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ABSTRACT
Our cybersecurity tool, RIVALS, develops adaptive network defense
strategies by modeling adversarial network a�ack and defense be-
havior in peer-to-peer networks via coevolutionary algorithms.
Currently, RIVALS DOS a�acks are modestly modeled by the se-
lection of a node that is completely disabled for a resource-limited
duration. Defenders have three di�erent network routing protocols.
A�ack or mission completion and resource cost metrics serve as
a�acker and defender objectives. �is work also includes a descrip-
tion of RIVALS’ suite of coevolutionary algorithms that explore
archiving as a means of maintaining progressive exploration and
support the evaluation of di�erent solution concepts. To compare
and contrast the e�ectiveness of each algorithm, we execute simula-
tions on 3 di�erent network topologies. Our experiments show that
it is possible to forgo the assurance of monotonically increasing
results and still retain high quality results.
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1 INTRODUCTION
Cyber a�acks have increased in frequency and severity and have
been the cause of numerous disruptions in both industry and pol-
itics. With more and more critical information moving through
networks, defenses must be in place to help keep these networks
secure. Moreover, when an a�acker is deterred by a speci�c defense,
the a�acker usually changes strategies. �us, defenders have to
adjust to these new a�acks and a perpetual repetetive adversarial
process escalates.

We introduce a new cybersecurity project, RIVALS. RIVALS uses
coevolutionary algorithms to determine the best defense for a net-
work amidst constantly changing cyber a�acks. RIVALS focuses on
a peer-to-peer network as a robust and resilient means of securing
mission reliability against distributed denial of service a�acks.

RIVALS will eventually include a peer-to-peer network simu-
lator of an extended version of the Chord [3] protocol. Now, we
model simple a�acks and defenses on the network. We measure
the performance of a�ackers and defenders through the concept of
a mission. A mission is a set of tasks to be completed. �ese tasks
rely on the network’s health for their success. An a�acker’s goal is
to degrade the network so tasks, and the mission, fail. Meanwhile, a
defender’s goal is to ensure mission success. To model the adaptive
behavior of adversaries in network security, we consider our a�ack-
ing and defending algorithms as populations under the direction of
a coevolutionary algorithm. Over the course of many generations,
this evolutionary process produces defender and a�acker con�gu-
rations which can then be used to determine an e�ective defensive
protocol for a given network.

We examine the performance of di�erent coevolutionary algo-
rithms on RIVALS’ network simulator. Additionally, we introduce
rIPCA, which expands on the idea of non-domination and applies
this concept.

2 METHOD
We present our methodology with respect to: coevolutionary algo-
rithms [2]. IPCA (Incremental Pareto-CoevolutionArchive) archives
previous tests and only replaces them with new tests which are
di�erent and more competitive than those in the archive. �is
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(c) Topology 2
Figure 1: Topologies, used for attacks and defense..

strategy fosters monotonic evolutionary progress. Coev is a sim-
ple coevolutionary algorithm [1] which can be con�gured to use
either the maximum expected utility solution concept or the best
worst solution concept. IPCA and rIPCA both use archives and the
Pareto Optimal Set solution concept. MaxSolve uses the maximum
expected utility solution concept and archives. MinMax picks the
best worst case.

Peer-to-peer networks have no single point of failure and thus
are more inherently robust to defend against DDoS a�acks. Our
implementation of Chord is as a model rather than a deployed
distributed network.

3 EXPERIMENTS
Our experiments seek to understand the capabilities of our coevolu-
tionary algorithms when di�erent solution concepts are used. �ey
help us start to examine and interpret the resulting dynamics. We
apply the suite of coevloutionary algorithms in a simple RIVALS
context by se�ing up 3 di�erent network topologies run with net-
work simulation. �e key parts for the simple RIVALS network
simulator are:

Network Topology We start with a simple topology (Figure 1a)
to exhaustively search through all a�ack and defense scenarios and
then scale up to larger and more realistic topologies (see Figures 1b,
1c) that are too large enumerate, and require search. We assume
that every edge is unit-length.

Missions: A mission is a sequence of tasks where each task
speci�es a start node, an end node, and a time allowed. A mission
is successful if every task is completed under the time allowed
and fails if any of the tasks of the mission fail. We currently limit
missions to one task.

Attacker: �e goal is to disrupt the network to cause mission
failure, with as li�le e�ort as possible.

Defender: �e goal of the defender is to ensure mission success.
Currently, the defender network routing protocols are: (1) shortest
path (2) �ooding (3) Chord.

Fitness Functions: A�ackers are rewarded for using few nodes
and short duration to disrupt a mission. �e a�acker’s �tness func-
tion is

fa =
1 −mission success

(n attacks · total duration) + n attacks

wheremission success is describing whether the entire mission
succeeded (1) or failed (0), n attacks is the total number of nodes
a�acked in the network, and total duration is the aggregated
amount of time nodes were a�acked.

Table 1: Coevolution results
Topology 0 Topology 1 Topology 2

Algorithm Final Perf. Final Perf. Final Perf.
Simple Coev 0.227 ± 0.05 0.067 ± 0.031 0.053 ± 0.022
MinMax 0.200 ± 0.060 0.059 ± 0.013 0.057 ± 0.017
MaxSolve 0.263 ± 0.159 0.074 ± 0.026 0.081 ± 0.027
IPCA 0.333 ± 0.063 0.070 ± 0.003 0.079 ± 0.000
rIPCA 0.463 ± 0.018 0.068 ± 0.003 0.062 ± 0.000

Defenders are rewarded for completing the mission quickly and
with a short amount of hops. �e defender’s �tness function is

fd =
mission success

overall time · n hops

where overall time is the total time a speci�c routing protocol
took to complete the mission and n hops is the total number of
hops taken by the protocol to complete the mission.

3.1 Results
Results from our experiments are in Table 1. Additionally, we
performed an exhaustive search of Topology 0. We performed this
exhaustive search as a means of verifying the correctness of both
the algorithms and the defense protocols in the network. Moreover,
we show that this exhaustive search is possible in topologies with
a small number of nodes but becomes increasingly di�cult as you
reach a topology as large as the one in Figure 1c. Each entry in
the table represents the state of each population at the end of a
run under one of the implemented coevolutionary algorithms by
calculating the average �tness of the defending population under
coevolution.

For Topology 0, we notice how the algorithms di�er when both
populations are set to evolve dynamically. �e results favor IPCA
and rIPCA as they seem to be be�er suited at �nding strong popu-
lation individuals. We suspect this is due to the nature of the test
archives for both IPCA and rIPCA as these archives help enforce
monotonic performance increases. As for the coevolutionary re-
sults, we note that both IPCA and rIPCA converged on a solution
as evidenced by their low standard deviations. �e remaining three
algorithms have more variance.

4 CONCLUSIONS & FUTUREWORK
We introduced an end-to-end system where we have shown the
ability to test the e�ectiveness of the di�erent coevolutionary algo-
rithms on simulated networks. One of our next tasks is to improve
the realism of the network simulator by incrementally increasing
its sophistication and complexity.
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