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ABSTRACT
We present an new optimisation framework combining two meta-
heuristics: Genetic Algorithms (GA) and Particle Swarm Optimisa-
tion (PSO). In contrast to the usual hybridisation models in which
the second algorithm is applied to work on the �nal results of the
�rst one, our approach uses both algorithms in parallel on the same
population in a competetive manner. �e algorithms can work
on and improve the solutions of each other, thus more diversity
and be�er quality can be achieved in the population. Another
improving factor is rese�ing the population size and the param-
eters in every iteration according to the diversity and quality of
the solutions in the last population. Our approach is tested on
�ve well-known benchmark problems. �e merit of our approach
is veri�ed by comparing its performance with the pure GA and
PSO, hybrids where PSO works a�er GA, and vice versa, as well as
another hybrid approach of these algorithms from the literature.
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1 INTRODUCTION
While meta-heuristic optimisation algorithms are promising tech-
niques for solving complex problems, all of them are known for
particular strengths and weaknesses. Hence, the idea of combining
multiple meta-heuristics (called hybridisation) has a�racted much
a�ention; for a survey see [6]. We assume that the reader is familiar
with Genetic Algorithms (GA) and Particle Swarm Optimisation
(PSO). �ough both GA and PSO have been proved to be successful
on a variety of problems, each has its own weaknesses [4, 5]. For
example, in GA if an individual is not selected, its inherent informa-
tion will be lost, while in PSO the memory avoids this problem. On
the other hand, PSO su�ers from the lack of a selection operator,
and so it may waste its resources on poor individuals.

To address this challenge, hybrid approaches have been proposed
in the literature [2, 7]. In [7] a hybrid GA-PSO approach named
Breeding Swarms is introduced by combining the velocity and posi-
tion update rules of PSO with the GA operators selection, crossover
and mutation. In [2] a hybrid approach starting with PSO is pre-
sented in which a GA is embedded in each iteration to improve a
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speci�c number of particles. Further, there is an increasing interest
in using hybrid GA-PSO techniques in industrial applications [1, 3].
A review of the existing research shows that the full potential of
hybridisation techniques for GA and PSO has not yet been explored,
and reveals the lack of a parallel model which gives both algorithms
a fair chance to contribute their individual strengths.

2 OUR PARALLEL HYBRID GA-PSO
We aim to develop advanced hybridisation techniques for combin-
ing GA and PSO in order to be�er compensate for drawbacks of
one with the strengths of the other. We propose a novel parallel
hybrid GA-PSO approach (called P GA-PSO). A special character-
istic of our approach is that both GA and PSO are given the same
opportunity to simultaneously work on the same population in
each iteration and show their capabilities. We enforce a kind of
competitiveness among both by giving the chance to the algorithm
which has performed be�er in one iteration to have a bigger share
in the next iteration. Moreover, in each iteration the parameters
of GA and PSO are adjusted dynamically a�er testing the diversity
and quality improvements of the resulting population.

Now we present the stepwise description of our approach:
1. Initialise a random population Pop(1) of size Sbase
2. Sort Pop(1) based on the �tness of the individuals
3. Consider the population individuals as the particles of PSO, and

also as the �rst generation of GA
4. Update velocity and position of particles by the PSO rules, and

apply the GA operators selection, crossover and mutation
5. Evaluate the new particle positions of PSO, and add the o�spring

individuals obtained in GA from crossover and mutation to the
population, and then sort the pooled population based on �tness

6. Calculate the average �tnessMeanQPSO anMeanQGA of PSO
and GA, respectively

7. Determine the shares in the next iteration (SGA and SPSO ) of
each algorithm based on the mean quality, i.e., 0.6 for the be�er
one and 0.4 for the other

8. Fill Basepop from the best of the PSO and GA results based on
the shares SGA and SPSO , respectively

9. Calculate the diversity of Basepop
10. If the diversity is more thanMindiv consider it as Newpop and

go to step 13; otherwise go to the next step
11. Consider an extension Divpop with size SDivpop and �ll it

randomly with some unique individuals from the rest of the
PSO and GA results based on the shares

12. Merge Divpop into Basepop to obtain Newpop
13. If the termination criterion is met, then report the best individ-

ual inNewpop as the global best and �nal result of the algorithm,
and stop; otherwise go to the next step
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14. Increase the iteration counter by 1
15. Consider Newpop as the population of the new iteration
16. Examine the improvement of the population of the new itera-

tion over those of previous iterations, and reset the exploration
and exploitation parameters of GA and PSO, accordingly

17. Return to Step 2
In Step 9 the diversity is de�ned as the variance Varpop =

Sbase∑
i=1

‖xi−µpop ‖2

Sbase−1 of the individuals in the solution space, where
µpop is the mean point of the population.

In Step 16 a vector Imp = [imp1, imp2, imp3] is used that mea-
sures the improvements of the new iteration over the 1, 5 and 10
iterations ago. �e GA parameters crossover rate CR and mutation
rateMR, and the PSO parametersW , C1, C2 are reset by problem-
speci�c rules whose general structure is as follows:

• if imp1 ≥ L1 then set CR = cr1,CM = cm1,W = w1,C1 =
c11,C2 = c21

• if imp1 ≤ L1 and imp2 ≥ L2 then set CR = cr2,CM = cm2,W =
w2,C1 = c12,C2 = c22

• if imp1 ≤ L1 and imp2 ≤ L2 and imp3 ≥ L3 then set CR =
cr3,CM = cm3,W = w3,C1 = c13,C2 = c23

• if imp1 ≤ L1 and imp2 ≤ L2 and imp4 ≤ L3 then set CR =
cr4,CM = cm4,W = w4,C1 = c14,C2 = c24

3 EXPERIMENTAL RESULTS
We have conducted experiments to compare the performance of
our approach with �ve other approaches: the pure GA, the pure
PSO, the hybrids where GA and PSO are applied consecutively
(GA −→ PSO or PSO −→ GA, resp.), and the hybrid GA-PSO
approach in [7]. For our experiments we used MATLAB on a PC
with an Intel(R) Core(TM) i7, 3.10GHz CPU, and 16GB RAM.

We have tested against the following �vewell-known benchmark
functions fi (x ) that have already been used in [7]:

1. Ellipsoidal f1 (x ) =
n∑
i=1

ix2i

2.Rosenbrock f2 (x ) =
n−1∑
i=1

[100(xi+1 − x2i )
2 + (xi − 1)2]

3. Rastrigin f3 (x ) =
n∑
i=1

(x2i − 10cos (2πxi ) + 10)

4. Greiwank f4 (x ) = 1
4000

n∑
i=1

x2i −
∏n

i=0 cos (
xi√
i
) + 1

5. Ackley f5 (x ) = 20 + e − 20e
−0.2
√

1
n

n∑
i=1

x 2
i
− e

1
n

n∑
i=1

cos (2πxi )

We have solved each test problem in n = 30 dimensions. Each
experiment has been repeated 30 times. Table 1 shows the mean
function value, the standard deviation, and the average execution
time till termination for each of the benchmark test functions.

We have set the sizes of the base and diversi�cation population
to Sbase = 100, and Divpop = 30. �e termination criterion has
beenMaxit = 1000. For the �rst iteration, we have set parameters
as follows: MR =mr3, CR = cr2,W = w2, C1 = c12, C2 = c24.

4 CONCLUSION
We observe that our approach (P GA-PSO) is able to �nd optimal
or near-optimal solutions. In comparison with other methods, our

Table 1: Performance of our approach and others on the �ve
benchmark test functions fi (x )

Method
Benchmark

Test
Function

Mean
Function
Value

Std.
Average
Execution
Time (s)

Pure GA

f1 6.08 5.90 10.01
f2 25.49 13.06 12.73
f3 8.3E-02 6.82E-02 12.85
f4 6.32E-01 1.18 13.26
f5 8.21E-03 2.46E-02 13.38

Pure PSO

f1 3.21 4.45 11.40
f2 37.26 15.21 12.56
f3 5.16 1.15 12.93
f4 9.84E-01 1.65 13.44
f5 8.00E-03 4.57E-04 14.17

GA −→ PSO

f1 9.36E-01 8,60E-01 16.28
f2 2.82 3.25 16.42
f3 1.4E-02 5.06E-02 16.50
f4 5.09E-01 9.70E-01 17.85
f5 3.21E-04 2.19E-02 17.92

PSO −→ GA

f1 8.78E-01 9.28E-01 16.32
f2 5.09 3.86 16.40
f3 1.19 8.04E-01 16.53
f4 2.28E-03 8.41E-01 17.79
f5 1.66E-04 6.93E-03 18.02

GA-PSO [7]

f1 7.85E-47 1.38E-45 NA
f2 6.248 4.211 NA
f3 1.78E-16 6.41E-16 NA
f4 1.75E-02 1.97E-02 NA
f5 5.74E-15 3.50E-15 NA

Our Approach
(P GA-PSO)

f1 0 0 14.46
f2 6.05E-05 3.12E-04 14.72
f3 0 0 14.68
f4 1.01E-08 5.12E-06 14.81
f5 3.60E-24 3.41E-23 15.24

approach outperforms the pure GA, the pure PSO, GA −→ PSO
and PSO −→ GA in almost all cases as it achieves a lower mean,
and is relatively fast. Furthermore, our approach is be�er than [7]
in many cases; in some cases the performance of both approaches
is similar; only in very few cases [7] is be�er than our approach.

For future research we propose to explore further improvements
of the proven capability of our approach by further enhancing the
system of parameter updating using problem-speci�c rules.
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