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ABSTRACT
We propose a new type of leaf node for use in Symbolic Regression
(SR) that performs linear combinations of feature variables (LCF).
LCF’s weights are tuned using a gradient method based on back-
propagation algorithm known from neural networks. Multi-Gene
Genetic Programming (MGGP) was chosen as a baseline model.
As a sanity check, we experimentally show that LCFs improve the
performance of the baseline on a rotated toy SR problem. We then
perform a thorougher experimental study on a number of arti�cial
and real-world SR benchmarks. �e usage of LCFs in MGGP stati-
cally improved the results in 5 cases out of 9, while it worsen them
in only a single case.
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1 INTRODUCTION
Symbolic regression (SR) is an inductive learning task with the goal
to �nd a model in the form of a symbolic mathematical expression
that �ts the available training data. SR task is usually solved by
Genetic Programming (GP) [5]. Recently, several methods emerged
[1, 2, 6, 8] that explicitly evolve models in a form of (possibly regu-
larized) “top-level” linear combinations of evolved complex features.
Such models can be learned much faster since the evolution does
not have to deal with the linear parts.

In some SR tasks, the underlying function could be modeled more
easily if we had access to a suitable rotation of the feature space,
∗A detailed treatment of the topic can be found at [9].
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or to suitable projections of the features. Such linear combinations
of original features can be evolved in virtually any SR system that
allows for numeric constants, but they must be tuned by mutation,
and the linear combinations must be constructed via structural
manipulation operators.

In this article we explore the possibility of using explicit linear
combinations of features at the bo�om of the evolved expression
trees. �ese are added to the original features and can then be
non-linearly combined by evolution. We have chosen Multi-Gene
Genetic Programming (MGGP) [3, 8] as the base algorithm for the
research as it is very close to regular GP but uses top-level linear
combinations to speed up the search.

2 LINEAR COMBINATIONS OF FEATURES
We introduce a new type of leaf node – a Linear Combination of
Features (LCF). �is type of node is similar to a leaf node represent-
ing a variable, or feature. However, while an ordinary feature-node
evaluates simply to the value of that feature, a LCF node evaluates
to a linear combination of all the features present in the solved
problem, i.e. LCF(x) = w0 +w1x1 + . . .wnxn .

�e LCFs e�ectively perform a�ne transformations of the fea-
ture space and we argue that they can provide more e�ective tools
to deal with e.g. rotated functions and, in general, provide more
�exibility to the GP algorithm.

�e initialization of the weights is based on the idea that, at the
start, there is no feature space transformation happening: only a
single multiplicative weight of the LCF (corresponding to a single
input variable) is set to 1, the rest is set to 0.

In order to be of any use, the weights of LCF nodes must be modi-
�ed during the evolution. We use a gradient-based tuning approach.
Since the structure of the expressions as well as the cost function
is known, it is possible to compute the gradient of the expressions
w.r.t. the weights. We use an approach fundamentally identical
to the one used in neural networks – error backpropagation tech-
nique1 [7]. When the individual partial derivatives are known, any
�rst-order update method can be used to modify the weights to pro-
duce a more �t expression. We use the iRprop− update mechanism
[4].

Other con�gurations. We also tested other con�gurations with
di�erent LCF initialization, weights tuning by mutation, and some
restrictions imposed on the LCF nodes (see [9]). However, the

1 When we use the term “(error) backpropagation”, we mean only the procedure of
determining the values of the partial derivatives and not the update mechanism.
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initialization described above, the gradient-based tuning, and unre-
stricted LCF nodes outperformed the other con�gurations.

3 EXPERIMENTAL EVALUATION
To assess the bene�t of our proposal, we evaluated it on two series
of benchmarks. �e �rst series consists of a toy problem – a simple
sigmoid function applied along only a single dimension in multi-
dimensional space – and its rotated version. �e purpose of this test
is to determine whether and how much are LCFs bene�cial in the
rotated environment. �e expected result is that the baseline MGGP
algorithm will be less successful on the rotated version while the
LCF-enabled algorithm will take advantage of its ability to learn
feature space transformations and hence be more successful.

�e second series of tests involves 9 more complex arti�cial
and real-world benchmarks and it aims to provide performance
comparison of our proposals. Detailed description of the datasets
can be found in the supplementary material.

�e results on the toy problems, as can be seen in Table 1, have
clearly shown that LCFs enable the algorithm to deal with the
rotated feature space, while in the non-rotated case there was no
di�erence (across a range of dimensions). �is shows that the LCFs
provide additional �exibility while not harming the algorithm when
they are not needed.

Table 1: Test-set R2 (1 means an ideal �t) and the statistical
signi�cance of the result on the toy problems. �e statisti-
cally signi�cantly better result has asterisk (*).

problem
baseline LCFs statistically

be�ermedian max
min median max

min

non-rotated 1 1
1 1 1

1 -
rotated 0.991 0.996

0.912 1 1
1 LCFs

�e results on the arti�cial and real-world benchmarks, as can
be seen in Figure 1, have shown that while the LCFs are not always
bene�cial, overall they provide an improvement over the baseline.

Full results for both sets of problems can be found in the supple-
mentary material and in [9].

4 CONCLUSIONS
In this article we presented a new type of leaf node for use in SR
– linear combination of feature variables – used in the baseline
algorithm of MGGP. We tested the proposal on two sets of bench-
marks: toy problems speci�cally designed to test the ability of
LCFs to provide feature space transformations, and a set of arti�-
cial and real-world benchmarks to provide a view on the overall
performance.

�e toy problems showed that LCFs are capable of handling
existing feature space transformation and enable the algorithm to
achieve be�er results. �e arti�cial and real-world problems have
shown that, overall, LCFs are bene�cial.
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Figure 1: Test-setR2 (1 is ideal �t) on all datasets. �e le�box-
plots are the baseline, the right ones are for LCFs. �e high-
lighted boxplots signify that the corresponding algorithm is
statistically signi�cantly better than the other one from the
pair. Note that outliers at -0.719 for LCFs on ASN, at -0.664
for baseline on SU and at 0.175 for baseline on MM are not
shown.
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