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ABSTRACT
�e Generalized Traveling Salesman Problem (GTSP) is a Combi-
natorial Optimization Problem considered as a generalization of
the well known Traveling Salesman Problem. �e GTSP, which is
an NP-Hard problem, consists of visiting only one city/node from
each region/cluster from all given clusters of an instance. �is
paper introduces a new reduction method that removes ”farthest”
cities from other clusters and keeps the nearest ones. Experimental
tests done on 81 instances from the TSPLIB benchmark present a
reduction rate from 9 to 73%. �e runtime is almost less than one
second for most instances and doesn’t exceed 7 for the larger ones.
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1 MOTIVATION
�e Traveling Salesman Problem (TSP) is an NP-Hard problem
[4] that has been approached several times in Combinatorial Opti-
mization. �e problem is popular for its severity and the diverse
applications it may resolve. �e main purpose of the problem is to
�nd the shortest cyclic path passing by all the given N nodes. Srivas-
tava et al. [10] and Henry-Labordere [5] proposed a generalization
of this problem called the Generalized Traveling Salesman Problem
(GTSP). n nodes are partitioned over m clusters (C1,C2, ...,Cm ) and
only one node from each cluster Ci must be visited and make a
cyclic tour by ge�ing back to the starting node/cluster.
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Several real-world applications can be modeled as a GTSP. Mail
delivery [6], airplane routing [1], computer �le sequencing [5], ve-
hicle routing [7], post-box selection and welfare agency [9] routing
are some examples of various combinatorial optimization problems
that can be interpreted as well.

NP-Hard problems can be solved via exact methods, approxi-
mative algorithms or metaheuristics which are di�erent strategies.
�e �rst one guarantees to reach the optimal solution while the
two others give a fair solution in an acceptable time. Runtime of
all of these algorithms depends on the instance size. �e larger
the instance is, the more signi�cant the runtime becomes, until
it becomes impossible to run the algorithm, especially for exact
methods.

Finding a near-optimal solution for a large instance in a relatively
short time is always a proof of the algorithm e�ciency since it is
harder to obtain a satisfying result on both sides. Some approaches
can be reduced by removing some data following a strategy with a
speci�c criterion [3] since a feasible solution can be made without
these elements.

We propose in this work a new reduction method for the GTSP.
which keeps the nodes that are close to each others and are from
di�erent clusters. �en removes all the other nodes, since they
are considered far from the clusters and probably will not ensure
good solutions. Obtaining a GTSP solution consists of �nding one
node from each cluster, the proposed approach will not impact the
feasibility of any instance of the problem.

2 NEAREST NODES TO CLUSTERS
”Nearest Nodes to Clusters (NN2C)” is a new method we present in
this work. �e aim of this algorithm is to select from each cluster
nodes that are close to other clusters then remove the other nodes
considering them too much far. Indeed, selected nodes are the
favorites ones for constructing the best solutions.

For each couple of clusters (Ci ,Cj ), NN2C picks a pair of nodes
(vx ,vy ) ∈ (Ci ,Cj ) that provide the smallest distance between these
clusters. vx and vy are then added to the set S of selected nodes.
�is selection procedure is redone while there are still couples of
clusters not yet browsed. Observe that a node can be picked more
than once, but will of course appear one time in the set S and won’t
be replaced by another one. �e detailed process of NN2C reduction
method is described in Algorithm 1.

Figure 1 shows an example of selected and removed nodes for
a small instance of four clusters. Green nodes are those (vx ,vy )
selected in each iteration. Once all cluster pairs are browsed, un-
selected vertices (in red) can be removed from the instance to be
reduced.
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Figure 1: Running NN2C algorithm on an intance of 4 clus-
ters: (1) selecting pair of nodes from each couple of clusters
then (2) removing non-selected nodes and �nally (3) return
the new instance

Algorithm 1 Nearest Nodes to Clusters (NN2C)
Require: An instance I with a set of m clusters C and a set of n

nodes V distributed over C
Ensure: I reduced with a set ofm clusters C and a set of n′ (n′ < n)

nodes V’ ⊂ V
1: for each couple (Ci ,Cj ) from C do
2: Select node vx from Ci and node vy from Cj such that

c (vx ,vy ) ≤ c (va ,vb )∀(va ∈ Ci ,vb ∈ Cj )
3: if (vx < S) then
4: add vx to V ′

5: end if
6: if (vy < S) then
7: add vy to V ′

8: end if
9: end for

10: replace V with V ′

11: return I

3 EXPERIMENTAL RESULTS
�e �rst test of the NN2C reduction algorithm was made on di�erent
instances delivered by the TSPLIB benchmark provided by Reinelt
[8] and converted to a GTSP instance by the standard clustering
procedure [2]. �is test includes instances with various sizes (small,
large and very large) and di�erent coordinates type. Table 1 shows
some of the 85 studied instances chosen randomly and including
the �ve largest. We expose for each one the number of clusters and
nodes, then the number of removed nodes by NN2C, reduction rate

lccccc

Table 1: NN2C detailed performances

Instance Clusters Nodes Removed Nodes Reduction Rate (%) t(s)
3burma14 3 14 9 64,29 0
11berlin52 11 52 25 48,08 0
26bier127 26 127 53 41,73 0
26ch130 26 130 43 33,08 0
28pr136 28 136 40 29,41 0
28gr137 28 137 49 35,77 0,01
30kroA150 30 150 47 31,33 0,01
30kroB150 30 150 56 37,33 0,01
31pr152 31 152 58 38,16 0,01
40d198 40 198 67 33,84 0,01
40kroa200 40 200 67 33,5 0,01
41gr202 41 202 65 32,18 0,01
45ts225 45 225 105 46,67 0,02
46gr229 46 229 79 34,5 0,02
49usa1097 49 1097 800 72,93 0,08
280�1400 280 1400 573 40,93 0,1
316�1577 316 1577 333 21,12 0,11
331d1655 331 1655 262 15,83 0,12
350vm1748 350 1748 654 37,41 0,19
364u1817 364 1817 173 9,52 0,12
378rl1889 378 1889 415 21,97 0,14
421d2103 421 2103 205 9,75 0,13
431u2152 431 2152 213 9,9 0,14
608pcb3038 608 3038 539 17,74 0,25
759�3795 759 3795 1008 26,56 0,29
893fnl4461 893 4461 814 18,25 0,43
2370rl11849 2370 11849 1761 14,86 2,98
2702usa13509 2702 13509 4263 31,56 2,47
2811brd14051 2811 14051 3014 21,45 2,86
3023d15112 3023 15112 3670 24,29 5,35
3703d18512 3703 18512 3851 20,8 7,04

Average 31,19 0,33

and �nally the runtime in seconds. �e average concerns all the
studied instances, not only the listed ones.

NN2C succeeded to reduce instances� size with a rate of up to
73% and a runtime less than one second except for the �ve largest
instances. Given the fast performance and the signi�cant reduction
rate, NN2C performances seem to be very interesting and deserve
to be further investigated.
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