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ABSTRACT
Scheduling in the real-world has to be performed under significant
uncertainty. This uncertainty can be introduced into mathematical
optimization by using two-stage stochastic optimization, where the
uncertainty is modeled by a discrete set of scenarios, and recourse
decisions represent the degrees of freedom to react to the actual
evolution of the uncertainties.

Most scheduling problems can be formulated as MILP, and due
to the progress in problem formulations and solvers, problems of
realistic size can be solved nowadays. However, in a monolithic
formulation of two-stage programs, the size of the problem increa-
ses linearly with the number of scenarios and the solution of the
resulting MILP becomes computationally very challenging.

In this contribution we present a modification of a hybrid evo-
lutionary algorithm [5, 6] based upon stage-decomposition by in-
corporating ideas from Ordinal Optimization. We replace the time-
consuming computation of optimal solutions for all second stage
scenario problems during the fitness evaluation by fast but inexact
methods. The proposed algorithm is evaluated by numerical expe-
riments using a real-world case-study from the polymer industry.
Two inexact evaluation methods are tested and compared to the
original approach: a LP-relaxation and an evaluation method which
uses the expected value problem in combination with a test for
feasibility.
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1 INTRODUCTION
Two-stage stochastic mixed-integer linear problems can be used
to introduce uncertainty into mathematical optimization. The un-
certainty is modelled by a discrete set of scenarios Ω. A general
formulation of such a problem can be written as follows:

min cT x +
Ω∑

ω=1
πωq

T
ωyω (1)

s .t . Ax ≤ b (2)
Tωx +Wωyω ≤ hω (3)
x ∈ X ,yω ∈ Y ,ω = 1, . . . ,Ω. (4)

This problem formulation distinguishes between first-stage (here-
and-now) decisions x which comprise the decisions that have to
be made at the current point in time and the second-stage (wait-
and-see) decisions yω which represent future decisions that can
be different for each scenario ω ∈ Ω. The first-stage decisions are
optimized such that the expected value over the scenarios of the
total cost is minimized and the solution is feasible for all scenarios.

Scheduling problems can be modelled as mixed-integer linear
problems (MILP) formulations which can be extended to two-stage
stochastic mixed-integer problems (2S-MILP) [2]. However with an
increasing number of uncertain parameters these problems become
very hard to solve in a monolithic fashion. Especially in a rolling
horizon approach, where the schedule has to be renewed multiple
times due to new events, a fast solution method is needed.

In this contribution a new method EA+OO is presented which
incorporates ideas of Ordinal Optimization (OO) [3] into the hybrid
evolutionary algorithm (HEA) for 2S-MILP from [5, 6] and is based
on the ideas of [4].

2 NEW APPROACH: EA+OO
In the HEA [5], the problem is decomposed into a master problem
(MASTER) and into |Ω | scenario problems (SUBω ). An Evolutionary
Algorithm is used to search for good first-stage solutions x for
(MASTER) while an exact solver for MILP (e. g. CPLEX) is utilized
to solve the subproblems (SUB)ω during the fitness evaluation of
an individual. During the evaluation of an individual all variables
of the first-stage x are fixed to the values induced by the individual
and afterwards solved separately. Also a penalty function is used
in the fitness function which measures the violation of constraints
to tackle the constrained problem.

The ideas that OO is based upon are: “Order is easier than Value”
and “Nothing but the best is very costly”. OO’s first principle ex-
presses that it is easier to show that the performance of a solution
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θ1 is better than the performance of a solution θ2, than it is to cal-
culate the exact performance of both designs. The second principle
states that searching for multiple good enough solutions instead of
searching for a single optimal one is much easier. The combination
of both principles leads to a reduction of the computational time
for finding adequate solutions for practical problems. An OO-based
method searches for a set of solutions which are obtained by using
a heuristic or an approximate solution. While the ranking in this
set might be erroneous, the set as a whole can be robust against
perturbations and contains one of the best solutions with a high
probability [3].

Combining the ideas of OO with the idea of the HEA leads
to the proposed method EA+OO. This method replaces the exact
fitness function Fex which is computed by determining the optimal
solution for each scenario problem (SUB)ω in the HEA by inexact
fitness evaluations Finex which use a simplification of the problem.
The value Finex is used to evaluate an individual and provides a
performance indicator for the first-stage solution that makes it
possible to compare the performance of two solutions. The first-
stage solution is the solution which will be be implemented in a real-
world application. Beside using en inexact evaluation the EA+OO
method searches for a set of s solutions, where s is a problem-
specific value. It is assumed that at least one of these s solutions is
of high quality, when evaluated exactly. This assumption is based
upon the idea that if the goal of the optimization is relaxed to find
at least one solution of a set of good enough solutions G (e. g. the
best 1%) and at the same time a set S of candidate solutions is
considered with |S | = s , there is high level of confidence that there
is a reasonable degree of matching between both sets, even in the
presence of large noise [3].

Using inexact evaluations might cause erroneous feasibility eva-
luations. Therefore all feasible individuals are stored and ranked
according to the inexact fitness function Finex. Afterwards these
individuals are re-evaluated using Fex. During this re-evaluation
the individuals are re-evaluated in the same order as they were
ranked in the first stage of the evaluation until s feasible solutions
have been found.

3 EXPERIMENTAL EVALUATION
To evaluate the performance of the EA+OO for scheduling problems
in comparison to the HEA we used a real-world batch scheduling
problem from the polymer industry with different parameter sets.
It concerns a plant for the production of a expandable polystyrene
(EPS) and was also used to test the HEA [5, 6]. We tested four
parameter sets with 256 scenarios and four instances with 512
scenarios, using 100 generations as the termination criterion and
also a time-limit of 7.5 minutes for the first four and of 15 minutes
for the second four instances. For each dataset the optimization
was repeated 20 times.

The basic configuration of the HEA and EA+OO is the same that
was used in [6]. The optimization is performed by a (µ,κ, λ)-integer
evolution strategy. For EA+OO two inexact evaluation methods
FLPinex and FEVinex were used. In FLPinex the LP-relaxation of the second-
stage is used as an approximation to estimate the performance of a
first-stage solution. Due to the relaxation it cannot be implied that
when a feasible solution for the relaxed second-stage was found a

feasible solution for each not relaxed scenario problem exists. FEVinex
uses the Expected Value Problem (EVP) [2] as a fitness indicator
for an individual. Instead of solving up to |Ω | scenario problems
only one artificial scenario representing the EVP is solved using a
standard MILP-solver. To improve the reliability of this evaluation
method this fitness function incorporates a test for feasibility using
the feasibility pump (FP) heuristic [1]. This heuristic is used to
quickly test whether a MILP has a feasible solution. If one exists
the objective value of the EVP is used as the fitness value otherwise
a penalty term is calculated.

It was observed that the EA+OO approach using the inexact
fitness functions FLPinex and F

EV
inex finds solutions of even significantly

better quality (after the re-evaluation with Fex) than the original
algorithm which uses the exact fitness function Fex. For all datasets
the median value of all runs is better when using FEVinex instead of
Fex. This is also the case when FLPinex is used as a fitness function
with the exception of one test-case which can be seen as an outlier.
It can also be observed that the usage of the inexact fitness values
reduces the spread of the results.

A reason for the improved performance might be a side-effect of
the usage of the inexact fitness functions. For all individuals which
induce a solution which violates only constraints of the second-
stage, the original exact fitness function Fex only assigns the same
fitness value while both inexact fitness functions provide more
differentiated fitness values for more individuals than Fex which
seems to improve the optimization process.

For FLPinex in over 90% of all cases less than 200 re-evaluations
were necessary to find the best individual of the run. Hence, the
same amount of exact evaluations had to be performed as during
only four generations of the HEA. For FEVinex in over 95% of the runs
it was sufficient to re-evaluate ten or less candidate solutions to find
the best individual of a run. Hence, a value of s = 10 is sufficient to
find the best result in each run with a high probability when using
the EA+OO-method.
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