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ABSTRACT
Multi-objective optimization problems involve more than one objec-
tive to be optimized simultaneously. Typically, however, there is
no single solution that simultaneously optimizes them all. �is can
be overcome by calculating a set of compromise solutions, called
the Pareto frontier. We hereby introduce a new approach, called
Set-SMAA. It extends stochastic multi-criteria acceptability analysis
(SMAA) to �nd a small set of preferable solutions from the frontier.
�is applies to diverse use cases, from decision-making and prod-
uct recommendation, to evolutionary multi-objective optimization
algorithms and their �tness measures.
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1 INTRODUCTION
A multi-objective (MO) decision problem is given by a �nite
sequence P1, . . . , Pn of vectors in Rm . �at is, there are n ≥ 0 so-
lutions (a.k.a., options, alternatives), andm ≥ 1 objectives (a.k.a.,
criteria), and each solution is given a real-valued score in each of the
objectives. W.l.o.g., we assume that in all objectives greater values
are be�er. �e ultimate problem in this context is �nding the best
solution. However, generally there is no solution that is best in all
objectives. In order to pick the best solution, one needs additional
information on the preferences of the decision maker (DM).

A DM’s preferences can be represented by a utility function.
�at is, a function f : Rm → R that is monotonically nondecreas-
ing. For each solution Pk , f (Pk ) is a number that represents the
overall value, or, utility, for the DM. Here also, greater values are
be�er. Monotonicity re�ects the fact that an improvement in some
(or all) of the objectives can only improve the utility. Given a utility
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function f , it is easy to �nd the best solution(s). �ese are, of course,
those that maximize f .

In many cases, prior knowledge about the DM is limited, let
alone a precise representation of her preferences. At the basis of our
approach lies the realization that even without precise information,
if we take a distribution of utility functions for the problem at
hand, we can systematically �nd a (usually, small) set S of solutions
that are preferable—in the sense that it is most likely that one of the
solutions in S is best for the DM.

�e foundations of our approach lies in a probabilistic model
similar to that appearing in domain criterion methods [4]. We use
Monte Carlo simulations to make estimations, similarly to other
stochastic multi-criteria acceptability analysis (SMAA) methods [5].
Our methods, collectively referred to as Set-SMAA, are essentially
an extension of SMAA for choosing sets of solutions. Some of these
are implemented in a decision-support tool by IBM [3].

2 SET-SMAA
Consider a probability space de�ned on a setU of utility functions,
and assume a pre-given pseudorandom generator G() of utility
functions inU, in accordance to the distribution at hand.

Construction of coverage database. Fix ε ≥ 0. We generate a
large number N of utility functions using G(). For each generated
function fj , we �nd the set of solutions that ε-cover fj . Meaning,
those solutions that maximize fj up to an additive constant ε . For
each such solution k , we add j to a setUk containing all the indexes
of the utility functions that are ε-covered by solution k . �e family
of sets {Uk }nk=1 is called the coverage database (CDB).

Ranking solution sets. Using the CDB, for each set of solutions S ,
we de�ne a coverage measure by ν (S) = |⋃k ∈S Uk | /N , indicat-
ing the fraction of utility functions that at least one solution in S
covers. �is can be used to rank any number of solutions and
determine their total signi�cance for the DM.

Finding preferable solutions. �e essence of calculating a set of
preferable solutions involves limiting the size of S . �ere are several
ways of doing so, depending on the application at hand.

Max Cover: Maximizing the coverage measure while the num-
ber of solutions is constrained to be below a �xed threshold. �is
requires solving a combinatorial optimization problem. Min Size: A
dual approach of minimizing the number of solutions while the cov-
erage measure is constrained to be above a �xed threshold. While
these approaches represent two extreme cases, one may devise
other variants of the combinatorial problem.

Top-K: A naı̈ve (asUk are generally not disjoint) but fast heuris-
tic: collecting (only) the top K solutions according to their coverage
measure (i.e., according to the size of Uk ).

Greedy Methods: A family of heuristics achieving most of the
precision of the combinatorial approaches while still being rela-
tively e�cient. Using the CDB, we iteratively collect the solution
that adds most to the set of utility functions that are already covered.
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Various termination conditions can be imposed on the algorithm:
limiting the number of iterations of the algorithm, the total cover
reaches a certain threshold, or when the marginal contribution of
the next solution to the total cover is below a certain threshold.

�e above formulations apply to any distribution of utility func-
tions. �is provides a powerful framework that supports a wide
range of use cases in which there is some domain-speci�c or DM-
speci�c knowledge about preferences of DMs (e.g., customer seg-
mentation). Nevertheless, we believe that these methods are just as
bene�cial when such information is unavailable.

In case there is no such information, we pick a simple classU of
linear utility functions of the form f =

∑m
i=1wixi , or variants such

as f =
∑m
i=1wi x

1/α
i , for a �xed α ≥ 1. Here, each utility function f

is de�ned by a weight vectorw = (wi )mi=1 on the standard simplex in
them-dimensional space. As there is no indication of any preferred
region on the simplex, we take the uniform distribution on the
simplex. W.l.o.g., we assume that the values (xi )mi=1 of the objectives
are in the range of [0, 1]. Note, one may generate functions using a
uniform grid on the simplex instead of taking random samples.

3 EXPERIMENTS AND RESULTS
We empirically tested three research questions: (1) the coverage of
Set-SMAA methods in practical datasets; (2) the runtime e�ciency
of our algorithms as a function of their parameters; and (3) a direct
quality evaluation by Set-SMAA users.

In order to address the �rst two questions (see Test 1 and 2) we
use two original datasets. House dataset, which is taken from the
U.S. Department of Housing and Urban Development [2], includes
the characterization of dozens of houses according to 3 criteria:
year built, square footage, and price. Its frontier contains 348 solu-
tions. �e university dataset Uni, which is taken from CWUR 2015
World University Rankings [1], uses 9 objectives to rank the world’s
top-1000 universities. We eliminated the �rst 198 universities to
obtain a large frontier containing 802 solutions. Two additional
datasets, House double (6 objectives) and Uni double (18 objec-
tives), were created by doubling the criteria in the �rst two datasets:
for each objective i (with value xi ), we added an objective (say, i ′)
valued √xi . Another dataset, Uni half (5 objectives), was created
by eliminating part of the objectives of Uni.

Test 1: Coverage. For each of the datasets, we applied di�erent
Set-SMAA methods for �nding preferable solutions (Max Cover,
Greedy, Top-K), for di�erent values of the parameter ε (0, 0.01,
0.02, and 0.05); ε designates some level of “impreciseness”, or in-
sensitivity to exact utility scores. �e results were obtained using
N = 104 linear utility functions generated with uniform distribu-
tion on the simplex. In each case, we measured coverage of the
utility space per number of returned solutions (which is another
independent variable). �e reported coverage is measured using
a uniform grid of 2 · 104 to 3 · 104 points on the simplex, since it
provides a common ground for comparison without dependence
on sampling.

In datasets with up to 6 objectives, 5 solutions cover over 80%
and 9 solutions cover over 95% of the utility space even with ε = 0.
For more objectives, the numbers are from 14 solutions (Uni with
80% coverage) to 30 solutions (Uni double with 95% coverage).
Reducing sensitivity by as li�le as ε = 0.01, enables the same

coverage with up to 30% less solutions, while ε = 0.05 enables to
reduce the number of solutions by up to 60%. In our experiments we
obtained that the number of returned solutions generally increases
linearly with the number of objectives, in order to reach the same
coverage. However, we also know that it largely depends on the
structure of the frontier.

�e Greedy method statistically dominates Top-K heuristic
throughout the experiments. �e di�erence in coverage is signif-
icant only for a relatively small range of chosen solutions (3 to 7
solutions), which is important, however, for decision-making ap-
plications. �ere, the di�erence can approach 15% when ε , 0.
�e di�erence in coverage between the optimal Max Cover and
Greedy can seldom reach a few percent for this range of solutions.

Test 2: E�ciency. We evaluated execution time and coverage
as a function of the number of generated utility functions (from 500
to 104 samples). Apart from Max Cover, where combinatorial
optimization is signi�cant and time-consuming, execution time
is roughly linear with the sample size. Greedy with 104 samples
takes a few seconds to complete, while taking 500 samples is about
20 times faster (100msec on Intel Core i7-4710MQ with 16GB RAM).
Top-K is faster by about 30%. �e most time-consuming part is
the construction of the CDB. Coverage, in contrast, is generally
robust with sample size. Even a small number of sampled functions
bring a high level of coverage. �is suggests using Set-SMAA, and
especially the Greedy or Top-K methods, as part of evolutionary
MO optimization algorithms.

Test 3: User studies. A few user studies conducted at IBM
provide encouraging evidence for the capabilities of our methods in
locating the stronger solutions. First, users were generally satis�ed
with the algorithms’ performance: when tested on several real-life
datasets, the solution sets selected by Set-SMAA Greedy method
received an average satisfaction score slightly above 4, on a scale of
1 (worst) to 5 (best). Users also pointed out that these were decent
baseline solutions, with which other solutions on the frontier may
be compared, and which facilitate the exploration of the alternatives.
�e studies also suggest that taking α = 2 is generally preferable
to α = 1, i.e., users tend to favor more balanced solutions.

4 CONCLUSION
We presented a set of new methods, collectively called Set-SMAA,
for reducing the size of the Pareto frontier by extracting preferable
solutions that retain most of its utility and competence. �is ap-
proach does not require prior knowledge of DMs’ preferences, but
if any statistical (i.e., aggregative) or concrete information exists, it
could be easily incorporated in our algorithms. With a few datasets,
we demonstrated that a small number of high-quality solutions
were generally enough to capture most of the utility space.
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