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ABSTRACT
�is paper analyzes the Baldwin e�ect on a memetic algorithm that
solves constrained numerical optimization problems (CNOPS). For
this study, the canonical Di�erential Evolution (DE) enhanced with
the Hooke-Jeeves method (HJ) as local search operator is proposed
(MDEHJ), which implements a probabilistic scheme to activate HJ
by means a sinusoidal function that considers the population diver-
sity. �ree MDEHJ instances are applied to study the Baldwin e�ect
in di�erent exploitation areas (best, worst and random selected,
respectively). Final results are compared against those obtained
by MDEHJ with Lamarckian learning. All instances are tested on
thirty-six well-known benchmark problems. �e results suggest
that the proposed approach is suitable to solve CNOPS and those re-
sults also show that Baldwin e�ect does not a�ect the performance
of a memetic DE in constrained search spaces.
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1 INTRODUCTION
Memetic algorithms (MAs) incorporate a set of local improvement
procedures into an evolutionary algorithm, to help global search
�nd be�er results by exploiting promising regions of the search
space through what could be termed “learning”. Two elemental
models of evolution can be used to incorporate learning into a
MA: the Lamarckian learning and Baldwin E�ect. While Baldwin
e�ect, just modi�es the �tness value (phenotype) of a solution,
i.e., the result of the improvement does not change the structure
of the solution (genotype); the Lamarckian learning transforms
the phenotype and genotype of a solution. According to previous
studies, the Baldwin e�ect can has bene�ts in �at landscapes and
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can avoid premature convergence in hard problems. However, the
Baldwin e�ect in MAs for CNOPs is not usually analyzed to the best
of the authors’ knowledge. �erefore, this is the main motivation
for this work which is aimed to analyze the Baldwin e�ect into
an MA based on Di�erential Evolution (DE) [4] that incorporates
the Hooke-Jeeves (HJ) [2] method as local search operator. �e
ε-constrained method is adopted as constraint-handling [5].

2 PROPOSED APPROACH
In this proposal, HJ is handling by means a probability mechanism,
which includes the population diversity information regarding the
objective function values. �e probability is computed as follows:

P = pmin ∗ (sin (2π ∗ f r eq ∗G ) ∗ χ + 1) (1)

where pmin is the minimum probability allowed to be applied the
local search, f req is the frequency of probability variation, while
G is the current generation of DE framework. Finally, χ (see Eq. 2)
is an estimation of the best vector performance with respect to the
other vectors [1].

χ =
|fbest − favд |

max |fbest − favд |G
(2)

where fbest and favд are the objective function values of the best
and average solutions of the population, respectively.max | fbest −
favд |G is the maximum di�erence observed (e.g., at the generation
G). According to Equation 1, if the population tends to resemble
the best performance vector, the probability P to activate the local
searcher tends to pmin . Algorithm 1 denotes the whole procedure,
where ϕ represents the constraint violation sum of a solution.

3 EXPERIMENTS AND RESULTS
Two experiments were designed to analyze the Baldwin e�ect on
CNOPs by using a memetic DE, and consist of analyzing three
MDEHJ instances with di�erent exploitation areas (best, worst and
random selected, respectively). All cases were tested on eighteen
well-known benchmark problems [3] with two search space di-
mensionality (10D and 30D). Statistical values of 25 independent
runs per test function were performed and compared against those
results obtained by MDEHJ instances that use Lamarckian learn-
ing. �e following parameter values were used by the components
of MDEHJ: For DE, maximum number of population Pmax = 80,
crossover probability Cr = 0.9, scaling factor F = 0.55, and maximum
number of �tness evaluation MaxFEs = 2.0E + 05 and 6.0E + 05 in
10D and 30D, respectively. For HJ, reduction factor α =rand(2, 3),
step size δ = rand(0.75, 0.9), and MaxFEs = 700. For ε-Constrained,
θ = 0.75, cp = 9.5, and Gc = 1100. For activation mechanism, pmin =
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Algorithm 1 Memetic Di�erential Evolution MDEHJ
1: Randomly generate an initial population of vectors P0 = (X0,i , . . . , X0,Pmax )
2: Calculate the �tness of each vector in the initial population.
3: repeat
4: for i ← 1, Pmax do
5: Randomly select r0,r1,r2 ∈ [1, Pmax ] and r0 , r1 , r2 , i
6: Randomly select Jrand ∈ [1, D]
7: for j ← 1, D do
8: if randj ≤ Cr Or j = J rand then
9: uG,i,j = xG,r 0,j + F (xG,r 1,j − xG,r 2,j )
10: else
11: uG,i,j = xG,i,j
12: end if
13: end for
14: if UG,i is be�er than XG,i then
15: XG+1,i = UG,i
16: else
17: XG+1,i = XG,i
18: end if
19: end for
20: Set the population diversity χ using Equation 2
21: Set the activation probability P using Equation 1
22: if rand (0, 1) ≤ P then
23: Set j *
24: Set Xnew ← Hooke-Jeeves(XG,j )
25: Set f (XG,j ) ← f (Xnew ) and ϕ (XG,j ) ← ϕ (Xnew ) (Baldwin E�ect)
26: end if
27: G = G + 1
28: until MaxFEs is reached

0.05. �e �rst experiment analyzes the performance between the
MDEHJ instances with Baldwin e�ect and Lamarckian learning.
95%-con�dence Wilcoxon rank-sum-test was computed to deter-
mine the statistically signi�cant di�erence between approaches.
�e comparison is summarized in Table 1. �e approximation sign
(“≈”) determines that there is no signi�cant di�erence between the
two algorithms. �e results show that the Baldwin e�ect does not

Table 1: 95%-con�dence Wilcoxon rank-sum-test for the MDEHJ instances
with Baldwin e�ect (B-MDEH Jbest , B-MDEH Jworst and B-MDEH Jrand )
against MDEHJ instances with Lamarckian learning (L-MDEH Jbest ,
L-MDEH Jworst and L-MDEH Jrand ). Dim means the dimension of results,
whilew+ andw−mean the sum of positive and negative ranks, respectively.
Finally, Di� denotes whether there is a signi�cant di�erence.

Algorithms Dim Criteria w+ w− Di�

B-MDEH Jbest to L-MDEH Jbest
10 Best 11 17 ≈

Mean 89 64 ≈

30 Best 103 68 ≈

Mean 93 78 ≈

B-MDEH Jworst to L-MDEH Jworst
10 Best 18 18 ≈

Mean 71 65 ≈

30 Best 110 43 ≈

Mean 107 46 ≈

B-MDEH Jrand to L-MDEH Jrand
10 Best 16 5 ≈

Mean 84 52 ≈

30 Best 116 55 ≈

Mean 126 45 ≈

a�ect the �nal performance of the algorithm. Although there is no
statistical di�erence between the MDEHJ instances, the numerical
results suggest that Baldwin e�ect promotes the search for those
functions where the feasible space is small. �e second experiment
studies the behavior of Baldwin e�ect regarding the feasibility rate
from the proposed MDEHJ instances (MDEH Jbest ,MDEH Jworst ,
andMDEH Jrand ). Of thirty-six problems (10D and 30D), MDEHJ
samples were able to �nd 100% feasibility of the 25 runs in most
cases. Only C16 function in 10D cases of MDEHJ using the Baldwin
e�ect generate between 13% and 16% feasible solutions. In con-
trast, the instance with Lamarckian learning that exploits the best
solution of the population did not perform well in problems C02
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Figure 1: Convergence plot of the median run for C11 test problem, 30D.

and C16 in 10D generating only one feasible run, whereas in 30D
problems C09 and C10 were not able to �nd feasible solutions. �e
results suggest that the Baldwin e�ect has a greater in�uence on
the process by exploiting the best area of the population since it
can transform the �tness function and constraint violation sum
landscape into �at landscapes nearby the local optimal. Despite
this feature leads to a slower convergence in most problems than
using Lamarckian learning, through exploiting the best solution,
the MDEHJ that applies the Baldwin e�ect can outperform the
convergence velocity, see Figure 1.

4 CONCLUSIONS
�is work presented an analysis of Baldwin E�ect on a memetic dif-
ferential evolution to solve constrained numerical optimization pro-
blems. �e results of experiments suggested that the proposed ap-
proach was suitable to solve CNOPS and those results also showed
that Baldwin e�ect did not a�ect the performance of a memetic DE
in constrained search spaces. Despite there was not statistically
di�erence considering all test problems, the behavior of memetic
approaches depends on the exploitation area. Whereas promising
areas were favored by the Baldwin e�ect, the randomly chosen
zones and worst regions were adequately utilized applying Lamar-
ckian learning, since it disrupt the evolutionary cycle modifying the
genotype and phenotype information, causing a rapid convergence.
�e future work consists on hybridizing both learning mechanisms
to obtain its advantages.
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