAHC-GP and SCHC-GP classi�ers perform
as well as OCGP and OCKDE, and o�en be�er than OCSVM in
terms of classi�cation accuracy. �e proposed classi�ers’ accuracies
approach closer to that of OCKDE than OCGP on some datasets.
In Fig 1b, the query-time of LAHC-GP, SCHC-GP classi�ers and
OCGP are quite similar, and much lower than those of OCKDE and
OCSVM. �e query-time of OCKDE and OCSVM tend to increase
when the size of training set increases, whereas those of three
1 Australian Credit Approval 2 Tuning on �ve di�erent values of history length
ranging from 100 to 500. 3 �is is because there is only one individual during the
iteration. 4 �e average query-time per example is calculated over 100 repetitions.

(a) �e ROC curves (b) �e average query-times

Figure 1: �e performances of the �ve classi�ers

Table 2: Aspects of the computational cost at the query-time

Dataset Training
Points

Support
Vectors

GP
Notes

LAHC-GP
Notes

SCHC-GP
Notes

C-heart 80 53 237.9 198.4 188.3
ACA 191 112 218.4 161.7 168.4
WBC 222 115 207.8 196.6 206.7
WDBC 178 121 182.0 161.6 150.5
R2L 2000 1001 197.2 207.7 196.9

others seem to be stable, and this is expected since the query time
of a GP model is proportional to the number of nodes. �is is also
demonstrated by aspects of the computational cost at query-time
reported in Table 2.

�e results suggest that the performance of the proposed mod-
els is competitive with that of the full GP based OCC, hence the
classi�cation accuracy approaches or equals that of OCKDE, and
o�en out-performs one-class SVM.�e query-times of the proposed
models are much less than those of OCSVM and OCKDE, and seem
to not scale with the size of training data.

Overall, the proposed models not only inherit the ability of learn-
ing density from the full GP, but are also straightforward and less
vulnerable to inadequate parameterization. �ese strengths mean
that LAHC-GP and SCHC-GP are useful techniques for anomaly
detection problems. �e work of investigating history length and
carrying out statistical test on the results is postponed to future
research.
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