
Introducing the Cumulation to the Population Based
Incremental Learning and the Compact GA to Relax Genetic

Dri�

Keigo Tanaka
Graduate School of Science and Technology

Shinshu University

4-17-1 Wakasato

Nagano 380-8553, Japan

16w2044c@shinshu-u.ac.jp

Youhei Akimoto
Faculty of Engineering

Shinshu University

4-17-1 Wakasato

Nagano 380-8553, Japan

y akimoto@shinshu-u.ac.jp

ABSTRACT

�e population based incremental learning (PBIL) and the com-

pact genetic algorithm (cGA) are both Bernoulli distribution based

search algorithm for optimization of binary variables. �e proba-

bility parameter that controls the probability of each bit being one

is updated based on the ranking of the population from the current

distribution. We o�en observe some parameters move randomly

and tend to converge towards undesired values. Such a behavior is

called genetic dri� and it happens due to a large variance of the pa-

rameter update compared to a small expectation of the parameter

update. To prevent genetic dri�, the learning rate for the param-

eter update needs to be su�ciently small, but it results in a slow

convergence. In this paper, we propose a mechanism to detect ge-

netic dri� and prevent parameters from being updated randomly.

For this purpose, we introduce the so-called cumulation that is em-

ployed in the covariance matrix adaptation evolution strategy. Ex-

perimental results show that the cumulation allows PBIL and cGA

to use a greater learning rate for the parameter update, leading to

a speed up, especially on functions with high redundancy such as

LeadingOnes function.

CCS CONCEPTS

•Mathematics of computing→Evolutionary algorithms; •�eory

of computation→ Evolutionary algorithms;

KEYWORDS

Population based incremental learning, compact genetic algorithm,

binary optimization, genetic dri�, cumulation

ACM Reference format:

Keigo Tanaka and Youhei Akimoto. 2017. Introducing the Cumulation to

the Population Based Incremental Learning and the Compact GA to Relax

Genetic Dri�. In Proceedings of GECCO ’17 Companion, Berlin, Germany,

July 15-19, 2017, 2 pages.

DOI: h�p://dx.doi.org/10.1145/3067695.3075987

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3075987

1 FORMULATION

Without loss of generality, we consider the minimization of f :

{0, 1}N → R. We describe the population based incremental learn-

ing (PBIL), and derive the compact genetic algorithm (cGA) from

the PBIL framework.

PBIL is a probability model based search algorithm. It produces

multiple candidate solution from a multivariate Bernoulli distribu-

tion Bp with the parameter vector p = (p1, . . .,pN). �e probabil-

ity parameter is initialized as pi = 0.5 for all i = 1, . . . ,N . Note

that pi = 0.5 implies no apriori preference between 0 and 1. PBIL

repeats the following steps until a stopping condition is satis�ed.

STEP 1. Sample λ candidate solutions xj ∈ {0, 1}N (j = 1, . . ., λ)

from the Bernoulli distribution Bp
STEP 2. Evaluate the objective values f (xj)

STEP 3. Update the probability parameter p as follows

p ← p + cp
∑λ
j=1wj (xj − p) , (1)

where cp is the learning rate for p.

STEP 4. Restrict the probability parameter within [ϵ, 1 − ϵ] as

[p]i ← min(max([p]i ,ϵ), 1 − ϵ) , (2)

where ϵ = 1/λ/N in this paper.

Compact Genetic Algorithm (cGA) [3] is a probability model

based search algorithm for binary optimization. It samples two

candidate solutions fromBp and update the probability parameters

by adding±cp if one candidate solution is be�er than the other, and
stall the update if they are tie. �e cGA is fully recovered in the

PBIL framework by se�ing λ = 2, w̄1 = 1/2, w̄2 = −1/2.

2 INTRODUCING THE CUMULATION IN PBIL

Issue of Genetic Dri�. Both PBIL and cGA su�er from the genetic

dri�. It happens when the expectation of the parameter update

dp =
∑λ
j=1wj (xj − p) is small relative to the standard deviation of

the update. In this case the parameter is updated randomlywithout

re�ecting the right signal, i.e., E[dp].

It is known that a small learning rate, cp , helps to prevent the

genetic dri�. �e reason is explained as follows from the stochastic

approximation point of view. Assume that cp is so small that the

parameter will not change signi�cantly in T steps. �en, the pa-

rameter updates, dp, forT iterations are considered from the same

distribution. �en, we have the expectation and the standard devi-

ation of [p (t+T)]i − [p (t)]i as E[[p (t+T)]i − [p (t)]i] = TcpE[[dp]i]

199

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

and Std[[p (t+T)]i − [p (t)]i] =
√
TcpStd[[dp]i], respectively. �ere-

fore, the expectation, i.e., the right signal, will be
√
T times more

emphasized than the standard deviation, i.e., the noise e�ect. Con-

sidering T ∝ 1/cp , one can conclude that the signal to noise ratio

is proportional to 1/
√
cp .

However, the right cp di�ers from problem to problem and from

situation to situation even on the same problem since E[[dp]i] and

Std[[dp]i] varies. For example, there will be almost no signal for

the ith component for i ≈ N at the beginning of the search on

LeadingOnes. On the other hand, we will receive stronger signal

for all components onOneMax. In general, one can not know how

small cp should be, cp needs to be set as small as possible, but it

results in taking long iterations until the parameters converge.

PBIL with Cumulation. We introduce the evolution path s ∈ Rd .
It is initialized as [s]i = 0 for i = 1, . . . ,d . Our proposed algorithm

replaces STEP3 with the following steps.

STEP3a. �e evolution path s is updated as

s ← (1 − cs)s +
√

cs (2 − cs)µv
∑λ
j=1 vj (xj − p) , (3)

where cs is the cumulation factor,vj are the recombinationweights

for the evolution path computed in the same way as wj with pre-

de�ned weights v̄j instead of w̄j , µv = 1/
∑λ
j=1 v̄

2
j .

STEP3b. �e pi is updated according to (1) if it satis�es s2i >

αγ
(t+1)
i pi (1 − pi), where γi is the correction factor updated as

γi ← (1 − cs)2γi + cs (2 − cs) with the initial value ri = 0.

Recombination Weights. In the original paper of PBIL [1] the re-

combination weights are all positive and exponentially decreasing

from the �rst w̄1 to the last w̄λ . On the other hand, cGA uses a pos-

itive w̄1 and a negative w̄2. To prevent undesired update, utilizing

both positive and negative weights has a certain advantage. �e

following two schemes are considered.

w̄i , v̄i =
1
µ (if j ≤ µ), 0 (otherwise) (4)

w̄i , v̄i =
1
2µ (if j ≤ µ),− 1

2µ (if j ≥ λ − µ), 0 (otherwise) (5)

3 EXPERIMENTS

Table 1a and Table 1b show the average numbers of function eval-

uations over 50 trials until cGA and PBIL with and without cumu-

lation �nd the optimum on 500 dimensional LeadingOnes. �e

maximum number of function evaluations is 5 × 106.
Both cGA and PBIL requires a smaller cp to solve LeadingOnes

e�ciently. If one increases cp , we o�en observe many components

of the parameter dri� towards 0, which is opposite to the optimal

direction. On OneMax such a dri� is less likely to happen, as we

see in Figure 1. We also note that the negative weights (5) helps

to speed up the optimization. In particular on OneMax, using the

negative weights allows us to set a higher cp and it results in a

faster convergence.

Figure 1 compares the evolution of the probability parameters

[p]i with and without cumulation. �e same learning rate cp =

10/N is used for all se�ings. On LeadingOnes, we observe that

most of the components of the probability parameter p move only

toward 1 from the initial value of 0.5 when we introduce the cu-

mulation (α = 11), whereas we observe many components move

towards 0 due to nearly random update of the parameters. Even

Table 1: Comparison of cGA, PBIL with (5) and PBIL with (4).

(a) without cumulation (α = 0)

cp 1/N 5/N 10/N 50/N 100/N

cGA 169 71.8 59.2 52.8 > 500

PBIL with (5) 146 45.6 68.9 111 127

PBIL with (4) 109 53.7 89.4 122 124

(b) with cumulation (α = 11)

cp 1/N 5/N 10/N 50/N 100/N

cGA 126 34.4 26.0 > 500 > 500

PBIL with (5) 163 38.3 21.3 6.51 5.88

PBIL with (4) 126 30.9 17.6 5.79 5.15

0 350000 700000
function evaluations

0

0.5

1

p
0 110000 220000

function evaluations

0

0.5

1

p

0 6500 13000
function evaluations

0

0.5

1

p

0 14000 28000
function evaluations

0

0.5

1

p
Figure 1: PBIL without cumulation (α = 0, le�) and PBIL

with cumulation (α = 11, right) with (5), cp = 10/N , cp/cs = 5

on 500 dimensional LeadingOnes: f (x) = N −
∑N
j=1

∏j
i=1[x]i

(upper) and OneMax: f (x) = N −
∑N
i=1[x]i (lower).

though cp is untouched, we observe the speed up. On the other

hand, we observe a speed down onOneMax by introducing the cu-

mulation. It is because the random parameter update is less likely

to happen on OneMax and the proposed cumulation mechanism

tends to stale the parameter update even in the right direction.

Note that, however, one can set a greater cp and a smaller α in

the proposed algorithm, which will make the di�erence between

PBIL with and without cumulation smaller on OneMax.

REFERENCES
[1] Shumeet Baluja and Rich Caruana. 1995. Removing the genetics from the stan-

dard genetic algorithm. In Proc. of the 12th Intern. Conf. on Machine Learning.
38–46.

[2] NikolausHansen and Andreas Ostermeier. 2001. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001), 159–
195.

[3] Georges R Harik, Fernando G Lobo, and David E Goldberg. 1999. �e compact
genetic algorithm. IEEE transactions on evolutionary computation 3, 4 (1999),
287–297.

[4] Dirk Sudholt and Carsten Wi�. 2016. Update strength in EDAs and ACO: How
to avoid genetic dri�. In Proceedings of the 2016 on Genetic and Evolutionary
Computation Conference. ACM, 61–68.

200

	Abstract
	1 FORMULATION
	2 Introducing the Cumulation in PBIL
	3 Experiments
	References

