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ABSTRACT
We use Sequential Model-based Algorithm Con�guration (SMAC)
to optimize a group of parameters for PushGP, a stack-based ge-
netic programming system, for several so�ware synthesis problems.
Applying SMAC to one particular problem leads to marked improve-
ments in the success rate and the speed with which a solution was
found for that problem. Applying these “tuned” parameters to four
additional problems, however, only improved performance on one,
and substantially reduced performance on another. �is suggests
that SMAC is “over��ing”, tuning the parameters in ways that are
highly problem speci�c, and raises doubts about the value of using
these “tuned” parameters on previously unsolved problems. E�orts
to use SMAC to optimize PushGP parameters on other problems
have been less successful due to a combination of long PushGP
run times and low success rates, which make it hard for SMAC to
acquire enough information in a reasonable amount of time.
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1 INTRODUCTION
�ere is a long history of optimizing parameters in evolutionary
computation [7] including, for example, early work on optimizing
mutation rates [2] and population sizes for genetic algorithms [1].
Recent developments in statistical modeling and machine learning
have led to the design of powerful new techniques for parame-
ter optimization. Sequential Model-based Algorithm Con�gura-
tion (SMAC), for example, is a �exible tool for optimizing algorithm
parameters; SMAC uses repeated runs of the target algorithm with
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di�erent parameter values to estimate the relationship between
parameters and performance [6]. In his GECCO 2016 keynote ad-
dress [5], Holger Hoos argued that the parameter optimization �eld
had reached a state where, instead of avoiding new parameters or
making arbitrary choices for parameter values, researchers should
expose as many parameters as possible, and then use tools like
SMAC to optimize those (possibly large) sets of parameters.

Here we summarize a case study of applying SMAC to optimize
a set of nine parameters for the Clojush1 implementation of the
PushGP system [8, 9] when applied to several so�ware synthesis
benchmark problems [4]. While SMAC found “tuned” parameters
for one problem which substantially improved the success rate
on that problem, those “tuned” parameters appear to be problem
speci�c. Applying them led to no improvement on several other
problems, and actively hurt the performance on another. �is is
a useful reminder that parameter optimization is, like all machine
learning problems, subject to over��ing, and that just because a set
of parameters works well on one problem, or even a set of problems,
doesn’t mean it will be a good choice for a new unsolved problem.

2 EXPERIMENTAL RESULTS
We initially used SMAC to optimize nine PushGP parameters [3]
on the Replace Space With Newline so�ware synthesis problem [4].
Both the default parameter se�ings used in previous work [4] and
the parameter se�ings “discovered” by SMAC are listed in Table 1.

To ensure that changing the population size didn’t a�ect the over-
all computational budget for the runs, the number of generations
was calculated so the product of the population size and number
of generations never exceeded the 300,000 individuals processed
when using the default parameters (population size of 1,000 for 300
generations). �e parameters uniform mutation probability, uniform
close mutation probability, alternation probability, and alternation
followed by uniform mutation probability need to add up to 1; we let
SMAC explore any values in the range [0, 1] and then normalized
those four values so they summed to 1.

�e �nal row of Table 1 shows that the SMAC parameters led to
signi�cantly higher success rates; 95% of the SMAC parameter runs
�nd a solution, where only 54% of the runs with the the default
se�ing �nd solutions. �e runs using the SMAC parameter con�g-
uration also discovered solutions much earlier. By generation 100,
for example, 87% of the runs had succeeded when using the SMAC
parameters, where only 37% of the runs with the default se�ings
had succeeded.

1h�ps://github.com/lspector/Clojush
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Table 1: Clojush parameters optimized by SMAC for the Re-
place Space With Newline problem, along with their ranges
(as given to SMAC), their default values, and their “opti-
mized” values as discovered by SMAC. Population size and
alignment deviation are speci�ed to have integer values.
Population size is also speci�ed to be on a log scale. �e se-
lection method is a categorical (non-numeric) variable. �e
default values arewhatwere used in [4]. �e�nal row shows
the number of successes out of 110 independent trials for
each collection of parameter settings.

Parameter Range Default SMAC

Population size [1, 30K] 1,000 150
Selection method tournament

or lexicase
lexicase lexicase

Uniform mutation prob. [0, 1] 0.2 0.36
Uniform close mut. prob. [0, 1] 0.1 0.06
Alternation prob. [0, 1] 0.2 0.03
(Alt. + Uni. mut.) prob. [0, 1] 0.5 0.54
Alternation rate [0, 1] 0.01 0.01
Alignment deviation [0, 400] 10 121
Uniform mutation rate [0, 1] 0.1 0.188

Successes (out of 110) 59 104

Table 2: Number of successful programs out of 100 runswith
default parameters, and with the parameters that SMAC
found when run on RSWN ; see Table 1.

Problem Standard SMAC
Replace Space with Newline 54 91
Double Le�ers 0 6
String Lengths Backwards 68 75
Syllables 22 17
X-Word Lines 17 3

Table 2 shows the success rates on 100 independent runs for
each parameter set on four additional so�ware synthesis bench-
mark problems [4]. Here we see that se�ings “tuned” by SMAC for
Replace Space With Newline do not generalize well across the new
problems. �e SMAC se�ings are signi�cantly (but not dramati-
cally) be�er on Double Le�ers, and signi�cantly worse on X-Word
Lines, while the di�erences for the other two problems weren’t
statistically signi�cant.2

3 CONCLUSIONS AND FUTUREWORK
SMAC was able to discover parameter se�ings that substantially
improved performance on a speci�c problem (Replace Space With
Newline) where we already had a reasonable success rate. �ose
new parameter se�ings did not generalize to additional problems,

2Using a pairwise χ 2 test of proportions with a signi�cance level (before adjustment)
of 0.05.

however, suggesting that SMAC, like most machine learning sys-
tems, is susceptible to “over��ing”.

SMAC does support a training mode where it can explore param-
eters across a range of problems or problem instances, which might
help address these “over��ing” issues and help SMAC �nd param-
eters that perform well more generally. Unfortunately, running
SMAC across a broad collection of problems requires substantial
computational e�ort. �is problem is then made worse when sev-
eral of the test problems have low success rates, as these runs o�en
consume considerable computational e�ort before they fail, generat-
ing very li�le new information in the process. Limited exploratory
work in this direction has been held up by SMAC’s need for an
adequate amount of information on successful runs. For these so�-
ware synthesis problems, this can lead to hundreds of runs, each
run lasting up to 24 hours.

�us, while it is important to �nd ways to help SMAC (or similar
tools) discover more generally applicable parameter se�ings, doing
so on suites of problems that are computationally expensive to run
and have low success rates is certainly problematic, and deserving
of further a�ention.
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