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Prague 182 07, Czech Republic

martin@cs.cas.cz

ABSTRACT
�is work presents an ordinal-based Gaussian process surrogate
model for the state-of-the-art continuous black-box optimizer CMA-
ES in scenarios where the objective evaluations are very expensive.
Such model is motivated by the CMA-ES’ invariance with respect to
order preserving transformations. Alongside with the model’s de-
scription, comparison with the standard (metric) Gaussian process
surrogate for the CMA-ES is given.
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1 INTRODUCTION
Surrogate regression models replacing the original expensive �t-
ness in some of the evaluated points have been in use since the
early 2000s. In this paper, surrogate modelling is studied in con-
nection with the state-of-the-art method for continuous black-box
optimization – the CMA-ES (Covariance Matrix Adaptation Evolu-
tion Strategy). �e considered models are Gaussian processes (GP),
which di�er from other common surrogate models through estimat-
ing the whole probability distribution of �tness values. To combine
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them with the CMA-ES is challenging because CMA-ES invariance
with respect to order preserving transformations suggests ordinal
regression, whereas Gaussian process continuity suggests metric
regression.

In history, one of the most promising surrogate models com-
bined with the CMA-ES, according to the results on the COCO
platform bechmarks, uses ranking SVM, i. e., ordinal support vector
regression [4]. On the other hand, two other surrogate models for
the CMA-ES, which are similarly successful on the COCO platform,
use metric regression: the response-surface model in [1] and the
GP in [5]. �is balance between ordinal and metric surrogates was
a starting point for our investigation.

2 SURROGATE MODEL BASED ON ORDINAL
GP REGRESSION

2.1 Probabilistic Least Squares Ordinal
Regression

�e Probabilistic least squares approach of ordinal GP [6], which
we have chosen for this work, consists in a linear mapping of la-
tent GP f (x) as α0 − α f (x) into r intervals I1 = (−∞,b1], I2 =
(b1,b2], . . . , Ir = (br−1,∞), where −∞ = b0 < b1 < · · · < br−1 <
br = ∞. �e probability that a random variable f (x) with prob-
ability distribution N (µ,σ ) is mapped to a particular interval Ik ,
k = 1, . . . , r , is

P ( f (x) ∈ Ik ) = Φ

(
bk − (α0 − αµ )
√

1 + α2σ 2

)
− Φ

(
bk−1 − (α0 − αµ )
√

1 + α2σ 2

)
=

= Φ

(
αµ + βk
√

1 + α2σ 2

)
− Φ

(
αµ + βk−1
√

1 + α2σ 2

)
, (1)

where Φ is the distribution function of the standard normal distri-
bution N (0, 1) and βk = bk − α0,k = 0, . . . , r .

Taking into account (1), the PLSOR approach estimates the like-
lihood that the prediction of f (xi ) based on the remaining train-
ing data without (xi ,yi ) is mapped to the same interval Iyi =
(βyi−1 +α0, βyi +α0) to which yi is mapped. Denoting the mean of
that prediction µ−i and its variance σ 2

−i with hyperparameters of
the GP estimated only from the remaining training data, this leads
to the �nal estimated likelihood of the observed assignment of the
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Algorithm 1 Ordinal GP model training
Input: (xi ,yi )ni=1 (training points),

r (the number of bins for clustering),
θ0 (initial values of latent GP hyperparameters θ ),
α0, {β0

j }
r−1
j=1 (initial values of PLSOR hyperparameters α , {βj }r−1

j=1 )

1: {yord
i }

n
i=1 ← cluster({yi }ni=1, r )

2: (α ,{βj }
r−1
j=1 ,θ )

∗← arg max
α, {βj }r−1

j=1 ,θ

log L̂ ({yord
i }

n
i=1|{xi }

n
i=1,α ,{βj }

r−1
j=1 ,θ )

(see Eq. (2))
Output: (α , {βj }

r−1
j=1 ,θ )

∗ (trained model hyperparameters)

Algorithm 2 Ordinal GP model prediction

Input: {xi }λi=1 (population of points),
θ (trained latent GP hyperparameters),
α , {βj }r−1

j=1 (trained PLSOR hyperparameters)
1: pki ← P ( f (xi ) ∈ Ik |xi ,α ,{βj }r−1

j=1 ,θ ),∀k = 1, . . . , r ,∀i = 1, . . . , λ
(see Eq. (1))

2: qi ←
∑r
k=1 p

k
i k ∀i = 1, . . . , λ

3: {xi :λ }λi=1← order {xi }λi=1 according to q1:λ ≤ q2:λ ≤ . . . ≤ qλ:λ
Output: {xi :λ }λi=1 (ordered population)

training data to the intervals I1, . . . , Ir :

L̂ (yi ∈ Iyi , i = 1, . . . ,n |{xl }nl=1,α , β1, . . . , βr−1,θ ) =

n∏
i=1
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2.2 Ordinal GP in DTS-CMA-ES
We present implementation details of ordinal GP model for the
DTS-CMA-ES [5].

�e ordinal GP model-building phase, depicted in Algorithm 1,
starts with clustering the input data (xi ,yi )ni=1 to intervals I1, . . . , Ir .
A�er that, the hyperparameters are selected to maximize the likeli-
hood (2).

�e ordinal GP model prediction procedure is depicted in Al-
gorithm 2. �e prediction of the ordinal class qi of a point xi is
calculated as the expectation of the ordinal class values of xi with
respect to the probability distribution de�ned for x = xi according
to (1). �e output of the GP model is the ordered set of CMA-ES
generated population {xi :λ }λi=1, where the index i :λ denotes the
index of the i-th ranked point, that is q1:λ ≤ q2:λ ≤ · · · ≤ qλ:λ .

3 EXPERIMENTS ON COCO PLATFORM
We performed the experiments1 on the noiseless part of the COCO
framework to compare the proposed implementation of ordinal GP
regression model (Ord-DTS) with the metric regression model from
DTS-CMA-ES [5], BIPOP-s∗ACM-ES-k [3], the original CMA-ES [2],
and lmm-CMA-ES [1].

First, PLSOR parameters resulting in the best regression per-
formance were identi�ed. �ese parameters are the kernel of the

1the source code is available at h�ps://github.com/repjak/surrogate-cmaes/tree/ordgp
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Figure 1: Comparison of optimization algorithms on 24
COCO noiseless functions and on Attractive sector function
(f6) in 2 and 5D

latent GP process (KSE, Kν=5/2
Matérn), the type of clustering (no cluster-

ing, quantile clustering, agglomerative hierarchical clustering),
and the number of ordinal classes for clustering (µ, λ, 2λ), where
one of the best-observed values are typeset in bold and used in the
experiments on the COCO benchmark.

�e summary in Figure 1 show the e�ect of usage of the PLSOR
model instead of the metric GP in the DTS-CMA-ES optimizer on
the COCO benchmark. �e graphs show the scaled logarithm ∆

log
f

of the median of minimal distance from the function optimum over
runs on 15 independent instances dependent on function evalu-
ations divided by dimension (see [5] for details). �e values are
scaled to the [−8, 0] interval, where −8 corresponds to the minimal
and 0 to the maximal distance.

Its easy to see that the performance of PLSOR model in DTS-
CMA-ES is lower than the performance of metric model with the
exception of the a�ractive sector function f6.
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