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ABSTRACT
Many production-grade algorithms bene�t from combining an
asymptotically e�cient algorithm for solving big problem instances,
by spli�ing them into smaller ones, and an asymptotically ine�-
cient algorithm with a very small implementation constant for
solving small subproblems. A well-known example is stable sorting,
where mergesort is o�en combined with insertion sort to achieve a
constant but noticeable speed-up.

We apply this idea to non-dominated sorting. Namely, we com-
bine the divide-and-conquer algorithm, which has the currently
best known asymptotic runtime of O(N (logN )M−1), with the Best
Order Sort algorithm, which has the runtime ofO(N 2M) but demon-
strates the best practical performance out of quadratic algorithms.

Empirical evaluation shows that the hybrid’s running time is
typically not worse than of both original algorithms, while for large
numbers of points it outperforms them by at least 20%. For smaller
numbers of objectives, the speedup can be as large as four times.
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1 INTRODUCTION
Many Pareto-based evolutionary multiobjective algorithms belong
to one of big groups according to how solutions are selected or
ranked: those which maintain non-dominated solutions [2], per-
form non-dominated sorting [3], use domination count [5], or dom-
ination strength [12].

Non-dominated sorting assigns ranks to solutions in the follow-
ing way: the non-dominated solutions get rank 0, and the solutions
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which are dominated only by solutions of rank at most i get rank
i + 1. In [3], this procedure runs in O(N 2M), where N is the popu-
lation size and M is the number of objectives.

As the quadratic complexity is quite large, both from theoretical
and practical points of view, many researchers concentrated on
improving practical running times [4, 7, 10, 11], however, without
improving the worst-caseO(N 2M) complexity. Jensen was the �rst
to adapt the earlier result of Kung et at. [9], who solved the problem
of �nding non-dominated solutions in O(N (logN )max(1,M−2)), to
non-dominated sorting. �is algorithm has the worst-case complex-
ity ofO(N (logN )M−1). �is algorithm could not handle coinciding
objective values, which was corrected in subsequent works [1, 6].

A family of O(N 2M) algorithms for non-dominated sorting re-
sembles a family of quadratic algorithms for comparison based sort-
ing, and the O(N (logN )M−1) non-dominated sorting algorithms
seem to take up the niche ofO(N logN ) sorting algorithms (such as
mergesort, heapsort, and randomized versions of quicksort). In this
domain, quadratic algorithms are o�en much simpler and demon-
strate be�er performance on small data. �e e�cient divide-and-
conquer algorithms are able to incorporate quadratic algorithms to
solve small subproblems, which improves the overall speed.

�is inspired us to apply the similar idea to non-dominated
sorting. For the “outer” divide-and-conquer algorithm, we use
the only available algorithm family of this sort [1, 6, 8]. For the
quadratic algorithm to solve smaller subproblems, we adapt the
Best Order Sort [10], as it was shown to typically outperform other
quadratic algorithms. Our result is a hybrid algorithm which uses
primarily the divide-and-conquer strategy and decides when to
switch to Best Order Sort using a formula which depends on the
number of points in the subproblem and the number of remaining
objectives to consider.

2 HYBRIDIZING THE ALGORITHMS
Our hybridization scheme is similar to that of production-grade sort-
ing algorithms tuned for performance. As the top-level algorithm,
we use the divide-and-conquer algorithm. For each subproblem
it decides, using certain heuristic, whether to continue using the
divide-and-conquer strategy or to run Best Order Sort for this sub-
problem. In turn, Best Order Sort runs uninterrupted until it solves
the assigned subproblem.

Two problems need to be solved for this scheme to work. First,
the original Best Order Sort algorithm cannot be straightforwardly
applied to solve subproblems, because subproblems may feature
non-zero lower bounds on ranks of some points, which appear from
comparisons of these points with other points, which are out of the
scope of the current subproblem. In addition, there are actually two
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Figure 1: Example result of preliminary experiments on a
dataset with 10 objectives and one non-domination level.
�e dataset has N = 105 points, all other points correspond
to divide-and-conquer subproblems for this dataset. Tf is
the running time of the divide-and-conquer algorithm, and
Tb is the running time of Best Order Sort. �e value of
(Tb −Tf )/max(Tf ,Tb ) is plotted.

kinds of subproblems: (i) to perform non-dominated sorting of the
given set of points, taking into accounts �rstm objectives and the
existing lower bounds on ranks, and (ii) given two sets of points,
where the �rst set A has completely evaluated ranks of points, and
the second set B is dominated by the �rst set in objectives [m+1;M],
perform all necessary comparisons between points from A on the
le�, and points from B on the right. Fortunately, Best Order Sort
can be easily adapted to solve the modi�ed problem.

Second, the particular kind of heuristic to determine when to
run Best Order Sort is unclear. �e main problem with it is that it
should have a low computation complexity: at most O(N ), because
otherwise evaluation of this heuristic worsens the complexity of the
divide-and-conquer algorithm. �is means we cannot perform any
complicated analysis, such as, for instance, principal component
analysis, to predict which algorithm is best.

To understand the possible kind of the heuristic algorithm to
use for deciding whether to use Best Order Sort for a certain sub-
problem, we conducted a series of preliminary experiments. In
these experiments, we considered a series of datasets, where every
dataset had N = 105 points with M ∈ [3; 20] objectives and was
generated either by uniformly random objective sampling (from
the [0; 1]M hypercube) or by sampling from a hyperplane (which
yields a dataset with exactly one non-domination level). �en we
ran the divide-and-conquer algorithm on each of these datasets
and recorded all subproblems created during the run. A�er that,
we measured the running times of both the divide-and-conquer
algorithm and Best Order Sort on all these subproblems.

Fig. 1 shows an example of such experiment. �e point above
the abscissa axis means that for the corresponding subproblem
the divide-and-conquer algorithm took less time than Best Order
Sort, while a point below zero means the opposite. One can see in
Fig. 1 that Best Order Sort behaves best, compared to the divide-
and-conquer algorithm, for not too small and not too large N .

As the similar e�ect has been noticed for all other datasets as
well, we a�empted to deduce formulas for the le� and right bounds

of the higher e�ciency range of Best Order Sort. �e following
empirically constructed formulas were found to �t our data rather
well: nmin = m ln(m + 1) and nmax = 150m((ln(d + 1))0.9 − 1.5),
where m is the current number of �rst objectives to consider, nmin
is the le� bound of the range, and nmax is the right bound. As a
result, the hybrid algorithm switches to Best Order Sort whenever
the number of points n falls between nmin and nmax.

3 EXPERIMENTS: SHORT OVERVIEW
In the main body of experiments, our hybrid algorithm performs
generally at least as well as its parts, except for certain ranges
around the switchpoint between the algorithms at higher dimen-
sions. �is is an indicator that our heuristic on when to switch
is not perfect yet and has a room for improvement. Nevertheless,
for the wide range of testing data (3 to 30 objectives, 1 to 20 non-
domination levels) our algorithm performs at least 20% be�er than
the best of its parts for large numbers of points (such as N = 105),
and the speedup can be up to 4x for smaller M . In a sense, this
means that our hybridization scheme is rather robust.

�is research was �nancially supported by the Government of
Russian Federation, Grant 074-U01. �e extended version of this pa-
per, including more detailed introduction and experimental results,
is available at arXiv1.
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