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ABSTRACT
Due to the large number of evaluations required, evolutionary
robotics experiments are generally conducted in simulated environ-
ments. One way to increase the generality of a robot’s behavior is to
evolve it in multiple environments. �ese environment spaces can
be de�ned by the number of free parameters (f ) and the number
of variations each free parameter can take (n). Each environment
space then has nf individual environments. For a robot to be �t
in the environment space it must perform well in each of the nf
environments. �us the number of environments grows exponen-
tially as n and f are increased. To mitigate the problem of having
to evolve a robot in each environment in the space we introduce
the concept of ecological modularity. Ecological modularity is here
de�ned as the robot’s modularity with respect to free parameters
in the its environment space. We show that if a robot is modular
along m of the free parameters in its environment space, it only
needs to be evolved in nf −m+1 environments to be �t in all of the
nf environments. �is work thus presents a heretofore unknown
relationship between the modularity of an agent and its ability to
generalize evolved behaviors in new environments.
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1 INTRODUCTION
In many situations in evolutionary robotics, it is necessary to have a
robot be �t in multiple di�erent environments. However, because of
catastrophic forge�ing [4], it is not usually possible to evolve robots
in one environment, discard that environment, continue evolving
them in a di�erent environment, and have them retain their ability
to succeed in the �rst environment. �us, robots must be trained
in multiple environments. Matarić and Cli� [6] pointed out con-
vergence time explodes in such multiple-environment contexts
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because of the combinatorics of parametrically-de�ned environ-
ments. Matarić and Cli� [6] showed that if we wish evolved robots
to succeed in all environments de�ned for a given number of free
parameters (f ) and variations on those free parameters (n) then the
robots will have to be evolved in nf environments.

Previous work into modularity has mostly focused on non em-
bodied agents using the Q-metric as the primary measure of modu-
larity [2, 3, 5]. Recent work has shown that modularity in both body
and control of embodied agents can reduce the necessary number
of training environments when only n is scaled [1]. We extend this
work by introducing ecological modularity.

We de�ne ecological modularity as the robot’s modularity with
respect to it’s environment. A robot which is ecological modular
can more easily break down its environment into separate percepts
which can be recognized independently of other percepts the robot
has. Speci�cally if the robot can recognizem of the f free parame-
ters independently, it will only be necessary to evolve the robot in
nf −m+1 environments.

2 METHODS
We constructed a 2×2×2 environment space for a tree-morphology
(Treebot) robot to be evolved in (Fig. 1). �e task was categoriza-
tion of cylinders on the le� and right of the robot. �e robot was
rewarded for having its leaves pointing at groups of two cylinders
and away from groups which only had one cylinder.

Two types of Treebot were compared: the modular (M) robot
and the non-modular (NM) robot. Each robot consisted of a root
node and two leaf nodes. Each leaf node consisted of distance
sensors. �e M robot could move its leaf nodes independently
of one another while its root was �xed in place. �e NM robot
had its leaf nodes �xed and could move about its root. �e robots
were controlled via neural networks whose weights were optimized
through evolution.

�eM network contained a modular network where the le�
sensor only a�ected the motor neuron of the le� leaf node and
similarly the right sensor only a�ected the right motor. In theNM
network both sensors could a�ect the sole motor neuron.

3 RESULTS
Robots were evolved in a subset of the total environment space
until they reached a target threshold �tness in each individual
environment they were trained in. �e robot was then tested in
the remaining unseen environments and their �tness was recorded.
Figures 2a and 2b shows the results of theM andNM evolved in a
four environment subset and Figure 2c shows theM robot evolved
in a two environment subset.
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Figure 1: �e starting point of the robots in simulation for each environment. �e environment space is shown by all eight
environments whichmake up the �gure. Groups on the le� and right could bemade up of one or two cylinders and the groups
could be δ = 4 or δ = 6 units away from the robot.

(a)M robot evolved in 4 environments

(b) NM robot evolved in 4 environments

(c)M robot evolved in 2 environments

Figure 2: Average �tness scores for M (2a) and NM (2b)
robots in E3 with training set {e0, e3, e4, e7}. 2c Shows the
M robot in the training set {e0, e7}. Training sets are rep-
resented by the blue outlines around the environments.

4 DISCUSSION AND CONCLUSION
We have presented an environment space with n = 2 and f = 3
giving 23 = 8 separate environments.

�eNM robot could not separate the free parameters in the en-
vironment space so its modularity score ism = 1 and it is therefore
necessary to evolve the robot in every environment in the space.

Because theM robot can break down the environment into right
and le� percepts, it was able to use what it had sensed before to
inform how it should behave in future environments. However,
theM robot could not separate the di�erence between objects at
di�erent δ values so it was not fully ecologically modular. �us the
M robot has an ecological modularity score of m = 2 meaning it is
necessary to evolve it in 23−2+1 = 4 environments.

In the future we will explore how ecological modularity can arise
through evolution instead of being baked in as in this paper and
the di�erence in evolutionary time between ecologically modular
and non-modular robots.
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