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ABSTRACT
Two major challenges are presented when applying genetic algo-
rithms (GAs) to constrained optimisation problems: modelling and
constraint handling. The �eld of constraint programming (CP) has
enjoyed extensive research in both of these areas. CP frameworks
have been devised which allow arbitrary problems to be readily
modelled, and their constraints handled e�ciently. Our work aims
to combine the modelling and constraint handling of a state-of-the-
art CP framework with the e�cient population-based search of a
GA. We present a new general hybrid CP / GA framework which
can be used to solve any constrained optimisation problem that
can be expressed using the language of constraints. The e�cacy of
this framework as a general heuristic for constrained optimisation
problems is demonstrated through experimental results on a variety
of classical combinatorial optimisation problems commonly found
in the literature.
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1 INTRODUCTION
Genetic algorithms (GAs, [1, 3]) are a family of optimisation meta-
heuristics based on the evolutionary principle of survival of the
�ttest. The way GAs solve an optimisation problem is by evolving
a population of candidate solutions represented as a sequences of
bits, and associated with a �tness function that re�ects the solution
quality. The population is evolved by means of operators drawn
from genetics. The goal is to recombine the �ttest individuals in
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the population to create a new generation of candidate solutions,
hopefully with a higher overall �tness. GAs have been successfully
used in applications ranging from logistics [5] to renewable energy
[6]. Constraint programming (CP, [2]) is a paradigm for modelling
and solving CSPs and COPs. In CP, a problem is modelled in terms
of decision variables and constraints. Decision variables are associ-
ated with initial domains (sets of legal values), while constraints
represent logic relations between variables which further restrict
the allowed set of values that they can take. Problems are solved
using a combination of backtracking tree-search and constraint
propagation. The approach is complete: the search proceeds un-
til the domains of the variables are singletons satisfying all the
constraints, or it is proven that there is no solution. CP has had sig-
ni�cant success in dealing with combinatorial problems in routing
and scheduling. Modern CP frameworks provide large libraries of
constraints, which allow to easily model arbitrary COPs.

The goal of this work is to propose a hybrid framework to com-
bine genetic algorithms with constraint programming. By bringing
together these orthogonal technologies, we hope to leverage the
modelling and constraint handling capabilities of CP, and the ef-
�cient, parallel, population-based search strategies of GAs. We
show the applicability of our approach by running an experimen-
tal analysis on a number of classical combinatorial optimisation
problems.

2 OUR FRAMEWORK
Our approach retains the overall logical structure of a classic GA,
with the di�erence that each individual in the population is always
a feasible solution of a constraint model of the problem being solved.
By this we mean that, at all stages, an individual is represented as
a CP solution, rather than as a string of values as is customary in
GAs. The feasibility of the individuals is operationally guaranteed
at all times by enforcing constraint propagation whenever a new
individual is created or an existing solution is modi�ed. In this
section, we brie�y describe how the various components of 1 are
implemented to leverage the existence of an underlying constraint
model and a propagation engine.

2.1 Initialiser
The Initialiser routine �rst creates µ unassigned CP solutions.
Then, each solution is built through a depth-�rst tree-search in
which the next variable to be assigned is chosen as the one with the
highest accumulated failure count (AFC), and the value to assign to it
is chosen uniformly at random. Constraint propagation is enforced
at each step of the tree-search, so that the initial population consists
only of feasible solutions.
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Algorithm 1 Classical Genetic Algorithm
Require: Population size: µ

procedure GeneticAlgorithm
PI ←Initialiser(µ) . PI is the incumbent population
while stopping criteria is not met do

Clear(PO) . PO is the o�spring population
while |PO | < µ do

I1, I2 =Select(PI)
PO ←Crossover(I1, I2)

end while
Mutate(PO)
Evaluate(PO)
PI = Elitism(PI, PO)

end while
return Best(PI) . Return the �ttest individual

end procedure

2.2 Selection
Since the selection of parents does not modify or generate new
individuals, any operator from the GA literature can be used. In our
current implementation, we use a fairly standard roulette wheel se-
lection mechanism, in which the parents are chosen proportionally
to their �tness.

2.3 Crossover
Once two parents have been selected, we combine them to obtain a
new o�spring. We initialise the o�spring with an empty CP solution,
and then assign its variables using a depth-�rst tree-search which
takes the two parents as inputs, and works as follows. The variable
selection heuristic chooses the next variable v to assign uniformly
at random. The value selection heuristic biases the search towards
the values of the variable v in the parents. In particular, the values
to assign to v are attempted in one of the following orders

ord1 = 〈val(v1),val(v2), values in dom(v) in random order〉
ord2 = 〈val(v2),val(v1), values in dom(v) in random order〉

whereval(vx ) represents the value of the variablev in the parent x ,
dom(v) represents the domain of v in the o�spring, and the orders
ord1 and ord2 are chosen with equal probability. Since constraint
propagation is enforced at each step of the tree-search, the new
generation can only consist of feasible solutions.

2.4 Mutation
After a new o�spring is generated, we randomly mutate each of its
variables with a mutation probability (pm ), a parameter of the solver.
Then, we use a random AFC-driven depth-�rst tree-search to assign
(potentially di�erent) values to those variables. We constrain the
obtained individual to be at least as �t as it was before mutation.

3 EXPERIMENTAL ANALYSIS
We conduct an experimental analysis to demonstrate the general
applicability of our CP / GA framework (ConGA) to solve a variety
of combinatorial optimisation problems. To this end, we model
four classical combinatorial optimisation problems in the Gecode
constraint programming framework, and compare the performance

of our approach with the o�-the-shelf B&B tree-search strategy
provided by Gecode, and a freely-available CP-based large neigh-
bourhood search (LNS) strategy based on Gecode itself (see [4]).
The considered problems are: the bin packing problem (BPP), the
capacitated vehicle routing problem (CVRP), the job shop sched-
uling problem (JSSP) and the travelling salesman problem (TSP).
The �rst three are considered both in their original form, and in a
relaxed form where some of the hard constraints are modelled as
penalties.

Although there are small di�erences in the performances of the
approaches across the various problem domains, the results paint
a reasonably consistent picture: ConGA almost consistently out-
performs B&B, and LNS almost consistently outperforms ConGA.
This is re�ected in Figure 1 which shows the distribution of nor-
malised costs across all of the instances for the various algorithms
and model variants.

Figure 1: Performance across problems.

The advantage of ConGA over B&B was expected, since B&B is
slower to converge but, being a complete method, provides guaran-
tees. The results against LNS show that ConGA is not competitive
yet as an o�-the-shelf solution for solving COPs. Nevertheless, the
fact that parallelisability, one of the most compelling features of
GAs, was not exploited and the fact that the overall approach was
based on a very simple GA scheme, motivates more research in this
direction.
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