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ABSTRACT
A common aim in evolutionary search is to skillfully navigate com-
plex search spaces. Achieving this aim requires creating search
algorithms that exploit the structure of such spaces. However, to
exhaustively analyze such structure is generally intractable, due to
the expansiveness of most search spaces. Researchers thus typically
develop intuitions about complex search spaces indirectly through
experimentation in involved domains, or through light-weight the-
oretical models. However, empirical work sacri�ces ground truth
about the search space’s true connectivity, and theoretical models
risk disconnection from actual problem domains. In the context
of evolutionary robotics and arti�cial life, this paper suggests a
middle-ground approach, which combines a full-�edged domain
with an expressive but limited encoding, and then precomputes the
behavior of all possible individuals, enabling evaluation as a look-up
table. �e product is an experimental playground in which search is
non-trivial yet which o�ers extreme computational e�ciency and
ground truth about search-space structure. �e framework is open-
sourced and released with this paper, which describes the approach
and demonstrates its usefulness with applications to evolvability
and novelty search, evaluated in a popular benchmark task. �e
hope is that the extensible framework enables quick experimen-
tation and idea generation, aiding brainstorming of new search
algorithms and measures.
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1 INTRODUCTION
Broadly across evolutionary computation (EC) it is important to
navigate complex search spaces to �nd individuals with rare prop-
erties. Most commonly, evolutionary algorithms (EAs) search for
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an optimal point in the search space, but other paradigms include
accumulating points that span optimal trade-o�s among competing
objectives (multiobjective optimization [1]); or collecting a diverse
set of individuals that instantiate a wide variety of interesting and
innovative behaviors (e.g. as in open-ended evolution [2] or compu-
tational creativity [3]). Across nearly all such use cases, a primary
challenge is to create search algorithms that respect the structure
of the search space. In other words, what combination of algo-
rithm and incentives will enable skillful navigation of the space, to
uncover relevant points of interest?

Although building intuitions about the structure of complex
search spaces is important, such intuitions are o�en di�cult to
acquire because search-space structure resists direct investigation.
One challenge is that interesting search spaces are o�en e�ec-
tively in�nite, due to continuous-valued parameters and expanding
variable-length representations; such in�nitude frustrates exhaus-
tively enumerating and evaluating all possible individuals, which
might allow de�nitive analysis of a search space’s connectivity
and structure. �us in practice, researchers learn indirectly about
search space structure through iterative empirical work, through
theoretical models, or through thought experiments. �ese options
can be viewed along a gradient of abstractness, where direct em-
pirical work in domains of interest is completely grounded, and
thought experiments are the loosest (but most free). Each of these
approaches have bene�ts and drawbacks, and a main contribution
of this paper is to propose a principled intermediate that exploits ad-
vances in computation to trade up-front computation to maximize
groundedness and tractability.

�e main idea is to precompute the behaviors of all individuals
in a barely-tractable search space, evaluated within a grounded
domain. By evaluating all individuals once and storing the results,
evaluation becomes computationally trivial (e.g. a look-up table),
and it becomes possible to calculate ground-truth quantities, such
as the absolute potential of a particular encoding for evolvability
within that domain, or how well a particular �tness measure corre-
lates with actual genomic distance to a goal behavior. �e hope is
to create an experimental playground that can be useful for quickly
testing ideas and building experimenter intuition.

As a proof-of-concept implementation of precomputed domains,
this paper adopts a common maze navigation benchmark domain
common within arti�cial life and evolutionary robotics (ER), pairs
it with a discretized neuroevolution encoding, and stores the results
of evaluating all individuals in a database that �ts in RAM. �e
enumerated search space allows various ground-truth properties
of the search-space to be explored, including otherwise intractable
generalizations of evolvability and the exact distribution of speci�c
behaviors like solutions within the space. Enough runs can be
conducted in minutes on one computer to generate statistically
signi�cant data, enabling quick iteration.
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To highlight its potential, the implementation is applied here to
test hypotheses related to novelty search and evolvability. Addition-
ally, the performance of idealistic search algorithms that exploit
generally-intractable information is probed, leading to speculation
about new algorithms driven by approximations of such quanti-
ties. �is range of applications suggests the value of precomputed
domains for idea-generation and initial exploration of hypotheses,
which is critical in early stages of research. �e implementation is
open-source and available for download (h�p://goo.gl/JTSTGs1),
ideally to serve as an extensible framework that allows other pre-
computed domains to be easily distributed among researchers.

2 BACKGROUND
�e next section �rst reviews existing methods for probing the
structure of search spaces, then reviews the novelty search algo-
rithm that provides a se�ing for testing costly hypotheses. Finally,
the concept of evolvability is reviewed, which acts as a concrete
example of an expensive measure that precomputed domains can
render tractable.

2.1 Exploring Search Space Structure
Because understanding search space structure is fundamental to
designing e�ective EC algorithms, there are a range of formal and
informal techniques to quantify or explore it. For example, one line
of research aims to investigate what properties of search spaces
make problems di�cult to solve for EAs [4–6], like deception [6]
or ruggedness [5]. �e idea is that if one suspects a problem of
interest has such properties, that understanding can guide algo-
rithmic design or focus future research. Most o�en, mathematical
models or toy domains are used to make analysis tractable, such
as the popular NK model of �tness landscape ruggedness [5], or
constructed bitwise models such as the royal road function [7] or
the trap function [6].

Less formal methods include problem-speci�c human analysis, or
iterative sequences of experimentation, analysis, and tweaking. For
example, researchers o�en embed their knowledge of a domain into
the encoding (e.g. locomoting biped agents might more easily realize
stable cyclic gaits if oscillatory pa�erns are provided as a basic
element [8]), or adjust the �tness function through iterations of
experiments followed by changes aimed at remedying problematic
dynamics [9]. Interactive evolution, or combinations of interactive
evolution and mechanical evaluation can also yield insights into
search spaces by enabling humans to more directly probe them
[10, 11].

�e method proposed here a�empts to enable leveraging the ben-
e�ts both of formal and informal methods more easily. In particular,
it aims to create domains that are tractable to measure ground-truth
formal properties, such as ruggedness or deception, while maintain-
ing computational e�ciency and groundedness to real problems,
thereby enabling fast and �exible experimentation.

2.2 Novelty Search
In this paper, the precomputed domain approach is applied to a
common benchmark task for divergent search methods like novelty

1Temporary anonymous download site

search, which in particular serves as a focal point for experimenta-
tion as a prototypical use case. To provide necessary context, this
section reviews the novelty search method.

Novelty search is inspired by natural evolution’s drive towards
novelty, and rewards novel behavior directly instead of progress
towards a �xed objective [12]. Tracking novelty requires li�le
change to any evolutionary algorithm aside from replacing the
objective-based �tness function with a novelty metric. Such a metric
measures how di�erent an individual is from other individuals,
thereby creating a constant pressure to produce something new. �e
key idea is that instead of rewarding performance on an objective,
novelty search rewards diverging from prior behaviors. �erefore,
novelty in behavior needs to be measured.

�e novelty metric characterizes how far away the new indi-
vidual is from the rest of the population and its predecessors in
behavior space, i.e. the space of unique behaviors. A good metric
should thus compute the sparseness at any point in the behavior
space. Areas with denser clusters of visited points are less novel
and therefore rewarded less.

A simple measure of sparseness at a point is the average distance
to the k-nearest neighbors of that point. Intuitively, if the average
distance to a given point’s nearest neighbors is large then it is in a
sparse area; if the average distance is small, it is in a dense region.
�e sparseness ρ at point x is given by

ρ (x ) =
1
k

k∑
i=0

dist(x , µi ), (1)

where µi is the ith-nearest neighbor of x with respect to the distance
metric dist, which is a domain-dependent measure of behavioral
di�erence between two individuals in the search space. Candidates
from more sparse regions of the behavior space thus receive higher
novelty scores.

With �xed probability an individual is entered into the perma-
nent archive that characterizes the distribution of prior solutions in
behavior space. �e current generation plus the archive constitute
a comprehensive sample of where the search has been and where
it currently is; that way, by a�empting to maximize the novelty
metric, the gradient of search is simply towards what is new, with
no other explicit objective. However, even without an explicit objec-
tive, novelty search is still driven by meaningful information; that
is, behaving in a novel way o�en requires learning the structure of
the domain.

Once objective-based �tness is replaced with novelty, the under-
lying EA operates as usual, selecting the most novel individuals to
reproduce. Over generations, the population spreads out across the
space of possible behaviors.

While novelty search imposes no direct pressure to achieve any
particular objective, it has been successfully applied in a range of
domains [12–14]. Most relevant to this paper, it has previously been
shown to lead to increased evolvability relative to objective-driven
search [15–17]; this link between novelty search and evolvability is
explored in more depth in this paper’s experiments. Note that the
experiments here apply novelty search to evolve arti�cial neural
networks (ANNs) that control the behavior of a simulated robot,
as is common in previous such experiments [12, 15]. In particular,
the connection weights of a �xed-topology ANN are evolved; the
setup is described in more detail in the approach section.

http://goo.gl/JTSTGs
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2.3 Estimating Evolvability
Natural evolution has produced �exible, highly evolvable represen-
tations that facilitate its proli�c discovery of diverse organisms. An
important question with implications for EC is: What properties
of natural evolution led to such evolvability? If well-understood,
such properties could be built into EAs to enable more powerful
algorithms. �us tools for exploring evolvability, such as quantita-
tive measures and estimates of it, or methods to directly search for
it, can help isolate its characteristics and the evolutionary features
that encourage evolvability.

While there is no overall consensus on evolvability’s de�nition
or its measurement [18], one common conception is to consider
evolvability as an organism’s phenotypic variability [19–22]; that is,
the capacity of an organism’s lineage to generate novel phenotypic
traits captures some signi�cant part of what enables some lineages
to adapt more quickly than others, although there exist alterna-
tive de�nitions that focus on di�erent or overlapping aspects of
evolvability [18]. �is conception (of evolvability as phenotypic
variability) aligns well with the motivation of novelty search, and
is adopted here to help explore hypotheses about novelty search,
in a way similar to previous related studies [15, 23].

�e evolvability measure most o�en used in prior novelty search
studies estimates an individual’s evolutionary potential by counting
the number of unique behaviors exhibited by samples of o�spring
within its immediate mutational neighborhood [15, 15, 17]. �at
is, the measure a�empts to gauge an individual’s phenotypic con-
nectivity. But such measures are expensive because they depend
on evaluating the behaviors instantiated by many perturbations
of an individual’s genome; i.e. 200 evaluations are o�en required
to reliably estimate a single individual’s evolvability [17]. �is
makes e�orts to measure evolvability frequently during search, or
to drive search explicitly to maximize evolvability [17], painfully
expensive. Furthermore, because such measures of evolvability take
into account only the local mutational neighborhood, it may not
well-re�ect an individual’s medium-term or long-term evolutionary
potential. �e approach here enables e�cient precalulation of exact
evolvability, across longer time-scales, and is described next.

3 PRECOMPUTED DOMAINS
Precomputed domains are motivated by the importance of develop-
ing intuitions about complex search spaces, which aides inventing
new algorithms and understanding existing ones more deeply. �e
primary idea is to stake out a useful middle ground between math-
ematical models and full-complexity challenge domains.

�e bene�t of mathematical models is their elegance, computa-
tional e�ciency, and the access they o�en provide to ground-truth
metrics, such as the distribution of solutions or evolvability. How-
ever, they sometimes run the risk of begging the question, i.e. they
are o�en based on axioms that may or may not re�ect search spaces
of interest, and thus transferring insights learned from them to prac-
tical domains may fail. On the other hand, the bene�ts of direct
empirical investigations into domains of interest are their prag-
matism and groundedness. �at is, physical simulations ensure
that individuals must overcome common constraints that natu-
rally emerge across real-world situations, like navigating around
obstacles or coordinating robotics limbs to locomote. However,

the complexity of rich simulations incurs computational expense,
which slows the iterative loop through which researchers develop
new techniques and understanding; complicating such expense,
to make reliable statistical judgments requires many independent
runs, meaning that research may be gated to those having access
to large clusters. Additionally, by de�nition ground-truth is ab-
sent in cu�ing edge domains, e.g. if the distribution of solutions
were known, the problem ceases to be cu�ing-edge, or is itself
computationally expensive even to estimate, e.g. an individual’s
evolvability.

�e main idea is to precompute the behavior of all possible geno-
types in full-�edged domains, leading to evaluation as a look-up
table. �us many runs can be quickly completed on consumer
hardware, enabling more easily testing hypotheses that depend on
an otherwise exorbitant number of runs. Furthermore, if all geno-
types are enumerated, it then becomes possible to compute the
ground-truth distance from an individual to the objective of search,
or to any other possible behavior of interest. �us some hypotheses
become more amenable to direct investigation. Note that while this
methodology is generally applicable to search in EC, the case study
presented here assumes a se�ing beyond black-box optimization
[24], i.e. there is access to information beyond scalar �tness values
concerning the behavior of an individual in its domain, as is typical
in ER or arti�cial life.

A side-bene�t from calculating such exact quantities for each
individual is that search can then be e�ciently driven to maximize
them, or easily instrumented by them. For example, evolvability
search is an interesting algorithm for exploring ideas related to
evolvability [17], but is much slower than a typical search process,
because it requires the expensive approximation of each individual’s
evolvability (which requires many domain evaluations). However,
beyond enabling quick experimentation with existing algorithms
like evolvability search, precomputed domains further enable opti-
mizing fanciful measures, such as an ideal generalization of evolv-
ability, e.g. the average genotypic distance from an individual to
every behavior, or directly optimizing for behavioral rarity. While
these quantities may be entirely impractical to measure and opti-
mize in practice, seeing their promise (or lack thereof) may guide
the construction of future practical measures or approximations.

It is important to acknowledge that precomputing the behav-
ior of all possible genotypes is not possible in general, because
most search spaces are impractically large, e.g. they are o�en ef-
fectively in�nite because of continuous parameters, or mutations
that iteratively extend the length of the genotype. As a result, the
approach taken here is to construct a search space that stretches
tractability towards reasonable limits of computation and memory.
In particular, one explicit design consideration is that the precom-
puted search space should �t in RAM on a modern computer, to
maximize computational e�ciency; note that the discussion section
discusses how the search space can be further stretched by relaxing
this in-memory constraint.

�us it is important to examine how such considerations limit
the number of parameters that can realistically be evolved in a pre-
computed domain. Assuming a �xed-length discrete representation
in which each ofG genes has A possible alleles, the resulting search
space will contain AG distinct individuals. Because this quantity
is exponential in G, there are strong limits on how many genes
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can be added. �ere is a signi�cant cost to added alleles as well, as
the search space grows with them relative to the Gth power. As a
result, an important design consideration when adopting an encod-
ing with continuous parameters (e.g. the neural network encoding
adopted in this paper’s experiments) is how few parameters are
necessary, and how granularly those parameters can be discretized
without rendering the search space impassable or uninteresting.
Given a relatively modern computer with 8GB of RAM, and 16 bytes
of storage for each precomputed individual, the magnitude of an
enumerable search space is 500 million individuals, which while
not in�nite, provides a non-trivial search space. Note that the proof
of concept domain explored here contains 34 million individuals,
meaning there is still some room to further scale the approach.

4 PRECOMPUTED MAZE NAVIGATION
As a proof-of-concept implementation that introduces the pre-
computed domain approach, this paper adopts a common maze-
navigation domain benchmark that is o�en used to evaluate non-
objective search algorithms such as novelty search, behavioral di-
versity, and MAP-ELITES [12, 16, 17, 25]. As in previous work,
we conduct experiments comparing novelty search and traditional
objective-based search.

In the maze navigation domain, a simulated wheeled robot (�gure
1) is embedded in a two-dimensional maze (�gure 2). �e objective
for the robot is to traverse the maze and arrive at a �xed goal point.
�us, the objective-based �tness function f of an individual for
objective-based search is f = −dд , where dд is the distance of the
robot to the goal at the end of the evaluation. For novelty search
evolution instead requires a characterization of behavior. Because
ending location is a critical factor in navigating mazes, the behavior
of a robot is de�ned as its location in the maze at the end of the
evaluation [12, 25]. For measuring evolvability, each grid square
within a regular grid superimposed over all ending locations acts a
discrete niche. O�spring are mapped into the niche that contains
the behavior they exhibit when evaluated. �e precomputed do-
main mirrors the canonical setup introduced in Lehman and Stanley
[12].

�e canonical setup of this domain applied the NEAT neuroevo-
lution encoding [26], which features continuous-valued evolvable
weights and mutations that add new neurons and connections to
the ANN. Because such features manifest a search space containing
e�ectively in�nite individuals, NEAT, at least in its usual form, is
incompatible with precomputing the behavior of all individuals.
�us a discretized and bounded ANN encoding is adopted in the
experiments here. In particular, weights take on the discrete values
of −1, 0, and 1, and a feed-forward two-layer fully-connected topol-
ogy with two hidden neurons is employed (�gure 1a). Further, the
agent’s sensors were reduced to a minimal set, to restrict the size
of the search space, which grows exponentially in the number of
connections. In particular, the agent’s pie-slice radar sensors are re-
moved, and the number of range-�nder sensors is reduced from six
to two, as shown in �gure 1. �is reduction of sensor information
increases the di�culty of navigation, as the agent can no longer
discern directly in which direction the goal lies; to partially o�set
such di�culty, the evaluation time in each maze is extended from
400 timesteps to 600.

Left/Right Forward/Backward

Rangefinders Bias

(a) Neural Network

Rangefinder
Sensors

Heading

(b) Sensors

Figure 1: AMaze-Navigating Robot. �e arti�cial neural net-
work that controls themaze navigating robot is shown in (a).
�e layout of the sensors is shown in (b). Both arrows out-
side of the robot’s body in (b) are range�nder sensors that in-
dicates the distance to the closest obstacle in that direction.
�e solid arrow indicates the robot’s heading. Note that the
sensors of the robot are reduced from the setup in Lehman
and Stanley [12] to limit the size of the search space, and
that the neural network has a �xed topology, instead of an
evolved topology as when using the NEAT algorithm.

(a) Hard Maze
(a) Medium Maze

Figure 2: Maze Navigation Maps. In both maps, the larger
circle represents the starting position of the robot and the
smaller circle represents the goal. To solve the task, the
robot must navigate around obstacles, which requires the
evolution of non-trivial behavior. �e (a) medium map has
a series of cul-de-sacs that instantiate local optima with
objective-based �tness, while the (b) hard map has a highly
deceptive cul-de-sac that requires signi�cant further navi-
gation before a robot can achieve a higher objective-based
�tness score.

�e resulting encoding consists of 16 connections that can each
take on 3 distinct weight values, realizing a search space with 316

individuals (43 million). Each of these individuals were separately
evaluated in both mazes, and their behavior (the point within the
maze they ended upon) and whether they solved the maze, was
recorded in a binary data �le. Evaluation was conducted on a single
multi-core desktop machine, and took approximately one hour to
complete when parallelized over eight threads. Because �tness
in this case can be calculated as a byproduct from an individual’s
behavior, there was no need to separately store such information.

4.1 Validating the Precomputed Domain
In contrast to the original NEAT setup, the precomputed encoding
is streamlined and heavily discretized, motivating validation exper-
iments to probe whether qualitative similarity is preserved. To do
so, ��y runs each of objective-based search, novelty search, and
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(b) Hard Maze

Figure 3: Precomputed Maze Navigation Validation. �e
number of successful runs out of 100 is shown in (a) the pre-
computed medium map domain, and (b) the precomputed
hard map domain. Consistent with previous results, nov-
elty search performs the best in both domains, and the per-
formance of both methods decreases when evaluated in the
hard maze relative to the medium maze.

random search were run for 250 generations with a population size
of 500 individuals. �e EA is a simple generational model that uses
tournament selection, protects the champion with elitism, and has
no crossover or diversity maintenance. Mutation is performed on
80% of o�spring, and replaces a the weight of a randomly chosen
connection with a value chosen at random. Due to evaluation as
a look-up table, these 600 runs (100 for each method across two
mazes) took under 12 minutes on a modern laptop using a sin-
gle core; all other experiments described in this paper required
similarly trivial runtime.

�e results are shown in �gure 3 for both mazes. Novelty search
signi�cantly out-performs the other methods on both mazes, while
objective-based search performs worse than random search in both
domains (Fisher’s exact test; p < 0.05). One divergence from results
in the canonical (i.e. non-precomputed) domain is that objective-
based �tness usually can solve the medium maze, albeit more slowly
than can novelty search. Follow-up experiments revealed that the
precomputed encoding rendered the initial cul-de-sac signi�cantly
more deceptive than in the canonical setup; one cause may be
a lack of diversity maintenance in the EA, although preliminary
experiments that reduced selection pressure or rewarded geno-
typic diversity did not outperform random search. A reasonable
hypothesis is that the lack of pie-slice sensors and the reduced
number of range�nders may make it more di�cult for mutations
to generate signi�cant behavioral diversity by chance. However,
consistent with previous results, the hard maze more actively leads
objective-based search astray (which never solves the task), and is
more di�cult for novelty search as well. In this way, the results
of evolution in the precomputed encoding are coherent and share
signi�cant qualitative traits with the original setup, implying that
it likely can serve as a useful proxy.

4.2 Exact�anti�cation of Deception,
Evolvability, and Rarity

One quantitative measure of deception, called �tness distance cor-
relation (FDC; [4]), calculates the correlation between the �tness
of an individual and the minimal genomic distance from it to a
solution. In other words, an ideal �tness function would incentivize
moving in the genotypic space towards a solution, e.g. an easy non-
deceptive problem has a large and negative FDC (because distance to
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Figure 4: Fitness Distance Correlation in Precomputed
Mazes. How objective-based �tness values relate to true ge-
nomic distance to a solution is shown for the (a) Medium
Maze and (b) Hard Maze. Fitness scores are discretized into
��y uniformly-size intervals; the mean �tness value is plot-
ted as a solid line, and the surrounding red �ll encompasses
95% of the distribution within each interval. �e conclusion
is that objective-based �tness o�ers only weak signal in the
medium maze, and is actively deceptive in the hard maze
until a navigator is already very close to the goal.

solution should decrease with higher �tness. While for full-�edged
domains it is generally intractable to calculate the minimal distance
to a solution, precalculated domains provide complete knowledge of
the search-space, enabling identifying all solutions, and measuring
shortest-path distances from all individuals to solutions.

We calculate such shortest-path distance using an iterative depth-
�rst search, which starts from the set of solution individuals (which
can be identi�ed through a simple query of the precomputed data-
base). Interestingly, solutions to either maze are very rare within
the search space; there are only 320 solutions to the medium maze,
and 59 solutions to the hard maze exist within the 43 million to-
tal individuals. How �tness and distance to solution correlate in
both mazes is shown in �gure 4. FDC, calculated as the Pearson
correlation coe�cient between �tness score and solution distance,
is slightly negative in the medium maze (r = −0.001), indicating a
near-lack of correlation between �tness and distance to goal, while
the hard maze has a larger positive correlation (r = 0.043), validat-
ing the natural intuition that the hard maze is the more deceptive
map.

A variation of the same approach can be applied to quantify
exact evolvability of individuals. As reviewed in the background,
one popular evolvability estimate in ER is to measure how many
distinct behaviors occur among a random sample of an individual’s
o�spring [15, 17, 23]. �e idea is that an evolvable individual is one
that provides a stepping stone to many other phenotypes. Using
the same minimal-distance approach, but applying it once to each
distinct behavior in the domain (as discretized into 10 unit x 10
unit grid-squares containing all individuals with evaluations ended
within that square), we can create look-up tables that store the
minimum number of mutations needed for any given individual to
demonstrate any given behavior. �is approach enables e�cient
calculation of a generalization of the 1-step evolvability measure
typically used in practice, i.e. the k-step evolvability, by querying
how many behaviors are within k mutations of a given individ-
ual; intuitively, the larger the k , the longer the time-scale across
which evolvability is considered. With ground-truth distance of
distance from a individual to all behaviors, it also becomes possible
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to calculate a fanciful idealized metric of evolvability, everywhere
evolvability: the average distance to everywhere, i.e. how many
mutations are required on average to reach any behavior. Figure
5 shows graphically how these metrics correlate with distance to
the solution in the medium maze (results are similar in the hard
maze), while �gure 6 demonstrates the intuitive notion that in both
mazes longer-scale evolvability highly correlates with being near
to a solution.

A �nal idealized measure is behavioral rarity, i.e. the proportion
of genotypes in the search space that yield a particular behavior
when evaluated. Some behaviors (such as not moving at all) may
be common, while others (such as successful navigation through
the maze) are objectively rare within the search space. Such rarity
is a concept closely adjacent to behavioral novelty, i.e. the reward
scheme in novelty search. In particular, behavioral novelty is rarity
relative to what has been previously observed in a particular search.

�is relation is interestingly deep, in that it has been previously
shown that novelty search does indeed uncover objectively rare
behaviors [27], e.g. the complex functionalities needed to perform
non-trivial tasks; yet novelty search does not directly optimize a
heuristic of absolute rarity itself, which could prove deceptive (i.e.
the gradient of behavioral rarity may not be well-behaved). Instead,
through feedback, novelty search can avoid such deception, as
repeatedly visiting behaviors in novelty search gradually reduces
their reward. In some sense, novelty search may approximately
follow many divergent gradients of increasing rarity, exhausting
one line when rarity gradients lead to a local optimum, staying until
novelty is exhausted. For this reason, understanding the structure
of rare behaviors may be useful to understanding or improving non-
objective search algorithms like novelty search. While previous
work has a�empted to estimate objective rarity [27], here we can
calculate it exactly through simple queries of the precomputed
database. Figure 7 shows the distribution of behavior density in
both mazes. �e next section applies these metrics to instrument
search, and to drive it.

4.3 Driving and Instrumenting Search through
Ideal Measures

One advantage of precomputed domains is that expensive and ideal
measures can also be precomputed, and then can e�ciently either in-
strument search (e.g. does novelty search encourage to-everywhere
evolvability?) or drive search (e.g. does directly optimizing be-
havioral rarity itself instantiate an e�ective search algorithm?).
While many possible permutations of measures and drives could
be explored within this framework (this diversity of experimental
possibilities is a keystone of the value that it provides), this section
shows only a few examples to highlight its potential.

First, search algorithms are explored that are driven by the mea-
sures described in the previous section. Behavioral rarity, exact
k-step evolvability, and everywhere evolvability are calculated
for each genotype, and are then used as incentives to drive the
same simple evolutionary algorithm applied to validate the precom-
puted domain. Driving search by directly incentivizing measures of
evolvability can be seen as alternative instantiations of evolvability
search [17], while driving search through rarity has some relation
to work on quantifying impressiveness [27]. How successful such

methods are at evolving solutions is shown in �gure 8; re�ecting its
ideal characteristic and strong correlation with solution distance,
searching for everywhere evolvability solves both tasks quickly, as
does optimizing 4-step evolvability. As evolvability is considered
within smaller mutational neighborhoods, its success rate declines,
suggesting that e�cient approximations of longer-range evolvabil-
ity could increase the potential of the evolvability search method,
which maximizes an estimate of 1-step evolvability. Rarity search
is less consistently successful, although it outperforms objective-
based search and is competitive with novelty search in the hard
maze; preliminary follow-up experiments (and instrumentation
results discussed next) support the intuitive hypothesis that rarity
search can converge to behaviors that are exceedingly rare but that
do not solve the task.

A �nal experimental exploration instruments search algorithms
by two of the ideal metrics, i.e. behavioral rarity and everywhere
evolvability. �e idea is to explore how quickly di�erent search
algorithms discover rare behaviors, and to probe whether previous
results showing that novelty search encourages evolvability (as
measured by heuristic estimates of 1-step evolvability) [15, 16] gen-
eralize to an ideal measure of evolvability. Fi�y runs are conducted
for each approach. Figure 9a instruments search with rarity, and
echoes the result of Lehman and Stanley [15] where novelty search
quickly discovers rare behavior; it also suggests support for the
hypothesis that there is a strong conceptual connection between
novelty and rarity (given that both algorithms demonstrate similar
performance by this metric). Figure 9b instruments search with
everywhere evolvability, and supports the case that novelty search
may encourage holistic evolvability that is not speci�c to the 1-step
heuristic measures used in the past.

5 DISCUSSION
�e results show the promise of precomputed domains to help ex-
plore costly hypotheses. For example, calculating ideal evolvability
metrics such as the average distance to everywhere can reveal in-
teresting properties of search spaces, and can aid researchers in
a�empts to �nd tractable approximations of them, and to investi-
gate how well common search algorithms align with such metrics.
It also enables exploring compelling (if unrealistic) best-case scenar-
ios, such as whether directly incentivizing multi-step evolvability
would indeed lead to e�ective search, which might motivate trying
to adjust current algorithms such that they somehow be�er-align
with the hard-to-compute metric (e.g. perhaps MCTS-like roll-outs
[28] of mutated genotypes can provide approximate estimates of
multi-step evolvability).

Additionally, having a true measure of how far a given individual
is to a goal behavior enables direct observation of deception, i.e.
when increasing �tness demonstrably moves a population further
away in the search space from any solution individuals. In this way,
having the true connectivity of the space allows for a deeper under-
standing of what assumptions certain search algorithms exploit. For
example, the experiments with rarity search hint at the potential im-
portance of rarity gradients for novelty search, and at a potentially
interesting algorithm (e.g. driving search through a direct estimate
of behavioral rarity). Precomputed domains could easily be adapted
for multiobjective optimization or quality diversity algorithms [29],
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Figure 5: Generalized Evolvability Measures in the Medium Maze. �e relationship between solution distance and (a) 1-step,
(b) 2-step, (c) 4-step, and (d) everywhere evolvability is shown for the mediummaze. �e solid line indicates the mean solution
distance, and the red �ll spans the top and bottom quartiles. �e conclusion is that across all evolvability measures, increasing
evolvability decreases distance to a solution.
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(b) Hard Maze

Figure 6: Correlation Coe�cients between Evolvability and
Solution Distance. �e negation of the Pearson correlation
coe�cient between evolvability measures and solution dis-
tance is shown for the (a) Medium Maze and (b) Hard Maze
(e.g. higher means that increased evolvability is associated
with being genotypically nearer to a solution). �e Evo-k la-
bel indicates k-step evolvability, while Evo-All indicates Ev-
erywhere evolvability. All measures demonstrate relatively
strong correlation, and in general correlation increases with
the size of the mutational neighborhood considered. �e
conclusion is that considering evolvability over longer time-
scales may provide stronger signal about an individual’s po-
tential.
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Figure 7: Rarity of Behaviors in theMaze Domain. How rare
behaviors are in the enumerated search space is shown for
the (a) Medium Maze and (b) Hard Maze. �e coloration of
a point indicates how many individuals instantiate that be-
havior. �e scale is logarithmic, i.e. 12 indicates e12, or ap-
proximately 160, 000 individuals. �ere are 43 million indi-
viduals in total. �e conclusion is that behaviors requiring
more complex functionality tend to be rarer.
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Figure 8: Driving Search through Ideal Measures. �e num-
ber of successful runs out of 100 is shown for variations
of evolvability search and rarity search in the (a) Medium
Maze and (b) HardMaze. Longer-term evolvabilitymeasures
(k ≥ 3 and Everywhere evolvability) are never statistically
outperformed, but interestingly, rarity search performs as
well as novelty search in the Hard Maze (Fisher’s exact test).
�e conclusion is that optimizing or encouraging longer-
term notions of evolvability may be useful, and that rarity
search may be an interesting algorithm to study further.

or to investigate the importance of population-level evolvability
[30] (the focus in this paper was on individual-level evolvability).

While precomputed domains show promise for helping experi-
menters develop intuitions and quickly test new ideas, the trade-o�
they strike imposes strong limitations by necessity. For example,
the discreteness of its search space may arti�cially in�ate rugged-
ness. Further, an enumerated space can simulate the variable-length
encoding of models like NEAT in only a limited way, e.g. by initializ-
ing search with zero weights for all connections beyond a minimal
connectivity, and allowing zero weights to mutate to non-zero only
with special topology-altering mutations.

A further problem is that the current implementation stores only
certain aspects of simulated behavior (e.g. only the ending point
of the robot at the end of simulation), which limits what �tness
functions and behavior characterizations experimenters can easily
implement without re-running the precomputation process. Keep-
ing only limited parts of simulated behavior re�ects a deliberate en-
gineering choice, one which enables the precomputed search-space
database to �t entirely in RAM for a modern computer; however,
more complete behavior traces could be precomputed and stored in
a disk-based database, enabling a wider range of �tness functions
and behavioral properties, at the cost of slower evaluation. �is
undertaking is le� to future work, and would provide most value
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Figure 9: Instrumenting Search through Ideal Measures. In-
strumentation of evolution over generations by (a) behav-
ioral rarity (lower is more rare), and (b) everywhere evolv-
ability (higher means more evolvable), is shown for ex-
periments in the Hard Maze. In both plots, Rnd is ran-
dom search, Nov is novelty search, Evo-k indicates evolvabil-
ity search with k-step evolvability, Evo-All indicates every-
where evolvability, and Rar indicates rarity search. Both in-
strumentations record the score of the most rare (e.g. lowest
occurrence) or most evolvable individual in the population.
�e solid lines indicate the mean value across the 50 inde-
pendent runs, while the �lled-in areas include the lowest
and highest quartiles. �e conclusion is that seeking nov-
elty has some connection to seeking rarity, and that novelty
search encourages everywhere evolvability.

when domain evaluations are very expensive, which would make
re-running the precomputing process particularly undesirable.

While the current implementation is open-source and the pre-
computed database for the maze domain is available for experimen-
tation (h�p://goo.gl/JTSTGs), the value of the approach would be
increased with more domains, enabling probing the generality of
the hypotheses explored here. Future work aims to release other
domains, e.g. a version of biped locomotion simulation that has
previously been explored with NEAT [12].

6 CONCLUSIONS
�is paper introduced precomputed domains as a principled in-
termediate between theoretical models and the full complexity of
modern encodings and domains. By limiting the encoding in a
well-motivated way and precomputing all individuals, the bene�t
is ground-truth and extremely fast runs. �e conclusion is that pre-
computed domains provide an interesting experimental playground
for developing intuitions and testing hypotheses about complex
search spaces, especially in areas such as non-objective search
and evolutionary robotics, where evaluation is expensive, and the
�eld is young enough that the space of possible search algorithms
likely remains relatively unexplored. �e current implementation
is open-sourced and available for download; ideally it will serve
as an extensible framework for other precomputed domains that
could be shared among researchers, enabling easy exploration of
ideas across domains and the possibility of performing meaningful
research without access to large-scale computational resources.
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