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ABSTRACT

Quite a few studies on real-world applications of multi-objective
optimization reported that their Pareto sets and Pareto fronts
form a topological simplex. Such a class of problems was re-
cently named the simple problems, and their Pareto set and
Pareto front were observed to have a gluing structure similar
to the faces of a simplex. This paper gives a theoretical justi-
fication for that observation by proving the gluing structure
of the Pareto sets/fronts of subproblems of a simple problem.
The simplicity of standard benchmark problems is studied.
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1 INTRODUCTION

1.1 Motivation

The success of evolutionary multi-objective optimization (EMO)
is widely spreading over various academic and industrial
fields. Recent numerical studies showed that decomposition-
based EMO algorithms such as MOEA/D [33], NSGA-III [3],
and AWA [6–8, 24, 25] have an ability to approximate the
entire Pareto set and Pareto front of many-objective prob-
lems.
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In contrast to their abundance of experimental successes,
the theory shedding light on why they work is still under de-
veloping. Especially, the problem class in which decomposition-
based EMO algorithms can cover the entire Pareto set/front
has not been understood. This paper discusses some prob-
lem class in which solutions are well-behaved for scalariza-
tion.

1.2 Related Studies in Other Fields

Theories concerning the easiness of covering solutions have
been developed in several optimization-related fields as well
as the EMO community. Most of them are studies on topo-
logical properties of solution sets.

1.2.1 Contractibility. The earliest work can be found in
1951 by Koopmans [11] Assertion 4.14 in which he applied
the linear programming to economics and pointed out some
conditions making the Pareto front contractible. Peleg [18]
generalized this result and showed that the Pareto front is
contractible if the feasible objective region is a convex set.
Afterward, the study spread to operations research, and
the closedness, the (arcwise) connectedness, and the con-
tractibility of the Pareto set/front under general settings
were studied on linear programming in 1970’s and on (quasi)
convex programming in 1980’s. These results are collected
in Luc [15] Section 6. Recently, similar results were obtained
under more general problem classes such as the lexicographic
quasiconvexity [20] and the arcwise cone-quasiconvexity [12].
The (arcwise) connectedness of the Pareto set is a necessary
condition that the homotopy method covers the solutions.

1.2.2 Decomposition. The decomposition approach con-
siders not only a given problem but also its subproblems
each optimizing a subset of objective functions and stud-
ies the relation among their solutions. Lowe et al. [14] in
1984 showed that the weak Pareto set of a convex program-
ming is the union of the Pareto sets of subproblems. Maliv-
ert et al. [16] extended the result to explicitly quasi-convex
upper semicontinuous functions. Popovici [19] named this
property the Pareto reducible and gave a sufficient condition
independent of convexity. Ward [32] showed that the strictly
Pareto solutions to a convex programming problem are com-
pletely surrounded by the Pareto solutions of subproblems.
Recent studies [12, 20, 21] revealed that the Pareto reducibil-
ity of the lexicographic quasiconvex programming problem
is closely related to the contractibility, through the simply
shadiness [1] of the Pareto front.
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1.2.3 Stratification. From pure mathematics, the singu-
larity theory of differentiable maps gives a decomposition of
solutions. In 1973, Smale [26] applied this theory to an eco-
nomic problem and stated that the Pareto set of a pure ex-
change economy of m agents is homeomorphic to an (m−1)-
simplex, provided the quasiconvexity and monotonicity of
the agents’ utility functions. Lovison et al. [13] pointed out
that each face of this simplex corresponds to the Pareto set
of each subproblem optimizing a subset of objective func-
tions. In Smale [26] and its sequels [27–31], he discussed
the stratification of Pareto critical points of generic maps
with the transversality and rank assumption of derivatives.
de Melo [2] showed that the C∞-maps whose Pareto criti-
cal points admit a stratification are generic, i.e., they form
a dense subset of the space of C∞-maps under the Whit-
ney topology. Recently, Lovison et al. [13] collected related
works to this approach and further developed de Melo’s re-
sult, and showed that local Pareto sets of sufficiently proper
maps admit a Whitney stratification.

1.3 Our Approach

These attempts are going on in two courses: the linear/convex
analysis originated by Koopmans and the global analysis by
Smale. The former seems much restrictive for the global op-
timization nature of EMO algorithms. The latter approach
is sufficiently general but currently hard to compute. We
need a handy theory for understanding the behavior of EMO
algorithms. Recently, Hamada et al. [8] defined a class of
problems called the simple problem. They pointed out, with-
out rigorous proofs, that the Pareto set and Pareto front of
a simple problem are both homeomorphic to a simplex and
the faces of the simplex correspond to the Pareto sets and
their images of the subproblems. They also discussed that
this property is closely related to scalarization. This paper
gives rigorous proofs for their arguments.

1.4 Contribution

In this paper, we give a proof that the boundary of the
Pareto set (resp. Pareto front) of a simple problem is the
union of the interior of the Pareto sets (resp. their images)
of subproblems. This property enables us to numerically
compute a stratification of the Pareto set/front.

Additionally, we investigate the simplicity of benchmark
problems widely-used in the EMO community: all problems
in ZDT suite [34] and DTLZ suite [4] are non-simple, five
of problems in WFG suite [10] can be simple under a very
restrictive situation, and MED problem [7] is always simple.

1.5 Contents

The rest of the paper is organized as follows. Section 2 pre-
pares basic notions and notations used in subsequent sec-
tions. Section 3 gives some properties of solutions to simple
problems and their relation to scalarization. Section 4 dis-
cusses the simplicity of existing benchmark problems. Sec-
tion 5 gives conclusions and remarks for future work.

2 PRELIMINARIES

This paper considers the following n-variable m-objective
problem:

minimize
x∈X⊆Rn

f(x) = (f1(x), . . . , fm(x)) (1)

where we call f : Rn → Rm the evaluation map, fi : Rn →
R (i = 1, . . . ,m) the i-th objective function, Rn the variable
space, X ⊆ Rn the feasible region, x ∈ Rn a solution, Rm

the objective space, and f(x) ∈ Rm an evaluation value.
We will make various problems by removing some of ob-

jective functions from (1) and discuss a gluing structure of
their solutions. To write such arguments clearly, we de-
fine the problem as a finite set of objective functions F =
{f1, . . . , fm} and regard (1) as a notation for it. We abuse
f to denote the problem F , the equation (1), and the evalu-
ation map f , depending on the context. We call the empty
set ∅ a 0-objective problem and define its evaluation map as
the empty map ∅ : ∅ → R0 to a one-point set R0 = {0}.

For problems f , g such that g ⊆ f as sets, we say that g
is a subproblem of f and f is a superproblem of g. We call
the set of all subproblems of a problem f the decomposition
of f and denote by 2f = {g | g ⊆ f}.

If solutions x, y ∈ X to a problem f satisfy the conditions

∀fi ∈ f , fi(x) ≤ fi(y) and ∃fj ∈ f , fj(x) < fj(y),

then we say that x f -dominates y and denote it by x ≺f y.
We denote f(x) = f(y) by x =f y and (x ≺f y) ∨ (x =f y)
by x ⪯f y.

If a solution x∗ ∈ X to a problem f satisfies

∀x ∈ X, x ̸≺f x
∗,

then x∗ is called a Pareto solution to f .
The set of all Pareto solutions of a problem f = {f1, . . . , fm}

is called the Pareto set, denoted byX∗(f) orX∗(f1, . . . , fm).
The image of X∗(f) by a map g is denoted by gX∗(f).
Especially, the image fX∗(f) is called the Pareto front.
Through the paper, we abbreviate the composition of maps
ψ ◦ϕ to ψϕ. The above notation, gX∗, can be considered as
g ◦X∗ by regarding X∗ as a map X∗ : 2F → 2X .

3 SIMPLE PROBLEM

This section introduces the definition of simple problem and
shows its solution structure. Section 3.1 presents the def-
inition of simple problem. Section 3.2 shows some inclu-
sion properties of solutions among subproblems. Section 3.3
shows that those solutions have the gluing structure of a
topological simplex. Section 3.4 points out that this gluing
structure enables decomposition-based EMO algorithms to
cover the Pareto set and Pareto front.

3.1 Definition

First, we present the definition of simple problem and its
graphical intuition.

Definition 3.1 (simple problem [8]). A problem f is simple
or has simplicity if every subproblem g ∈ 2f satisfies the
following conditions:
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minimize
x1,x2∈[−2,2]

f1(x) = x2
1 + 3(x2 − 1)

2

f2(x) = 2(x1 − 1)2 + x
2
2

f3(x) = 3(x1 + 1)2 + 2(x2 + 1)
2

X*(f1, f2, f3)

f1(x)

f2(x)

f3(x)

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

x 2

f1(x)

f2(x)

f3(x)

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

x 2

RGB(x) = (y1(x), y2(x), y3(x))

yi(x) =

{(
fi − fi(x)

)
/
(
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)
(fi ∈ g)
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{
fi(x) | x ∈ X
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+ 1e-16
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Figure 1: A simple 3-objective problem f = {f1, f2, f3} and its subproblem g’s Pareto set X∗(g). The Pareto
sets are colored by converting the f1, f2, f3-coordinates to RGB using the equations in the top-right cell.

(S1) X∗(g) ≈ ∆k−1 if g is k-objective,
(S2) g|X∗(g) : X

∗(g) → Rk is an embedding.

Here, ∆k−1 =
{
(x1, . . . , xk) ∈ [0, 1]k |

∑
xi = 1

}
is the stan-

dard (k− 1)-simplex. By A ≈ B, we denote that topological
spaces A and B are homeomorphic, which is defined as there
are continuous maps ψ : A → B and ϕ : B → A such that
ϕψ = idA and ψϕ = idB . Such maps, ψ and ϕ, are called
homeomorphisms. The topology of X∗(g) is induced from
the variable space Rn. That is, any open set U in X∗(g)
can be written as U = V ∩ X∗(g) with some open set V
in Rn under the Euclidean topology. Similarly, all spaces
discussed in this paper are implicitly equipped with induced
topologies from either the variable space Rn or the objective
space Rm. By ϕ|A′ : A′ → B, we denote the restriction of
a map ϕ : A → B to a set A′ ⊆ A, which is the composite
ϕι : A′ → B with the inclusion map ι : A′ ↪→ A, a 7→ a. The
embedding of A to B is the composite ιϕ : A→ B of a home-
omorphism ϕ : A→ B′ and the inclusion map ι : B′ ↪→ B.

Let us cultivate the intuitive understanding of this def-
inition with Fig. 1. When considering a simple problem,
we also deal with its subproblems optimizing all subsets of

given objective functions. The first subproblem is the orig-
inal problem itself optimizing all the objectives. The ex-
ample in the figure is 3-objective, and the condition (S1)
imposes that its Pareto set, X∗(f1, f2, f3), is homeomor-
phic to ∆2, a surface created by bending and stretching
a triangle (without cutting and connecting). The condi-
tion (S2) guarantees that the restricted evaluation map f :
X∗(f1, f2, f3) → fX∗(f1, f2, f3) and its inverse map f−1 :
fX∗(f1, f2, f3) → X∗(f1, f2, f3) are bijective, continuous,
and thus homeomorphisms. This implies that the Pareto
front, fX∗(f1, f2, f3), is also homeomorphic to ∆2, and ev-
ery point on fX∗(f1, f2, f3) continuously corresponds to a
unique solution on X∗(f1, f2, f3) and vice versa. Next, we
remove one of objectives, resulting in three 2-objective sub-
problems. Their Pareto sets,X∗(f1, f2),X

∗(f2, f3),X
∗(f3, f1),

are homeomorphic to ∆1 by (S1), a curve without loops.
By (S2), their Pareto fronts are also a curve in which each
point continuously corresponds to a unique Pareto solution.
Again removing an objective, we get three 1-objective sub-
problems. Their Pareto sets, X∗(f1), X

∗(f2), X
∗(f3), are

homeomorphic to ∆0, a point! A map on a one-point set
always satisfies (S2); there is no special implication. Finally,
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there is a 0-objective problem (not shown in Fig. 1) that
corresponds to the case of no objective function. This is just
required for formality.

Note that the conditions (S1) and (S2) only impose the
problem structure within the Pareto set and admit an arbi-
trary structure out of the Pareto set. This is contrastive to
conventional problem classes such as linear/convex/polynomial
programming problems which regulate their structures over
the entire domain. The simplicity is independent of those
problem classes. In fact, every class of linear/convex/polynomial
programming problems contains both of simple problems
and non-simple problems! As a result, the simplicity char-
acterizes a new aspect of “easiness to solve”.

3.2 Inclusion Properties

This section shows inclusion relations of the Pareto sets and
its images for subproblems of a simple problem. To iso-
late the consequence of assuming the simplicity from gen-
eral properties of Pareto-optimality, we begin without the
assumption.

Proposition 3.2. For any problem f (possibly non-simple)
and any subproblem g ⊆ f , the following relations hold:

X∗(g) ⊆ Xw(g) ⊆ Xw(f)

where Xw(g) is the weak Pareto set of g, that is, the set of
points each x ∈ X satisfying

∀y ∈ X, ∃fi ∈ g : fi(x) ≤ fi(y). (2)

Proof. The first inclusion, X∗(g) ⊆ Xw(g), is a well-
known fact (see, for example, Miettinen [17] Section 2.5).
The second relation, Xw(g) ⊆ Xw(f), directly follows from
(2). □

However, it does not hold that X∗(g) ⊆ X∗(f) in general.

Example 3.3. Consider a 1-variable 2-objective problem

minimize
x∈[0,1]

f1(x) = 0, f2(x) = x.

Clearly, the Pareto sets are X∗(f1) = [0, 1] and X∗(f1, f2) =
{0}, which implies X∗(f1) ̸⊆ X∗(f1, f2).

In contrast, simple problems do not have such ill-behaved
solutions.

Proposition 3.4. If a problem f is simple, then

Xw(f) = X∗(f).

Proof. From Proposition 3.2, we have Xw(f) ⊇ X∗(f).
We will prove Xw(f) ⊆ X∗(f) by contradiction. Suppose
that a point x ∈ Xw(f) \ X∗(f) exists. Then, since x is
weakly Pareto-optimal, the condition

∀y ∈ X, ∃fi ∈ f : fi(x) ≤ fi(y) (3)

holds. On the other hand, since x is not Pareto-optimal, the
condition

∃y ∈ X \ {x} , ∀fi ∈ f : fi(y) ≤ fi(x) (4)

holds. A point y in (4) should satisfy (3), which means

∃fi ∈ f : fi(y) = fi(x).

By (3), we have x ∈ X∗(fi) and thus y ∈ X∗(fi). This
contradicts (S2); more specifically, fi cannot be an injection
on X∗(fi). □

Therefore, the simplicity ensures the inclusion relationship
of Pareto sets.

Proposition 3.5. For a simple problem f and any sub-
problem g ⊆ f , it holds that

X∗(g) ⊆ X∗(f).

Proof. Combine Proposition 3.2 with Proposition 3.4.
□

Using this fact, we can see the topology of the image of the
Pareto set. Although, the condition (S1) itself addresses only
the topology of the Pareto set, combined with (S2), we show
that the Pareto front and the image in the superproblem
have the same topology.

Proposition 3.6. For a simple problem f and any sub-
problem g ⊆ f , if g is k-objective, then

X∗(g) ≈ gX∗(g) ≈ fX∗(g) ≈ ∆k−1.

Proof. By Definition 3.1, X∗(g) ≈ gX∗(g) ≈ ∆k−1 is
evident. We will show the nontrivial part: X∗(g) ≈ fX∗(g).
It suffices to show that the restriction f |X∗(g) is an embed-
ding. Remember that the restriction f |X∗(f) is an embed-
ding by definition and X∗(g) ⊆ X∗(f) in Proposition 3.5.
In general, any restriction of an embedding is again an em-
bedding. □

In the definition of simplicity, the conditions (S1) and (S2)
are imposed on all subproblems as well as a given problem,
which means that the subproblems inherit the simplicity
from the superproblem.

Proposition 3.7. If a problem f is simple, then any sub-
problem g ⊆ f is simple.

Proof. If g ⊆ f , then 2g ⊆ 2f . Thus, if all the problems
in 2f satisfy (S1) and (S2), then also do in 2g, which implies
that if f is simple, then g is. □

Therefore, propositions that hold for a simple problem
also hold for its subproblems. For example, the actual as-
sertion of Proposition 3.4 is that any subproblem of f , as
well as f itself, does not have a weakly Pareto-optimal point
which is not Pareto-optimal. The interpretation of Proposi-
tion 3.6 is bit more complicated: given a simple problem h,
the assertion holds for any pair of problems f , g such that
g ⊆ f ⊆ h. Henceforth, we will not repeat this property, but
it is always valid when propositions involve simple problems.

Similarly to that the empty set is a subset of every set, a 0-
objective problem is a subproblem of every problem. There-
fore, if 0-objective problems do not exist or are not simple,
then there cannot exist any simple problem. Let us check
them.

Proposition 3.8. There exists a 0-objective problem ∅; it
is unique and simple.
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Proof. The existence and the uniqueness follow from
those of the empty set and empty map. Let us check the
simplicity. Since the only subproblem of ∅ is ∅ itself, it suf-
fices to show that ∅ satisfies (S1) and (S2).

(S1): Since ∅ is the 0-objective problem, it suffices to show
X∗(∅) ≈ ∆−1. It holds indeed as ∆−1 = ∅ and X∗(∅) = ∅.

(S2): ByX∗(∅) = ∅, the restricted evaluation map, ∅|X∗(∅) :

X∗(∅) → R0, is the evaluation map ∅ : ∅ → R0 itself. Since
∅ : ∅ → R0 can be decomposed into a homeomorphism
id : ∅ → ∅ and an inclusion map ι : ∅ ↪→ R0 as ∅ = ιid,
the restriction ∅|X∗(∅) : X

∗(∅) → R0 is an embedding. □

Now we have confirmed that for each subproblem, the
Pareto set and its image are well-behaved. The next section
investigates that those solutions are nicely glued together.

3.3 Gluing Properties

The goal of this section is to give a proof that the solutions
to a simple problem have a special gluing structure as shown
in Figs. 2 and 3. This structure is an analogy of the faces of
a simplex. A 2-simplex [v1, v2, v3] is a triangle spanned by
vertices v1, v2, v3 and its boundary ∂[v1, v2, v3] is the union
of three edges, or 1-simplices, [v1, v2], [v2, v3], [v3, v1]. Each
edge [vi, vj ] has the boundary consisting of two points, or
0-simplices, [vi] and [vj ]. The boundary of each vertex [vk]
is the empty set, or the (−1)-simplex. We can expand these
relations using A = intA ⊔ ∂A and see that the boundary
of a simplex is expressed as the disjoint union of the open
faces:

∂[v1, v2, v3] =

int[v1, v2] ⊔ int[v2, v3] ⊔ int[v3, v1]

⊔ int[v1] ⊔ int[v2] ⊔ int[v3].

Generally, Pareto sets and their images may have a more
complex topological structure. However, for a simple prob-
lem, we have seen in Proposition 3.6 that those form topo-
logical manifolds with boundary (hereafter, simply call man-
ifolds) homeomorphic to a simplex. In a k-manifold M , a
point having an open neighborhood homeomorphic to Rk is
called an interior point, and the set of all interior points
is called the interior of M , denoted by intM . The other
points are boundary points having an open neighborhood
homeomorphic to [0,∞)×Rk−1, and the set of all boundary
points is called the boundary of M , denoted by ∂M . For a
simple problem, a similar relation holds among Pareto sets
as shown in Fig. 2:

∂X∗(f1, f2, f3) =

intX∗(f1, f2) ⊔ intX∗(f2, f3) ⊔ intX∗(f3, f1)

⊔ intX∗(f1) ⊔ intX∗(f2) ⊔ intX∗(f3). (5)

The same relation holds for the images as shown in Fig. 3:

∂fX∗(f1, f2, f3) =

intfX∗(f1, f2) ⊔ intfX∗(f2, f3) ⊔ intfX∗(f3, f1)

⊔ intfX∗(f1) ⊔ intfX∗(f2) ⊔ intfX∗(f3). (6)
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Figure 2: A simple 3-objective problem f =
{f1, f2, f3} and its gluing structure of the Pareto sets
X∗(g) of subproblems g ⊆ f . The boundary of the
Pareto set X∗(g) of each subproblem g ⊆ f consists
of the Pareto sets X∗(h) of all subproblems h ⊂ g.
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Figure 3: A simple 3-objective problem f =
{f1, f2, f3} and its gluing structure of the Pareto set
images fX∗(g) for all subproblems g. Although the
shape is different from Fig. 2, the topology is the
same.

It is known that such a gluing structure of solutions com-
monly appears in facility location problems, studied for a
long time (see for example Rodŕıguez-Ch́ıa et al. [22] and
the references therein). It is also seen in other applications
and exploited as a heuristic for practitioners [5].

Now we start to show (5) and (6) for an arbitrary number
of objectives. First of all, let us see some basic properties of
the Pareto front that hold for any class of problems.

Lemma 3.9. For anm-objective (possibly non-simple) prob-
lem f whose Pareto front fX∗(f) forms an (m−1)-manifold,
the projection

π−i :

{
Rm →

(
Ri−1 × {0} × Rm−i

)
≃ Rm−1,

(y1, . . . , ym) 7→ (y1, . . . , yi−1, 0, yi+1, . . . , ym)

restricted to intfX∗(f) is an embedding.

Proof. Generally, any projection and its restriction to
any open set are continuous and open, and any injective
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Figure 4: A 3-objective (possibly non-simple) prob-
lem f = {f1, f2, f3} and its Pareto front projections.
The projection π−i restricted to intfX∗(f) is injec-
tive and thus an embedding. By this fact, any in-
terior point y and its neighborhood U in fX∗(f) are
mapped to an interior point π−i(y) and its neighbor-
hood π−i(U) in π−ifX

∗(f).

continuous open map is an embedding. Thus, it suffices to
show that π−i is injective when restricted to intfX∗(f).
If π−i|int fX∗(f) is not injective, then intfX∗(f) contains
two points having the same coordinates except for the i-
th value. This means that one point f -dominates another,
contradicting the definition of the Pareto front fX∗(f). □

This lemma asserts that the interior of the Pareto front
can be flattened while keeping its topology and ordering. As
shown in Fig. 4, the projection induces a coordinate neigh-
borhood (π−i, U) at any point y ∈ intfX∗(f) where for any
points y, y′ ∈ U , it holds that yj ≤ y′j ⇔ π−i(y)j ≤ π−i(y

′)j
for all j ̸= i. This property is the key to investigate the in-
teraction between the topology and the dominance-ordering
on the interior of the Pareto front.

Lemma 3.10. Consider anm-objective (possibly non-simple)
problem f whose Pareto front fX∗(f) forms an (m − 1)-
manifold. The following statement holds for any y ∈ intfX∗(f):
any neighborhood U ⊆ fX∗(f) of y has a point that g-
dominates y and is (f \ g)-dominated by y for each g such
that ∅ ⊂ g ⊂ f .

Proof. By Lemma 3.9, the projection π−i restricted to
intfX∗(f) is an embedding, and thus π−i(U) is a neigh-
borhood of a point π−i(y) in Rm−1. Then, we can take an
(m − 1)-hyper-cube centered at π−i(y) in fX∗(f) and can
write its vertices as (y1±ε, . . . , yi−1±ε, yi+1±ε, . . . , ym±ε).
Here, ε is a small positive number and signs, ±, run over all
possible combinations. Among these vertices, let π−i(v) be
the one such that coordinates related to g ⊆ f−i = f \ {fi}
are −ε and related to f−i \ g are +ε. Thus, it holds that
y ≻g v and y ≺(f−i\g) v. Especially, g = f−i implies

y ≺fi v and g = ∅ implies y ≻fi v. Otherwise, it means that
y ≺f v or y ≻f v, contradicting y, v ∈ fX∗(f). Repeating
the above argument for all i, we complete the proof. □

Other than the Pareto front fX∗(f), do Lemmas 3.9
and 3.10 extend to the Pareto set image fX∗(g) of a sub-
problem g ⊂ f? The answer is NO: for general problems,
the projection π−i is not an embedding of intfX∗(g).

Example 3.11. Again consider the problem in Example 3.3:

minimize
x∈[0,1]

f1(x) = 0, f2(x) = x.

The Pareto set of the subproblem f1 is X∗(f1) = [0, 1],
and its image is fX∗(f1) = {(0, y) | 0 ≤ y ≤ 1}. The in-
terior intfX∗(f1) = {(0, y) | 0 < y < 1} can be projected to
π−2 intfX

∗(f1) = f1X
∗(f1) = {0}, which implies π−2|int fX∗(f1)

is not injective and thus not an embedding. Furthermore,
sinceX∗(f1, f2) = {0}, we see that the setX∗(f1)\X∗(f1, f2) =
(0, 1] is weakly Pareto-optimal and not Pareto-optimal in f .
The existence of these weak Pareto optima disrupts the in-
jectivity of π−2.

Contrary, if the problem is simple, then there are no solu-
tions that are weakly Pareto-optimal and not Pareto-optimal,
which enable us to extend Lemmas 3.9 and 3.10 to the image
fX∗(g).

Corollary 3.12. Consider a simple problem f and a
subproblem g ⊆ f . The restriction of the projection π−i

to intfX∗(g) is an embedding.

Proof. If π−i|int fX∗(g) is not injective, then intfX∗(g)
contains two points that have the same coordinates except
for the i-th value. This means that f has a solution that is
weakly Pareto-optimal but not Pareto-optimal, contradict-
ing Proposition 3.4. □

Corollary 3.13. Consider a simple problem f and a
subproblem g ⊆ f . For any y ∈ intfX∗(g), the follow-
ing statement holds: for any neighborhood U ⊆ fX∗(g) of
y, there exists a point that h-dominates y and is (g \ h)-
dominated by y for each h such that ∅ ⊂ h ⊂ g.

Proof. Chose an objective function fi ∈ f \ g and let
the remaining set be f−i = f \ {fi}. By Corollary 3.12,
fX∗(g) is mapped to f−iX

∗(g) by π−i, homeomorphically.
Next, chose another fj ∈ f−i \ g and let the remainder be
f−ij = f−i \ {fj}. Again by Corollary 3.12, f−iX

∗(g) is
mapped to f−ijX

∗(g) by π−j , homeomorphically. Though
the repeated application of projections as long as it is an em-
bedding, the original Pareto set image is finally mapped to
gX∗(g). Let the composite of used projections π−i, π−j , . . .
be π−∗. Generally, the composite of embeddings is again an
embedding. Thus, a point y ∈ intfX∗(g) and its neigh-
borhood U ⊆ fX∗(g) is mapped homeomorphically to a
point π−∗(y) ∈ int gX∗(g) and its neighborhood π−∗(U) ⊆
gX∗(g). Proposition 3.6 asserts gX∗(g) ≈ ∆|g|−1, which
together with Lemma 3.10 completes the proof. □
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By this property, we can see the simplicity ensures that
Pareto set images of subproblems are located on the bound-
ary of their superproblems.

Lemma 3.14. For a simple problem f and subproblems
g,h such that h ⊂ g ⊆ f , the following relation holds:

∂fX∗(g) ⊇ fX∗(h).

Proof. Suppose there exists a point y ∈ fX∗(h) that is
an interior point of fX∗(g). Now, y ∈ intfX∗(g) and h ⊂ g
holds and thus by Corollary 3.13, some neighborhood U ⊆
fX∗(g) of y has a point h-dominating y. This contradicts
y ∈ fX∗(h). □

Our next question is whether a similar relation holds for
the Pareto set before mapped by f . To check this, we need
the following lemma:

Lemma 3.15. For a simple problem f and a subproblem
g ⊆ f , the map f commutes with the boundary and interior:

f∂X∗(g) = ∂fX∗(g), (7)

f intX∗(g) = intfX∗(g). (8)

Proof. Generally, an embedding maps boundary to bound-
ary and interior to interior. Now f is an embedding on
X∗(g) ⊆ X∗(f), and thus it holds that f∂ = ∂f and
f int = intf . □

Using this fact, we show that under the simplicity, Pareto
sets of subproblems have the same relation as its images.

Corollary 3.16. For a simple problem f and a (proper!)
subproblem g ⊂ f , the following relation holds:

∂X∗(f) ⊇ X∗(g).

Proof. Since f is an embedding on X∗(f), there is the
inverse map f−1 : fX∗(f) → X∗(f). Lemma 3.15 converts
Lemma 3.14 to the assertion as follows:

∂fX∗(f) ⊇ fX∗(g)
⇔ f∂X∗(f) ⊇ fX∗(g)
⇔ f−1f∂X∗(f) ⊇ f−1fX∗(g)
⇔ ∂X∗(f) ⊇ X∗(g).

□

The last key to the main theorem is the sphere embedding.

Lemma 3.17. Every embedding f : Sn → Sn is surjective
and thus a homeomorphism where Sn is an n-sphere Sn ={
x ∈ Rn+1 | ∥x∥ = 1

}
.

Proof. Suppose f is not surjective. Then, there exists
a point y ∈ Sn \ f(Sn) and a stereographic projection with
north pole y, denoted by π : Sn \ {y} → Rn. Generally,
any stereographic projection is an embedding, and the com-
posite of embeddings is an embedding. Therefore, πf is an
embedding of Sn into Rn. This contradicts the well-known
fact that Sn cannot be embedded into Rn. □

Remark 1. To keep the proof elementary, here we as-
sumed that Sn ̸↪→ Rn is known and derived that Sn ↪→ Sn is
surjective. There is an alternative proof deriving both by the
Mayer-Vietoris exact sequence in a unified fashion. Consult
Hatcher [9], the two paragraphs after the proof of Proposition
2B.1 (pp. 169–170).

Now, we show the goal of this section.

Theorem 3.18. For a simple problem f and a subproblem
g ⊆ f , it holds that

∂X∗(g) =
⊔
h⊂g

intX∗(h), (9)

∂fX∗(g) =
⊔
h⊂g

intfX∗(h). (10)

Proof. First, we show (10). What to be proven are:

(a) if h ̸= h′, then intfX∗(h) ∩ intfX∗(h′) = ∅,
(b) ∂fX∗(g) =

∪
h⊂g intfX

∗(h).

(a) When h ⊃ h′, it holds from Lemma 3.14 that ∂fX∗(h) ⊇
fX∗(h′). The same holds for the inverse case h ⊂ h′. We
thus consider the case there is no inclusion relation between
h and h′. Assume there exists a point y ∈ intfX∗(h) ∩
intfX∗(h′), and let U be a neighborhood of y in fX∗(h ∪
h′). If there exists a point z ∈ U\(fX∗(h) ∪ fX∗(h′)), then
y ≺h z and y ≺h′ z hold, implying y ≺(h∪h′) z. This con-
tradicts z ∈ U ⊆ fX∗(h ∪ h′). If z does not exist, then the
dimension of U must be equal to that of fX∗(h) or fX∗(h′),
which contradicts dimU = |h ∪ h′| − 1. Consequently, such
y cannot exist.

(b) Since Lemma 3.14 states ∂fX∗(g) ⊇ fX∗(h), we have

∂fX∗(g) ⊇
∪
h⊂g

fX∗(h)

⊇
∪
h⊂g

intfX∗(h).

Thus, there is the inclusion map ι :
∪

h⊂g intfX
∗(h) ↪→

∂fX∗(g). Generally, any inclusion map is an embedding.
Combining (a) with Lemma 3.14, we have fX∗(h)∩fX∗(h′) =
fX∗(h ∩ h′). Therefore,

∪
h⊂g intfX

∗(h) is the union of
manifolds each homeomorphic to a simplex, which are glued
as the faces of a simplex. This fact ensures

∪
h⊂g intfX

∗(h) ≈
∂∆|g|−1 ≈ S|g|−2. Contrary, fX∗(g) ≈ ∆|g|−1 implies

∂fX∗(g) ≈ ∂∆|g|−1 ≈ S|g|−2. As Lemma 3.17 ensures that
Sn ↪→ Sn is surjective, the inclusion map ι is surjective,
implying that

∪
h⊂g intfX

∗(h) = ∂fX∗(g) holds.

We can get (9) by converting (10) with Lamma 3.15:

∂fX∗(g) =
⊔

h⊂g intfX
∗(h)

⇔ f∂X∗(g) =
⊔

h⊂g f intX∗(h)

⇔ f∂X∗(g) = f
⊔

h⊂g intX
∗(h)

⇔ f−1f∂X∗(g) = f−1f
⊔

h⊂g intX
∗(h)

⇔ ∂X∗(g) =
⊔

h⊂g intX
∗(h).

From the second to third lines, we used the general property
of a map f(A) ∪ f(B) = f(A ∪B). □
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3.4 Relation to Scalarization

Equations (7)–(10) together define a gluing structure of the
Pareto sets and their images of subproblems of a simple prob-
lem. This structure induces a natural stratification1 of the
Pareto set (resp. the Pareto front) where each stratum is the
interior of the Pareto set (resp. its image) of a subproblem.
Therefore, we can numerically compute the stratification by
solving each subproblem. Points spreading over all strata
can be a good covering of the Pareto set/front.

To see why this structure enables decomposition-based
EMO algorithms to cover the Pareto set/front, consider the
Chebyshev-norm scalarization

minimize
x∈X

fw(x) = max
i
wi (fi(x)− zi) (11)

where the weight w = (w1, . . . , wm) is chosen from ∆m−1

and the ideal point is fixed to be zi = minx∈X fi(x). Let
ei be the i-th standard base in Rm whose i-th coordinate
is one and the other coordinates are zero. The standard
(m− 1)-simplex is rewritten as ∆m−1 = [e1, . . . , em]. Using
the notation of the weight-optima correspondence

S(W ) =
∪

w∈W

X∗(fw),

a well-known fact of the optima to (11) can be written as

S([ei1 , . . . , eik ]) = Xw(fi1 , . . . , fik ) (12)

for any choice of an arbitrary number of indices i1, . . . , ik ∈
{1, . . . ,m}. If the problem is simple, then we can go further:
Proposition 3.4 extends (12) to

S([ei1 , . . . , eik ]) = X∗(fi1 , . . . , fik ),

and by Corollary 3.16 we have

S(∂[ei1 , . . . , eik ]) = ∂X∗(fi1 , . . . , fik ).

Therefore, a weight on each face gives a boundary point of
each stratum with corresponding indices.

Unfortunately, the Chebyshev-norm, as well as other ex-
isting scalarization methods including the weighted sum, the
augmented Chebyshev-norm, PBI [33], and IPBI [23], does
NOT give the correspondence between the interiors:

S(int[ei1 , . . . , eik ]) ̸= intX∗(fi1 , . . . , fik ).

Nevertheless, once boundary points of a stratum are ob-
tained, we can find new weights corresponding to interior
points of the stratum by interpolating the weights used for
the boundary points. Thus, the grid arrangement or divide-
and-conquer generation of weights over [ei1 , . . . , eik ] practi-
cally often hit interior points of X∗(fi1 , . . . , fik ).

4 SIMPLICITY OF BENCHMARKS

This section investigates the simplicity of benchmark prob-
lems widely-used in the EMO community: ZDT suite [34],
DTLZ suite [4], WFG suite [10], and MED problem [7].

1The smoothness of the stratification is determined from that of the
evaluation map.

4.1 ZDT Suite

The ZDT suite has six n-variable 2-objective problems named
ZDT1–6. The decision variables are split into the position
variables y = (y1, . . . , yk) (0 < k < n) and the distance vari-
ables z = (z1, . . . , zl) (l = n − k), defining the problems in
the following unified format:

minimize
(y,z)∈Y ×Z

f(y, z) = (f1(y, z), f2(y, z)),

where f1(y, z) = f(y1),

f2(y, z) = g(z)h(f1(y), g(z)),

X = Y × Z = (Y1 × · · · × Yk)× (Z1 × · · · × Zl),

Y1 = [0, 1],

Y2, . . . , Yk, Z1, . . . , Zl =

{
[−5, 5] (ZDT4),

[0, 1] (otherwise).

Users can make different problems by changing placeholder
functions f, g, h. For the concrete specification of f, g, h for
ZDT1–6, see Zitzler et al. [34]. The above general formulas
are enough to show that the problems are non-simple.

Theorem 4.1. ZDT1–6 are all non-simple, independent
of the choice of variable dimension n and position-variable
dimension k. Additionally, this suite cannot create simple
problems no matter how f, g, h are specified unless their do-
mains are modified.

Proof. First, we exclude ZDT5 from the following anal-
ysis since it is a binary-variable problem which is clearly
non-simple. Then, for ZDT1–4, 6, the function f defining
f1 depends on a single variable, y1. The other variables
can take an arbitrary value on the optima of f , and thus
X∗(f1) = Y ∗

1 (f)×Y2×· · ·×Yk×Z. This meansX∗(f1) ̸≈ ∆0

and contradicts the simplicity condition (S1). Consequently,
ZDT1–6 are all non-simple. □

The reason why this suite cannot be simple is that f de-
pends only on y1. Generally, when the problem has an ob-
jective function independent of some variables, its Pareto set
extends to higher dimensions than usual, contradicting the
simplicity condition (S1). The existence of unused variables
is a quick test for non-simplicity.

4.2 DTLZ Suite

The DTLZ suite consists of nine problems named DTLZ1–9.
Their decision variables are split into position variables y and
distance variables z, as ZDT, but the number of objectives
m can be set arbitrarily. See Deb et al. [4] for definition.

Theorem 4.2. DTLZ1–9 are all non-simple, independent
of the choice of variable dimension n, objective dimension m,
and position-variable dimension k.

Proof. Every problem has an objective function ignoring
some variables as follows:

DTLZ1–6: fm(y, z) = (1 + g(z))f(y1)

DTLZ7: f1(y, z) = y1

DTLZ8, 9: f1(y, z) = y0.11 + y0.12 + · · ·+ y0.1⌊n/m⌋
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Therefore, DTLZ1–9 are all non-simple. □

Furthermore, Huband et al. [10] Table VII shows that
DTLZ1–6 has f that is not injective on X∗(f) and DTLZ7
has a disconnected Pareto front. This is another evidence
for the non-simplicity of DTLZ1–7.

4.3 WFG Suite

The WFG suite contains nine problems, WFG1–9, having
the form:

minimize
(y,z)∈Y ×Z

f(x) = (f1(x), . . . , fm(x)),

where fi(x) = xm + 2i× hi(x1, . . . , xm−1),

tY :

{
Y → X1 × · · · ×Xm−1,

(y1, . . . , yk) 7→ (x1, . . . , xm−1),

tZ :

{
Z → Xm,

(z1, . . . , zl) 7→ xm,

X = X1 × · · · ×Xm = [0, 1]m,

Y = [0, 2]× [0, 4]× · · · × [0, 2k],

Z = [0, 2k + 2]× [0, 2k + 4]× · · · × [0, 2n].

The functions h1, . . . , hm, tY , tZ are placeholders. In this
suite, the variables y and z are mapped by the transforma-
tion functions tY and tZ to the position variables x1, . . . , xm−1

and the distance variable xm, then passed to the objective
functions fi. For this reason, y and z are called the position-
related variables and the distance-related variables, respec-
tively. For the concrete definition, see Huband et al. [10].

Theorem 4.3. WFG2, 4, 5, 9 are always non-simple.
WFG1, 3, 6–8 are simple if and only if the dimension of
the position-related variables y is k = 1. Here, one can set
k = 1 only when the number of objectives is m = 2 because
Huband et al. [10] Table XIV shows that these problems re-
quire k mod (m− 1) = 0.

Proof. First, consider WFG2. Huband et al. [10] Ta-
ble XIV shows that WFG2 has a disconnected Pareto front.
Such a front cannot be homeomorphic to ∆m−1, which con-
tradicts the property of a simple problem shown in Propo-
sition 3.6. The following discussion treats the rest of the
problems.

Let us check the properties of the Pareto set X∗(f) in the
transformed variable space X = [0, 1]m and the map f on
X∗(f). As described in Huband et al. [10], all problems2

have

X∗(f) = [0, 1]m−1 × {0} .
By the properties of the shape functions hi shown in Huband
et al. [10] Table X, f is an embedding upon X∗(f) if and
only if m = 2.3 For m > 2, it holds that

f(0, x2, . . . , xm−1, 0) = 0,

and thus f is not injective on X∗(f).

2As opposed to Huband et al. [10], WFG2 actually has a different
Pareto set in which x1 is conditioned to be Pareto-optimal. To avoid
a complication caused by this difference, we first finished WFG2.
3Except for Disconnected used only in WFG2.

Since the transformation functions, tY and tZ , are surjec-
tive as described in Huband et al. [10], the composite evalu-

ation map f t : Y × Z
(tY ,tZ)−−−−−→ X

f−→ Rm is not injective on
the Pareto set (Y × Z)∗(f t) in the untransformed variable
space Y × Z for m > 2. This does not meet the simplicity
condition (S2).

In the case of k > m−1, the transformation function tY in-
volves Reduction: Weighted Sum or Reduction: Non-
separable to decrease the dimension of Y . By examining
Huband et al. [10] Table XI, we can see that both functions
are not injective. Therefore, tY maps two different points
y, y′ ∈ Y to the same Pareto solution (x1, . . . , xm−1) ∈
[0, 1]m−1, contradicting the simplicity condition (S2).

There remains the case k = 1 and m = 2 where the prob-
lems may be simple. First, let us consider the 1-objective
subproblems. From Huband et al. [10] Table X, we have

X∗(f1) = {(0, 0)} , X∗(f2) = {(1, 0)} .

This implies that the simplicity condition (S1) for these
problems is equivalent to the following criterion:

t−1
Y (0), t−1

Y (1), t−1
Z (0) are all a point.

Since (S2) automatically follows from (S1) when the prob-
lem is 1-objective, the above criterion is a necessary and suf-
ficient condition for the simplicity. We can see from Huband
et al. [10] Table XI that t−1

Y (0) and t−1
Z (0) are always a point,

but it depends on the case whether t−1
Y (1) is a point or not.

WFG4, 5, 9 introduce Shift: Deceptive or Shift: Multi-
modal into tY , making t−1

Y (1) not a point. Thus, these

problems are non-simple. For WFG1, 3, 6–8, t−1
Y (1) becomes

a point, and their 1-objective subproblems are simple. Next,
let us consider their 2-objective subproblems. It holds that

X∗(f1, f2) = [0, 1]× {0} ,

and it has been confirmed that f = {f1, f2} is an embedding
onX∗(f1, f2) and t

−1
Z (0) is a point. Therefore, the equivalent

condition to the simplicity is as follows:

t−1
Y : [0, 1] → [0, 2] embedding.

For k = 1 and m = 2, the transformation function tY in
WFG1, 3, 6–8 can be simplified into the form tY (y) = yα.

Thus, its inverse, t−1
Y (x) = x1/α, is an embedding. Now, we

have checked that WFG1, 3, 6–8 are simple if and only if
k = 1 and m = 2. □

Note that Huband et al. [10] Table XIV describes that
WFG3 has a degenerate Pareto front, which seems to be
an evidence that WFG3 is always non-simple. However, the
degeneracy actually occurs only whenm > 2. In our analysis
for m = 2, the Pareto front of WFG3 forms a line segment,
which does not disrupt the simplicity.
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4.4 MED

This is a single problem, MED, defined as follows:

minimize
x∈X=Rn

f(x) = (f1(x), . . . , fm(x)),

where fi(x) = ∥x− x∗i ∥
pi ,

x∗i = (0, . . . , 0,︸ ︷︷ ︸
i−1

1 , 0, . . . , 0︸ ︷︷ ︸
n−i

),

0 < pi <∞.

(13)

The front-shape parameters, pi, which determine the convex-
ity of the Pareto front, are user-specified parameters as well
as the variable dimension n and the number of objectives m.

Theorem 4.4. MED is always simple independent of the
choice of parameters n,m, pi. Additionally, changing indi-
vidual optima, x∗i , does not break the simplicity as long as
they are affinely independent.

Proof. First, consider the case of pi = 1. This corre-
sponds to a facility location problem under the L2-norm.
The Pareto set of this problem is known as the convex hull
of x∗1, . . . , x

∗
m [32]. Thus, if m ≤ n+ 1 holds and x∗1, . . . , x

∗
m

are affinely independent, then the convex hull is the (m−1)-
simplex spanned by x∗1, . . . , x

∗
m. Indeed, by the definition

of x∗i , this problem can be defined only when m ≤ n, and
x∗1, . . . , x

∗
m are affinely independent. Thus, the Pareto set

X∗(f) is an (m − 1)-simplex, which ensures that the prob-
lem f satisfies the simplicity condition (S1). Analyzing the
gradient of the L2-norm, we can see that the map f is an em-
bedding on X∗(f), which satisfies (S2). The same argument
applies to the subproblems, confirming that they satisfy (S1)
and (S2); the problem f is simple.

The case pi ̸= 1 can be considered as the composite of fi
in the case of pi = 1 and the pi-th power. Since any posi-
tive power is an order-preserving homeomorphism [0,∞) →
[0,∞), the composition preserves the simplicity of the facil-
ity location problem. □

5 CONCLUSIONS

In this paper, we have discussed the simple problem and
showed that the Pareto sets of its subproblems (resp. their
images) constitute a stratification of its Pareto set (resp. its
Pareto front). This topological property gives a theoretical
guarantee that decomposition-based EMO algorithms can
obtain an entire approximation of the Pareto set as well as
the Pareto front. We have also investigated the simplicity of
benchmark problems widely-used in the EMO community.
All problems in the ZDT and DTLZ suites are non-simple.
The WFG suite contains five simple problems under a very
restrictive situation but usually does not, whereas the MED
problem is always simple.

We believe that the absence of simple problems in the
standard benchmark suites is a considerable gap between
the benchmark and the real-world since there are many evi-
dences that a large portion of nowadays applications seems
to be simple. Additionally, real-world applications involving

simulations can be black-box; it would be important to de-
velop an estimation method for the simplicity of black-box
problems from a finite set of approximate solutions.
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