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Gif-Sur-Yve�e, France

Sébastien Verel
Univ. du Li�oral Côte d’Opale
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ABSTRACT
In the global goal to increase the part of the intermi�ent renew-
able energies in the French energy mix, the production of nuclear
energy has to be adapted to face the power variations. We pro-
pose to optimize the main variables of the control rods of a nuclear
power plant to improve its management, and increase the safety
margins in case of a more heckled load-following schedule due to
intermi�ent renewable energies. Using a multi-physics simulator,
the criteria of interest can be computed in few minutes of computa-
tion, and we are thus facing a black-box combinatorial optimization
problem with expensive evaluation. Hence, we propose a parallel
asynchronous master-worker Evolutionary Algorithm scaling up
to thousand computing units. From a practical optimization point
of view, one main di�culty is the tuning of algorithm parameters
such as mutation rates. In this work, we perform a �tness landscape
analysis on this expensive real-world problem, and show that it is
possible to tune the mutation parameters according to the low-cost
estimation of the �tness landscape structure.
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1 INTRODUCTION
In the actual context of energetic transition, the increase of the
intermi�ent renewable energies contribution (as wind farms or
solar energy) is a major issue. On the one hand, the French govern-
ment aims at increasing their part up to 30% by 2030, against 6%
today. On the other hand, their intermi�ent production may lead
to an important imbalance between production and consumption.
Consequently, the other ways of production must adapt to those
variations, especially nuclear energy which is the most important
in France. �e power variations occur at di�erent time scales (hour,
day, or even week) and in order to counterbalance their e�ects on
the electric grid, the nuclear power plants (NPP) are already able
to adjust their production. NPPs which take part in the response of
the power variations operate in the so-called load-following mode.
In this operating mode, the power plant is mainly controlled using
control rods (neutron absorber) that may introduce unacceptable
spatial perturbations in the core, especially if the power variations
are large and/or fast. �e purpose of this work is to optimize the
manageability of the power plants to cope with a large introduction
of intermi�ent renewable energies.

�e ability of Evolutionary Algorithm (EA) to �nd high quality
solutions is likely to depend strongly on its parameters se�ings.
In this work, we propose a parallel master-worker EA for large
scale computing environment to solve the NROO problem. Despite
the expensive cost, an analysis of the mutation parameters is then
proposed. Such a study is not always possible for expensive opti-
mization problems. Hence, we achieve a �tness landscape analysis
of the NROO problem using low-cost features to argue that it helps
to select the relevant parameters of the mutation operator.

2 PRELIMINARIES
Evolutionary optimization for nuclear energy problems. �e
use of Evolutionary Algorithms (EA) in order to optimize some
variables of a nuclear power plant as regards performance or safety
is not new. To our best knowledge, the only optimizations of the
plant operation are made online. Na et al. [2] develop a fuzzy model
predictive control (MPC) method to design an automatic controller
for thermal power control in pressurized water reactors.

Parallel evolutionary algorithms. With the increasing num-
ber of computing units, parallel EA become more and more popular
to solve complex optimization problems. Usually, two main classes
of types of parallel EA can be distinguished : the coarse-grained
model (island model) and the �ne-grained model (cellular model).
Besides, a Master-Worker (M/W) architecture with the �tness eval-
uation on workers have been extensively used and studied.
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Landscape aware parameter tuning. �e performance of EA
strongly depends on the value of their parameters (mutation rate,
population size, etc.). Parameters se�ing is then one of the major
issues in practice for EA. Following Rice’s framework [3], one
can use a �tness landscape aware methodology to �rst extract
features from the given problem instance, then select the relevant
parameters according to those �tness landscape features. Fitness
landscapes are a powerful metaphor to describe the structure of
the search space for a local search algorithm, and peaks, valley or
plateaus for instance are used to depict the shape of the search
space in this picture.

3 PROBLEM DEFINITION
�e optimization process is based on the current load-following
transient and this analysis focuses on a single Pressurized Water
Reactor (PWR) type (1300 MW) of the French nuclear �eet. When
an electrical power variation occurs (demand of the grid) a chain
of feedback is se�ing up in the whole reactor, leading to a new
steady state. It is usual to take advantage of this self-regulation in
the case of small variations, but the regulated variables such as the
temperature or the pressure in the primary or secondary circuits
may reach unacceptable values in case of load-following, possibly
leading to damages of the whole system. �e control rods are then
used in order to cope with this variation, and maintain the primary
coolant temperature close to the target. In this work the 11 integer
variables which de�nes the control of roads are optimized.

�e value of interest is determined thanks to a model of the whole
reactor described in [1], and developed within the APOLLO3®calculation
code. �e optimization aims at minimizing this value of interest,
which represents a global operating criterion, based on the control
diagram. �is control diagram is used by the operator to manage
the power plant and represents the evolution of the relative thermal
power as a function of the power axial imbalance.

4 ASYNCHRONOUS PARALLEL EA
On the one hand, the �tness evaluation duration is about 40 min-
utes on average with a large variance. On the other hand, a large
number of computing units (w = 3072) are available to run the op-
timization algorithm, but they are only free for few hours (around
15 hours per experiment). Hence, we propose a master-worker
(M/W) framework for the EA. �e model of the M/W has been
made asynchronous: the workers are updated on the �y without a
synchronization barrier, and each worker only computes the �tness
value using the multi-physic simulator. We propose then an asyn-
chronous (1 + λ)-EA with mutation operator dedicated to integer
vector tuned by the mutation per variable rate and mutation range
of each variable.

5 EXPERIMENTAL ANALYSIS
First, the performance of the algorithm with a baseline parameters
se�ing is studied with 3072 computing units during 24 hours. �en,
the mutation parameters are deeply analyzed with the algorithm
launched on 3072 computing units during 5 hours. At last, a �tness
landscape analysis is conducted using random walks.

�e Fig. 1 shows the average normalized best �tness found for
each parameters se�ing. �e best sets as regards this criterion
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Figure 1: Average normalized best �tness as a function of
the mutation parameters.

are then the ones for which the mutation range r is maximal. In-
versely, the worse are the one for which the mutation range is
minimal. Besides, this parameters se�ing found an optimal solu-
tion which reduces almost 65% of the reference �tness of current
management, with only the quarter of the computation cost of the
baseline se�ings. �e Fig. 2 shows the correlation between the
performance of the EA in terms of average normalized best �tness
found and the feature values of the �tness landscape. �e result of
the real-world NROO problem with costly �tness function is in ac-
cordance with fundamental works in EA such as on the well-known
NK-landscapes : the problem di�culty and the performances are
correlated to the ruggedness of the �tness landscapes. In contrast
to the classical result obtained on the previous fundamental works
however, the more rugged the landscape, the be�er the performance
of the parallel EA.
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Figure 2: Scatter plots and linear regressions between the
average best normalized �tness and the features of �tness
landscapes.

6 CONCLUSIONS
In this paper, a real-world black-box combinatorial optimization
problem with expensive evaluation has been studied, and to solve it,
an asynchronous master-worker (1+λ)-EA running on a massively
parallel architecture was used. It has then been possible to improve
of almost 65% the considered criterion, meaning that on a given
load-following transient, the operation of the core keep the axial
power o�set almost constant. Moreover, our �rst result shows that
a �tness landscape approach could be used to tunes the parameters.
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