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ABSTRACT
Systems are typically made from simple components regardless
of their complexity. While the function of each part is easily un-
derstood, higher order functions are emergent properties and are
notoriously di�cult to explain. In networked systems, both digital
and biological, each component receives inputs, performs a sim-
ple computation, and creates an output. When these components
have multiple outputs, we intuitively assume that the outputs are
causally dependent on the inputs but are themselves independent of
each other given the state of their shared input [11]. However, this
intuition can be violated for components with probabilistic logic, as
these typically cannot be decomposed into separate logic gates with
one output each. �is violation of conditional independence on the
past system state is equivalent to instantaneous interaction — the
idea is that some information between the outputs is not coming
from the inputs and thus must have been created instantaneously.
Here we compare evolved arti�cial neural systems with and with-
out instantaneous interaction across several task environments.
We show that systems without instantaneous interactions evolve
faster, to higher �nal levels of performance, and require fewer logic
components to create a densely connected cognitive machinery.
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1 INTRODUCTION
Evolvable Markov Brains are networks of deterministic and proba-
bilistic logic gates whose function and connectivity are genetically
encoded. �ey are a useful model to study the evolution of be-
havior [10], cognitive properties [8], and neural-network complex-
ity [1, 4], and can also be used as classi�ers [3]. At each generation
of evolution within a particular task environment, networks are
selected based on their �tness and the populations adapt through
random genomic mutations. �e genome is sequentially processed
with speci�c sites indicating the start of a gene. An individual gene
encodes one Hidden Markov Gate (HMG), which speci�es connec-
tions between network elements and also determines input-output
logic [8]. �ese HMGs are generalized logic gates that encompass
conventional logic gates such as XOR or NAND, whose logic ta-
ble is typically a static mapping of two inputs to a single output
(Figure 1A), but allow for more than the typical two-in-one-out
format and can use a probabilistic mapping between input and
output states. Here, HMGs could receive up to four inputs mapped
to maximally four outputs. In this way, each gene may encode an
entire logic module, as opposed to only a single logic function.
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Figure 1: Examples of gate decomposition into combina-
tions of simpler gates. Panel A shows two deterministic
logic gates whose inputs are cross-wired so that both gates
receive the same inputs. �e tables below show their prob-
abilities to output 0 or 1 respectively. �ese probabilistic
logic boundary cases are e�ectively deterministic logic gates.
Panel B shows a two-in-two-out logic gate that is function-
ally identical with the two gates depicted in Panel A. Panel C
shows two probabilistic logic gates similarly connected like
the deterministic gates from panel A.�e logic tables below
only show the case where both inputs are 0. �e lower table
shows replacing both probabilistic logic gates with a single
two-in-two-out probabilistic logic gate (similar to panel B)
and how the new probabilities for that gate are constructed
from the individual probabilities of both gates.
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Apart from introducing randomness into the Markov Brains,
probabilistic HMGs also di�er from deterministic HMGs in the way
they can be represented by a collection of simpler logic gates. �e
outputs of a deterministic HMG are necessarily conditionally inde-
pendent from each other: given the input state, an output is either
on (‘0’) or o� (‘1’). Information about the state of other outputs is
irrelevant, and as a consequence, a deterministic HMG can always
be decomposed into several logic gates with one output each. For
example, a two-in-two-out deterministic HMG (see Figure 1 panel
B) can easily be decomposed into two independent two-in-one-out
gates (see Figure 1 panel A). �is decomposition works similarly
for larger gates with more inputs and more outputs, requiring one
logic gate per output.

Probabilistic HMGs, on the other hand, are not generally decom-
posable into separate logic functions for each output. In the case
of a two-in-two-out probabilistic HMG, a probability table (for a
detailed explanation see [8]) maps all four possible input states
to all four possible output states. As a result, probabilistic HMGs
are not necessarily always decomposable into smaller units, which
sometimes results in the output wires having information, and thus
violates conditional independence given the input state (cf. [7]) -
which is also know as an instantaneous interaction. Without such
conditional independence, the interactions between elements in
a probabilistic Markov Brain cannot be represented as a directed
acyclic causal graph [11]. �is prohibits analyzing the causal com-
position of these Markov Brains, which means that the theoretical
framework of integrated information theory (IIT) [2, 9], which as-
sesses how sets of elements within a system causally constrain each
other, cannot be applied to these Markov Brains.

While instantaneous interaction may be a curious phenomenon
in evolvable Markov Brains, the question remains whether it ham-
pers or helps Markov Brains to adapt. To explore this question, we
implemented a decomposable version of the evolvable probabilis-
tic HMGs (up to four-in-four-out) with conditionally independent
outputs {out1, . . . , outN }.

2 RESULTS
When evolving Markov Brains to solve three independent tasks:
to forage, to perform active categorical perception [1, 8], and to
integrate information to navigate [5, 6] we �nd that Brains using
decomposable gates evolve faster (see Figure 2) and �nd gener-
ally be�er solutions (see Figure 3). In addition we �nd that the
architecture of the evolved Markov Brains di�ers signi�cantly (data
not show). Markov Brains using only decomposable gates have a
larger diameter, tend to use fewer gates, and always end up having
a higher connectivity.

3 CONCLUSION
Using decomposable logic gates not only allows us to study inte-
grated information in greater detail, but provides us with a newway
to accelerate evolution. Our results suggest there is no apparent
reason to include instantaneous interactions in Markov Brains. In
future work we will explore which environments give the great-
est bene�t to decomposable gates, and if the tendency to evolve
towards deterministic logic is the reason for their faster adaptation.
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Figure 2: Average �tness of organisms on the line of de-
scent in the spatial temporal (A) and foraging (B) environ-
ments, or association environment with no punishment (C)
or a cost of punishment being 0.1 (D). �e solid line repre-
sents average performance of agents restricted to conven-
tional probabilisticHMGs (with instantaneous interactions),
dashed lines represents average performance of agents re-
stricted to decomposable HMGs (without instantaneous in-
teractions). �e y axes are normalized to show the fraction
of maximally attainable �tness in each environment. �e
gray shadow indicates the bootstrapped 95% con�dence in-
terval of the mean.
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Figure 3: Distribution of performances at the end of
evolution for each of two conditions (“prob” for using
conventional- and “dec” for using decomposable logic gates)
in each of three environments represented as I (temporal
spatial integration task), F (foraging task), and A (associ-
ation task with a punishment of 0.05). Red dashes indi-
cate the mean and extrema. Fitness was normalized such
that maximal theoretically attainable �tness is represented
as 1.0. Signi�cance was tested using the Mann-Whitney U
test, with p < 0.05 for each environment (p = 0.0, p = 0.0,
p < 2.2 ⇥ 10�112).
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