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ABSTRACT
Modelling the production and stabilisation process of lactic acid
starters has several practical applications, ranging from assessing
the e�cacy of new industrial methods, to proposing alternative
sustainable systems of food production. In order to reach this
objective, however, it is necessary to overcome several obstacles,
tied to the complex nature and interactions of the target processes.
In this paper, we present a novel complex system modelling ap-
proach, exploiting both stand-alone evolutionary search and visual
interaction with the user. The presented framework is then tested
on a real-world case study, for which it shows promising results.
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1 INTRODUCTION
Agri-food processes can be regarded as complex systems, as they
are characterised by uncertain and intricate interaction e�ects
between physical, chemical, and biological components.[1] A �rst
di�culty to address when modelling such processes is the avail-
ability of experimental data at the di�erent scales of interest. Data
may be sparse and uncertain as well as high dimensional. A sec-
ond feature of the domain concerns the importance of expert
knowledge in the modelling process.[3] Building a model in these
conditions is a complex optimisation where experts knowledge
can drastically modify the shape of the search space, the relative
impact of data, or even the optimisation aims. We propose here an
interactive modelling approach based on a two-level evolutionary
optimisation scheme, which correspond to what we call our local
and global models. Users can interact with the constructed models
via a graphical user interface (GUI), run various optimisation steps,
revisit optimisation results, restart the process, add constraints,
and take decisions.
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Figure 1: Graphical model representing the mean �tness
of the local models obtained by symbolic regression. Node
color correspond to classes.

2 PROPOSED APPROACH
LIDeOGraM (Life-based InteractiveDevelopmentOfGraphicalMo-
dels) implements an original approach of semi-automatic mod-
elling of biological complex systems. Its goal is to help domain
experts (biologists) build a global model by characterising each
non-input variable by a mathematical formula that involves other
variables of the system. Finding the right equation in a context
with high variability in the dataset is an ambitious task since it
is easy to come up with over-�tted equations. A solution to rule
out these equations is to involve experts in the modelling pro-
cess. Symbolic regression using a Pareto-like approach such as the
one implemented in Eureqa[2], constitutes a compelling approach
to take advantage of the expert’s insight. Indeed, by providing
a set of formulas according to di�erent compromises between
�tness and complexity, the approach allows the experts to �lter
out incoherent equations or even designate the most suitable one.
Therefore, as a �rst optimisation step, LIDeOGraM runs Eureqa
on each variable using user-prede�ned constraints in the search :
Each variable is attributed to a given class, so that dependencies
will be searched only with variables of other classes (no intra-class
dependencies). A qualitative view of these results is presented to
the user in the form of a graphical network (See Figure 1).

The goal of this display, is to help the user focus on the vari-
ables that need the most the expert’s feedback. In this prospect,
variables are represented as nodes in the graph. The colour of a
link represents the mean value of either the �tness or the com-
plexity of the equations involving the parent node in the child

267



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany T. Chabin et al.

node. By clicking on a node, the equations found by Eureqa are
displayed to the user and in order to get a better idea about the
quality of an equation, the user can also click on it, and have a
plot of the experimental measures versus what is predicted by
the equation. The user can then act on these results by deleting
an equation, deleting a link between a parent node and a child
node, (i.e. all equations using the parent node in the child node are
deleted), deleting a variable (i.e. all the equations using the deleted
variable are deleted), forcing a speci�c link to be present in the
global model, deleting all the equations in the child node that do
not contain the parent node. After adding these constraints, few
or no equations might still be available for some nodes. In order to
get more equations, the user can choose to restart a symbolic re-
gression on any node. The user can iterate the process for as long
as desired, rede�ne classes, add constraints, and restart symbolic
regression on nodes. When he is satis�ed with the local models, a
computation of a global model can be triggered. A global model
is derived from the set of local models by selecting one equation
only at each node. Finding a global model is a complex problem,
because the value predicted by a an equation depends on the value
predicted by its parent variables. The global model is thus built
using an evolutionary optimisation process. The �tness function,
to be minimised for the global model is the mean value of the
�tness calculated for all non-input nodes. The �tness function of
a single node computes a value based on the Pearson correlation
coe�cient using the measured and the predicted data considered
in a 2D-space. After evolution, remaining incoherent choice of
equation can be edited by the user. The user can go back to the
local view, change local models and restart a new global optimisa-
tion. A global model is thus iteratively built via user interaction,
based on chained local and global optimisations.

3 EXPERIMENT AND CONCLUSIONS
The case study is based on the work of H. Velly et al. [4], on the
resistance of Lactococcus lactis subsp. lactis TOMSC161 to freeze-
drying. The resistance of the bacteria is studied for 4 di�erent
conditions of fermentation: 22◦C and 30◦C, evaluated at the be-
ginning of the stationary growth phase and 6 hours later. The
dataset featured 12 data points, with 3 biological repetitions of
each experimental condition. The dataset is made of 2 input vari-
ables, the temperature of fermentation and the time at which the
fermentation is stopped and 49 variables measured at 4 di�erent
steps (fermentation, concentration, freeze-drying and storage) for
3 biological scales (Genomic, Cellular and Population).

A (µ +λ)-evolutionary algorithm is used to optimise the global
model. The genome of a candidate global model is a string of inte-
gers, of size equal to the number of variables in the process. Each
gene is associated to a variable, and can assume a value between
1 and the number of equations available to describe that variable,
thus representing an index for a candidate equation in that node.
The parameters of the evolutionary optimization algorithm used
for the global model are as follows : µ : 100, λ: 80, Number of gen-
erations: 100, Probability of crossover: 0.8, Probability of mutation:
0.2, Selection: Tournament of size 2, Crossover function: Uniform,
Mutation function: With a probability 0.05 for each gene, change
the selected equation to the previous or the next complex one.
Feedback on the proposed local models was given by an expert

researcher with 20 years of experience in the �eld of the bacteria
freeze-drying process. The local models, were explored by the
expert during 20 minutes. The expert chose to remove 5 equa-
tions out of a total of 232. and 2 nodes. The deletion of those two
variables removed 14 more equations. With such major deletions,
some variables were left with only a few equations, therefore, the
expert chose to restart a symbolic regression on 3 nodes, obtaining
12 new equations in total. To reveal the contribution of the ex-
pert, the global model optimisation was performed 10 times using
expertise, and 10 times without. The �tness evolution of these
runs are shown in Figure 2. To obtain an accurate comparison
of the models, the �tness computed for optimisation without the
expertise did not take into account the two removed nodes. The
global models obtained using expertise have a median �tness of
0.787 with a standard deviation of 0.010 whereas the global models
obtained without expertise have a median �tness of 0.801 with
a standard deviation of 0.013. The expert was asked to provide

Figure 2: Comparison of the evolution of the best �tness
across generations for 10 runs

feedback for the last step of the modelling process in which one
of the global model obtained was submitted to his expertise. The
results were explored during 10 minutes, and the equations for
three node were changed. The �tness of the �nal global model
was slightly degraded, changing from a �tness of 0.789 to a �t-
ness of 0.801, but the produced model is able to better re�ect the
underlying reality of the process.

We proposed a time-saving tool of modelling for the experts,
allowing them to design a better global model of their process
by a semi-interactive approach. Figure 2 shows that the resulting
models are "better", not only according to the expert requirements,
but also with respect to the numerical data (faster and better
convergence).

REFERENCES
[1] Nathalie Perrot, Ioan-Cristian Trelea, Cédric Baudrit, Gilles Trystram, and P

Bourgine. 2011. Modelling and analysis of complex food systems: state of the
art and new trends. Trends in Food Science & Technology 22, 6 (2011), 304–314.

[2] Michael Schmidt and Hod Lipson. 2009. Distilling free-form natural laws from
experimental data. Science 324, 5923 (2009), 81–85.

[3] Mariette Sicard, Cédric Baudrit, MN Leclerc-Perlat, Pierre-Henri Wuillemin,
and Nathalie Perrot. 2011. Expert knowledge integration to model complex
food processes. Application on the camembert cheese ripening process. Expert
Systems with Applications 38, 9 (2011), 11804–11812.

[4] H Velly, M Bouix, S Passot, C Penicaud, H Beinsteiner, S Ghorbal, P Lieben, and
F Fonseca. 2015. Cyclopropanation of unsaturated fatty acids and membrane
rigidi�cation improve the freeze-drying resistance of Lactococcus lactis subsp.
lactis TOMSC161. Applied microbiology and biotechnology 99, 2 (2015), 907–918.

268


	Abstract
	1 Introduction
	2 Proposed approach
	3 Experiment and conclusions
	References

