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ABSTRACT
Quite a few studies on real-world applications of multi-objective
optimization reported that their Pareto sets and Pareto fronts
form a topological simplex. Such a class of problems was re-
cently named the simple problems, and their Pareto set and
Pareto front were observed to have a gluing structure similar
to the faces of a simplex. This paper gives a theoretical justi-
fication for that observation by proving the gluing structure
of the Pareto sets/fronts of subproblems of a simple problem.
The simplicity of standard benchmark problems is studied.
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1 INTRODUCTION
The success of evolutionary multi-objective optimization (EMO)
is widely spreading over various academic and industrial
fields. Recent numerical studies showed that decomposition-
based EMO algorithms such as MOEA/D [5], NSGA-III [1],
and AWA [3] have an ability to approximate the entire Pareto
set and Pareto front of many-objective problems.

In contrast to their abundance of experimental successes,
the theory shedding light on why they work is still under de-
veloping. Especially, the problem class in which decomposition-
based EMO algorithms can cover the entire Pareto set/front
has not been understood. Recently, Hamada et al. [3] defined
a class of problems called the simple problem. They pointed
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out, without rigorous proofs, that the Pareto set and Pareto
front of a simple problem are both homeomorphic to a sim-
plex and the faces of the simplex correspond to the Pareto
sets and their images of the subproblems. They also dis-
cussed that this property is closely related to scalarization.
This paper mathematically refines their arguments. The full
version of the paper, which contains rigorous proofs, is pro-
vided in the supplementary material as well as in arXiv.

2 SIMPLE PROBLEM
Definition 2.1 (simple problem [3]). A multi-objective op-

timization problem f is simple or has simplicity if every
subproblem g ⊆ f satisfies the following conditions: if g is a
k-objective problem, then

(S1) X∗(g) is homeomorphic to ∆k−1,
(S2) g|X∗(g) : X∗(g) → Rk is an embedding.

Here, we abuse f to denote a mapping f = (f1, . . . , fm) :
X → Rm and a set f = {f1, . . . , fm}. For a subproblem
g ⊆ f , i.e., a subset of f , the Pareto set and its image
are denoted by X∗(g) and fX∗(g), respectively. ∆k−1 ={

(x1, . . . , xk) ∈ [0, 1]k |
∑

xi = 1
}

is the (k − 1)-simplex.

2.1 Main Result
The solutions to a simple problem have a simplicial gluing
structure as shown in Figs. 1 and 2.

Theorem 2.2. For a simple problem f and a subproblem
g ⊆ f , it holds that

∂X∗(g) =
⊔
h⊂g

int X∗(h), (1)

∂fX∗(g) =
⊔
h⊂g

int fX∗(h), (2)

f∂X∗(g) = ∂fX∗(g), (3)
f int X∗(g) = int fX∗(g). (4)

2.2 Relation to Scalarization
Equations (1)–(4) together define a gluing structure of the
Pareto sets and their images of subproblems of a simple prob-
lem. This structure induces a natural stratification of the
Pareto set (resp. the Pareto front) where each stratum is the
interior of the Pareto set (resp. its image) of a subproblem.
Therefore, we can numerically compute the stratification by
solving each subproblem. Points spreading over all strata can
be a good covering of the Pareto set/front.
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Figure 1: The gluing structure of Pareto sets.
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Figure 2: The gluing structure of Pareto set images.

To see why this structure enables decomposition-based
EMO algorithms to cover the Pareto set/front, consider the
Chebyshev-norm scalarization

minimize
x∈X

fw(x) = max
i

wi (fi(x) − zi) (5)

where the weight w = (w1, . . . , wm) is chosen from ∆m−1

and the ideal point is fixed to be zi = minx∈X fi(x). Let
ei be the i-th standard base in Rm whose i-th coordinate is
one and the other coordinates are zero. The standard (m −
1)-simplex is rewritten as ∆m−1 = [e1, . . . , em]. Using the
notation of the weight-optima correspondence

S(W ) =
∪

w∈W

X∗(fw),

a well-known fact of the optima to (5) can be written as

S([ei1 , . . . , eik ]) = Xw(fi1 , . . . , fik ) (6)

for any choice of an arbitrary number of indices i1, . . . , ik ∈
{1, . . . , m}. If the problem is simple, then we can go further:
the simplicity extends (6) to

S([ei1 , . . . , eik ]) = X∗(fi1 , . . . , fik ),

and we have

S(∂[ei1 , . . . , eik ]) = ∂X∗(fi1 , . . . , fik ).

Therefore, a weight on each face gives a boundary point of
each stratum with corresponding indices.

Unfortunately, the Chebyshev-norm, as well as other ex-
isting scalarization methods including the weighted sum, the
augmented Chebyshev-norm, and PBI [5], does NOT give
the correspondence between the interiors:

S(int[ei1 , . . . , eik ]) ̸= int X∗(fi1 , . . . , fik ).

Nevertheless, once boundary points of a stratum are ob-
tained, we can find new weights corresponding to interior
points of the stratum by interpolating the weights used for
the boundary points. Thus, the grid arrangement or divide-
and-conquer generation of weights over [ei1 , . . . , eik ] practi-
cally often hit interior points of X∗(fi1 , . . . , fik ).

3 SIMPLICITY OF BENCHMARKS
Theorem 3.1. The simplicity of benchmark problems are:

ZDT1–6 [6] are non-simple.
DTLZ1–9 [2] are non-simple.
WFG2, 4, 5, 9 [4] are non-simple.
WFG1, 3, 6–8 [4] are simple if and only if they have

one position-related variable and two objectives.
MED [3] is simple.

4 CONCLUSIONS
In this paper, we have discussed the simple problem and
showed that the Pareto sets of its subproblems (resp. their
images) constitute a stratification of its Pareto set (resp. its
Pareto front). This topological property gives a theoretical
guarantee that decomposition-based EMO algorithms can
obtain an entire approximation of the Pareto set as well as
the Pareto front. We have also investigated the simplicity of
benchmark problems widely-used in the EMO community.
All problems in the ZDT and DTLZ suites are non-simple.
The WFG suite contains five simple problems under a very
restrictive situation but usually does not, whereas the MED
problem is always simple.

We believe that the absence of simple problems in the
standard benchmark suites is a considerable gap between
the benchmark and the real-world since there are many evi-
dences that a large portion of nowadays applications seems
to be simple. Additionally, real-world applications involving
simulations can be black-box; it would be important to de-
velop an estimation method for the simplicity of black-box
problems from a finite set of approximate solutions.
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