Next Generation Genetic Algorithms

Darrell Whitley Computer Science, Colorado State University

With Thanks to: Francisco Chicano, Gabriela Ochoa, Andrew Sutton and Renato Tinós

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

GECCO '17 Companion, July 15-19, 2017, Berlin, Germany 2017 Copyright is held by the owner/author(s). ACM ISBN 978-1-4503-4939-0/17/07. http://dx.doi.org/10.1145/3067695.3067703

Next Generation Genetic Algorithms

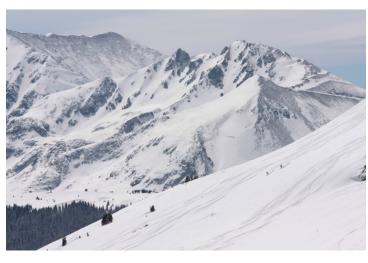
What do we mean by "Next Generation?"

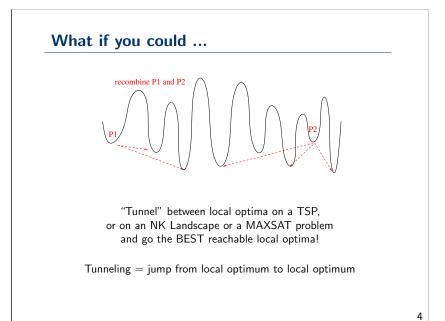
- NOT a Black Box Optimizer.
- 2 Uses mathematics to characterize problem structure.
- ③ NOT cookie cutter.
- Not a blind "population, selection, mutation, crossover" GA.

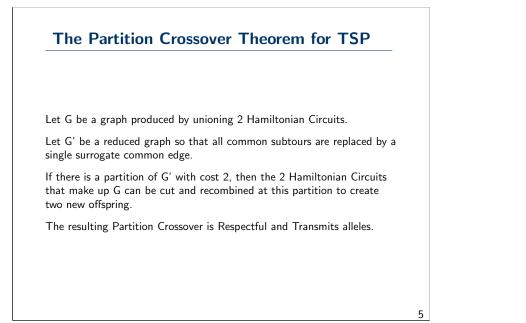
2

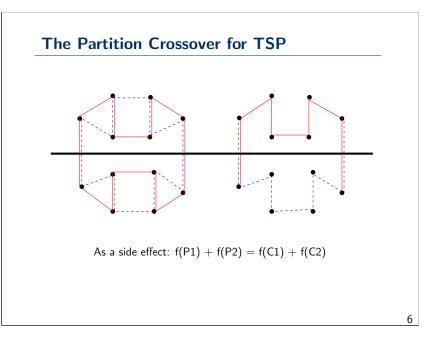
- ④ Uses deterministic move operators and crossover operators
- In Tunnels between Local Optima.
- 6 Scales to large problems with millions of variables.
- Ø Build on our expertise in smart ways.

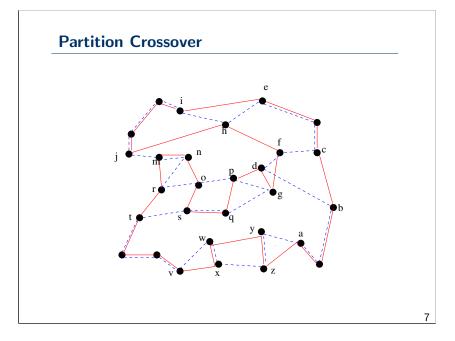
Know your Landscape! And Go Downhill!

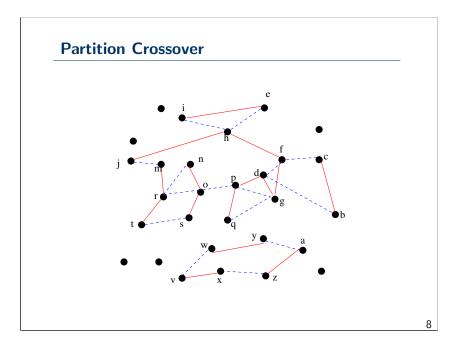


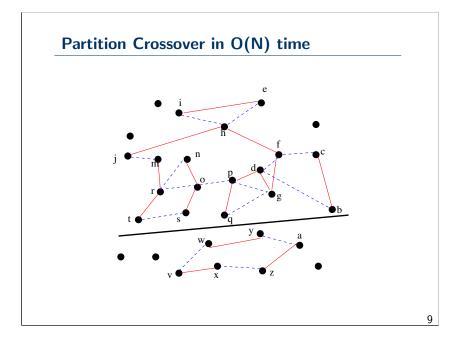


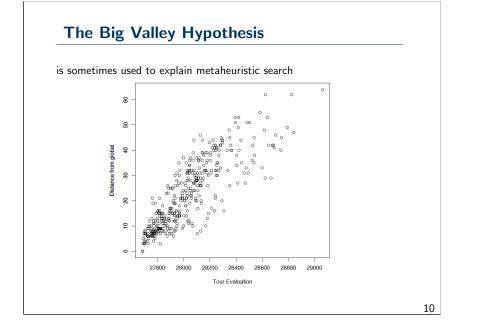


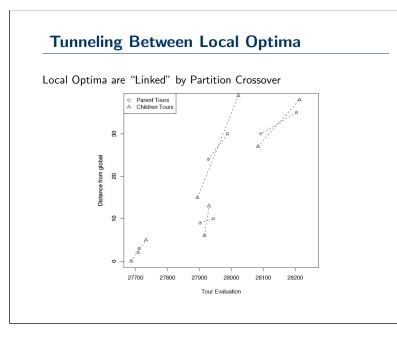


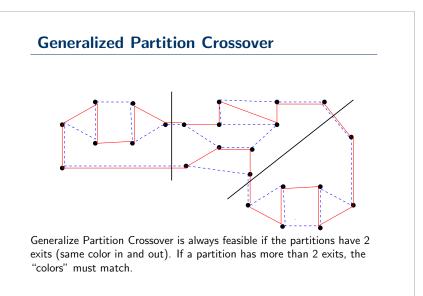












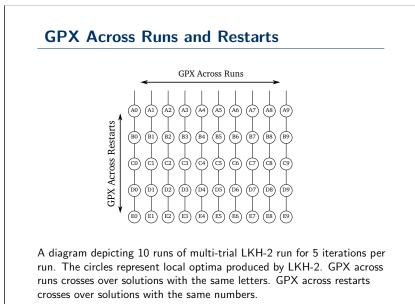
Г	Instance	att532	nrw1379	rand1500	u1817	
	3-opt	10.5 ± 0.5	11.3 ± 0.5	24.9 ± 0.2	$\frac{11017}{26.2 \pm 0.7}$	
able: Average number of <i>partition components</i> used by GPX in 50 ecombinations of random local optima found by 3-opt.						

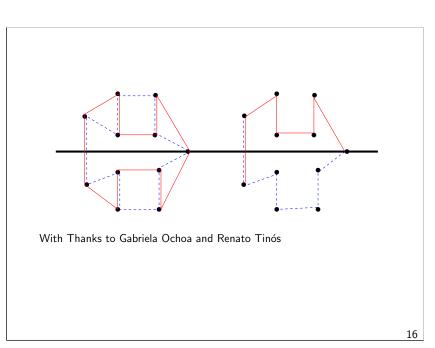
Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

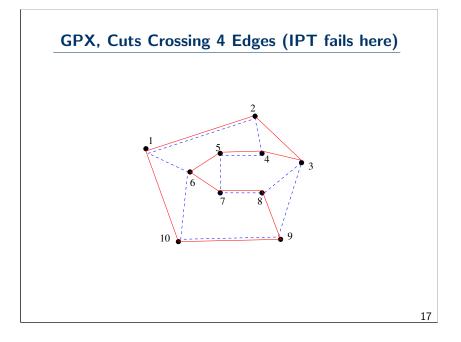
LKH uses deep k-opt moves, clever data structures and a fast implementation.

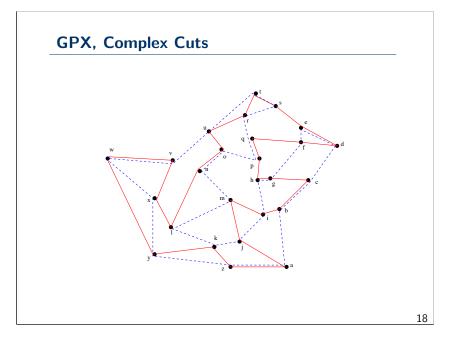
LKH-2 has found the majority of best known solutions on the TSP benchmarks at the Georgia Tech TSP repository that were not solved by complete solvers: http://www.tsp.gatech.edu/data/index.html.

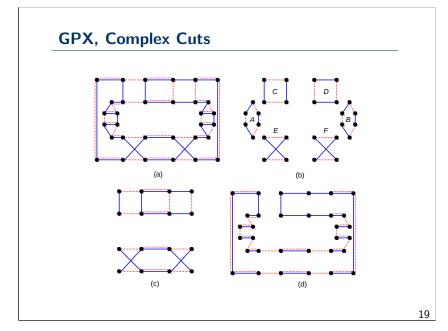


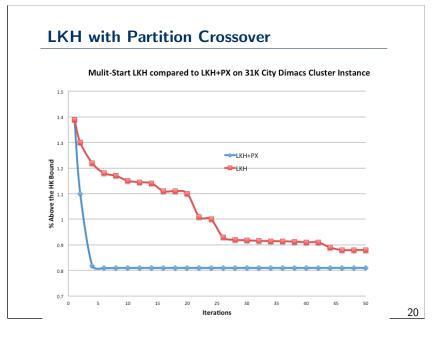


15









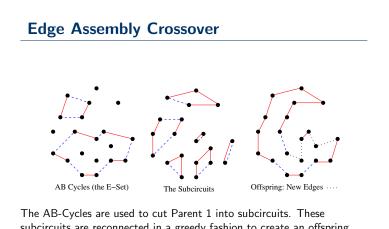
The Two Best TSP (solo) Heuristics

Lin Kernighan Helsgaun (LKH 2 with Multi-Starts) Iterated Local Search

EAX: Edge Assembly Crossover (Nagata et al.) Genetic Algorithm

Combinations of LKH and EAX using Automated Algorithm Selection Methods (Hoos et al.)

<section-header><text><text>



subcircuits are reconnected in a greedy fashion to create an offspring. The offspring is composed of edges from Parent 1, edges from Parent 2, and completely new edges not found in either parent.

The EAX Genetic Algorithm Details

- EAX is used to generate many (e.g. 30) offspring during every recombination. Only the best offspring is retained (Brood Selection).
- ② There is no selection, just "Brood Selection."
- 3 Typical population size: 300.
- **(a)** The order of the population is randomized every generation. Parent i is recombined with Parent i + 1 and the offspring replaces Parent i. (The population is replace every generation.)

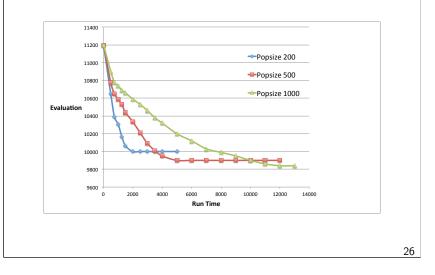
927

23

The EAX Strategy

- EAX can inherit many edges from parents, but also introduces new high quality edges.
- ② EAX disassembles and reassembles, and focuses on finding improvements.
- 3 This gives EAX a "thoroughness" of exploration.
- ④ EAX illustrates the classic trade-off between exploration and exploitation

Edge Assembly Crossover: Typical Behavior



Combining EAX and Partition Crossover

- Partition Crossover can dramatically speed-up exploitation, but it also impact long term search potential.
- A Strategy: When PAX generates 30 offspring, recombine all of the offspring using Partition Crossover. This can help when EAX gets stuck and cannot find an improvement.

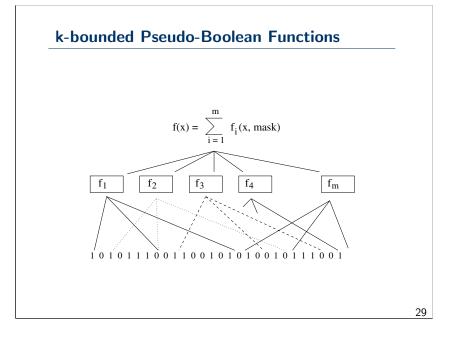
EAX and EAX with Partition Crossover

	Pop	Evaluation		Running		Number
Dataset	Size	Mean	S. D.	Time Mean	S. D.	Opt. Sol.
rl5934	200	556090.8	50	1433	34	12/30
rl5915	200	565537.57	29	1221	30	23/30
rl11849	200	923297.7	8	8400	130	1/10
ja9847	800	491930.1	2	37906	618	0/10
pla7397	800	23261065.6	552	12627	344	2/10
usa13509	800	19983194.5	411	81689	1355	0/10

EAX with Pa	artition	Crossover				
	Pop	Evaluation		Running		Number
Dataset	Size	Mean	S. D.	Time Mean	S. D.	Opt. Sol.
rl5934	200	556058.63	33	1562	248	21/30
rl5915	200	565537.77	21	1022	73	19/30
rl11849	200	923294.8	8	7484	105	4/10
ja9847	800	491926.33	2	30881	263	4/10
pla7397	800	23260855	222	11647	1235	4/10
usa13509	800	19982987.6	173	66849	818	2/10

28

27



A General Result over Bit Representations

By Constructive Proof: Every problem with a bit representation and a closed form evaluation function can be expressed as a quadratic (k=2) pseudo-Boolean Optimization problem. (See Boros and Hammer)

$$\begin{aligned} xy &= z \quad iff \quad xy - 2xz - 2yz + 3z = 0 \\ xy &\neq z \quad iff \quad xy - 2xz - 2yz + 3z > 0 \end{aligned}$$

Or we can reduce to k=3 instead:

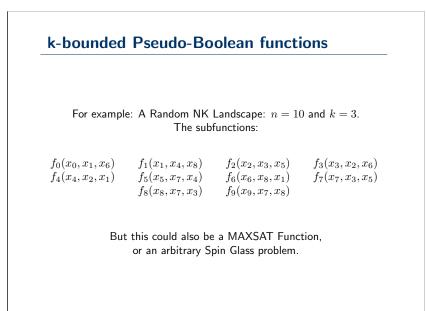
 $f(x_1, x_2, x_3, x_4, x_5, x_6)$

becomes (depending on the nonlinearity):

 $f1(z_1, z_2, z_3) + f2(z_1, x_1, x_2) + f3(z_2, x_3, x_4) + f4(z_3, x_5, x_6)$

30

32



Walsh Example: MAXSATGiven a logical expression consisting of Boolean variables, determine
whether or not there is a setting for the variables that makes the
expression TRUE.Literal: a variable or the negation of a variable
Clause: a disjunct of literalsA 3SAT Example
 $(\neg x_2 \lor x_1 \lor x_0) \land (x_3 \lor \neg x_2 \lor x_1) \land (x_3 \lor \neg x_1 \lor \neg x_0)$
recast as a MAX3SAT Example
 $(\neg x_2 \lor x_1 \lor x_0) + (x_3 \lor \neg x_2 \lor x_1) + (x_3 \lor \neg x_1 \lor \neg x_0)$

929

BLACK BOX OPTIMIZATION

Don't wear a blind fold during search if you can help it!

33

GRAY BOX OPTIMIZATION

We can construct "Gray Box" optimization for pseudo-Boolean optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

Which can be expressed as a Walsh Polynomial

$$W(f(x)) = \sum_{i=1}^{m} W(f_i(x))$$

Or can be expressed as a sum of k Elementary Landscapes

$$f(x) = \sum_{i=1}^{k} \varphi^{(k)}(W(f(x)))$$

34

36

Walsh Example: MAX-3SAT						
	Walsh Analys	is of a Single Clause				
Consider the $f(x) = \neg x_2$		sisting of a single clause				
	f(000) = 1 f(001) = 1	. ,				
	f(001) = 1 f(010) = 1 f(011) = 1	$(\neg x_2T)$				
	f(100) = 0	$(\neg x_2F \wedge x_1F \wedge x_0F)$				
	f(101) = 1 f(110) = 1 f(111) = 1	(x_1T)				

$\frac{1}{8}$	$\begin{bmatrix} 1\\1\\1\\1\\1\\1\\0\\1\\1\\1\\1\\1\\\end{bmatrix}^{T} \begin{bmatrix} 1&1&1&1&1&1&1&1&1\\1&-1&-1&1&1&-1&-1\\1&1&-1&-1&1&1&-1\\1&-1&-1&1&1&-1&-1\\1&1&1&1&$
0	All ψ_j 's except ψ_0 have 4 1's and 4 -1 's. ψ_0 has all 1's. f for clauses of length 3 will contain one 0

Walsh Example: MAX-3SAT

Let neg(f) return a K-bit string with 1 bits indicating which variables in the clause are negated.

$$f(100) = 0 \qquad (\neg x_2 F \land x_1 F \land x_0 F)$$

neg(f) = 100

Then the Walsh coefficients for f are:

$$w_j = \begin{cases} \frac{2^{\kappa} - 1}{2^{\kappa}} & \text{if } j = 0\\ -\frac{1}{2^{\kappa}} \psi_j(\operatorname{neg}(f)) & \text{if } j \neq 0 \end{cases}$$

Walsh Example

$f_1 = (\neg x_2 \lor x_1 \lor x_0)$
$f_2 = (x_3 \vee \neg x_2 \vee x_1)$
$f_3 = (x_3 \vee \neg x_1 \vee \neg x_0)$

\boldsymbol{x}	w_i	$W(f_1)$	$W(f_2)$	$W(f_3)$	W(f(x))
0000	w_0	0.875	0.875	0.875	2.625
0001	w_1	-0.125	0	0.125	0
0010	w_2	-0.125	-0.125	0.125	-0.125
0011	w_3	-0.125	0	-0.125	-0.250
0100	w_4	0.125	0.125	0	0.250
0101	w_5	0.125	0	0	0.125
0110	w_6	0.125	0.125	0	0.250
0111	w_7	0.125	0	0	0.125
1000	w_8	0	-0.125	-0.125	-0.250
1001	w_9	0	0	0.125	0.125
1010	w_{10}	0	-0.125	0.125	0
1011	w_{11}	0	0	-0.125	-0.125
1100	w_{12}	0	0.125	0	0.125
1101	w_{13}	0	0	0	0
1110	w_{14}	0	0.125	0	0.125
1111	w_{15}	0	0	0	0

GRAY BOX OPTIMIZATION

We can construct "Gray Box" optimization for pseudo-Boolean optimization problems (M subfunctions, k variables per subfunction).

Exploit the general properties of every Mk Landscape:

$$f(x) = \sum_{i=1}^{m} f_i(x)$$

Which can be expressed as a Walsh Polynomial

$$W(f(x)) = \sum_{i=1}^{m} W(f_i(x))$$

Or can be expressed as a sum of k Elementary Landscapes

$$f(x) = \sum_{i=1}^{k} \varphi^{(k)}(W(f(x)))$$

39

The Eigenvectors of MAX-3SAT						
f(x) = f1(x) + f2(x) + f3(x) + f4(x)						
$f1(x) = f1_a(x) + f1_b(x) + f1_c(x)$						
$f2(x) = f2_a(x) + f2_b(x) + f2_c(x)$						
$f3(x) = f3_a(x) + f3_b(x) + f3_c(x)$						
$f4(x) = f4_a(x) + f4_b(x) + f4_c(x)$						
$\varphi^{(1)}(x) = f1_a(x) + f2_a(x) + f3_a(x) + f4_a(x)$						
$\varphi^{(2)}(x) = f1_b(x) + f2_b(x) + f3_b(x) + f4_b(x)$						
$\varphi^{(3)}(x) = f1_c(x) + f2_c(x) + f3_c(x) + f4_c(x)$						
$f(x) = \varphi^{(1)}(x) + \varphi^{(2)}(x) + \varphi^{(3)}(x)$						
	40					

Constant Time Steepest Descent

Assume we flip bit p to move from x to $y_p \in N(x).$ Construct a vector Score such that

$$Score(x, y_p) = -2\left\{\sum_{\forall b, \ p \subset b} -1^{b^T x} w_b(x)\right\}$$

All Walsh coefficients whose signs will be changed by flipping bit p are collected into a single number $Score(x, y_p)$.

In almost all cases, Score does not change after a bit flip. Only some Walsh coefficient are affected.

41

Constant Time Steepest Descent

Assume we flip bit p to move from x to $y_p \in N(x).$ Construct a vector Score such that

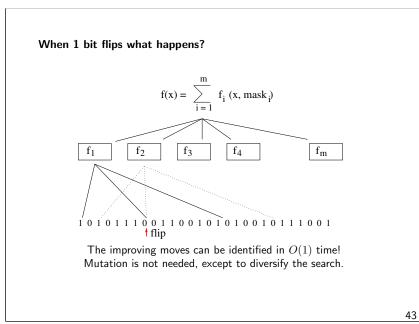
$$Score(x, y_p) = f(y_p) - f(x_p)$$

Thus, are the scores reflect the increase or decrease relative to f(x) associated with flipping bit p.

In almost all cases, Score does not change after a bit flip. Only some subfunctions are affected.

42

44



The locations of the updates are obvious

Some Theoretical Results: k-bounded Boolean

- 1) No difference in runtime for BEST First and NEXT First search.
- 2) Constant time improving move selection under all conditions.
- 3) Constant time improving moves in space of statistical moments.
- 4) Auto-correlation computed in closed form.
- 5) Tunneling between local optima.

45

Best Improving and Next Improving moves

"Best Improving" and "Next Improving" moves cost the same.

GSAT uses a Buffer of best improving moves

 $Buffer(best.improvement) = \langle M_{10}, M_{1919}, M_{9999} \rangle$

But the Buffer does not empty monotonically: this leads to thrashing.

Instead uses multiple Buckets to hold improving moves

 $Bucket(best.improvement) = < M_{10}, M_{1919}, M_{9999} >$

 $Bucket(best.improvement - 1) = < M_{8371}, M_{4321}, M_{847} >$

 $Bucket(all.other.improving.moves) = < M_{40}, M_{519}, M_{6799} >$

46

48

This improves the runtime of GSAT by a factor of 20X to 30X. The solution for NK Landscapes is only slightly more complicated.

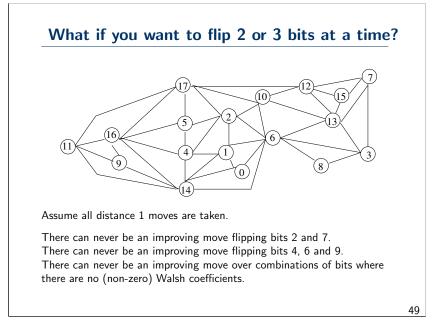
Steepest Descent on Moments

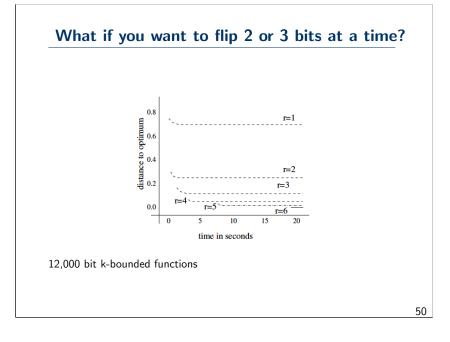
Both f(x) and Avg(N(x)) can be computed with Walsh Spans.

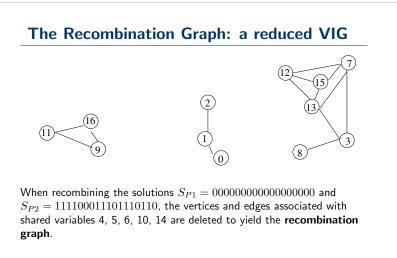
$$f(x) = \sum_{z=0}^{3} \varphi^{(z)}(x)$$
$$Avg(N(x)) = f(x) - 1/d \sum_{z=0}^{3} 2z \varphi^{(p)}(x)$$
$$Avg(N(x)) = \sum_{z=0}^{3} \varphi^{(z)}(x) - 2/N \sum_{z=0}^{3} z \varphi^{(z)}(x)$$

The Variable Interaction Graph

(VIG). There must be fewer than $2^k M = O(N)$ Walsh coefficients. There is a connection in the VIG between vertex v_i and v_j if there is a non-zero Walsh coefficient indexed by i and j, e.g., $w_{i,j}$.

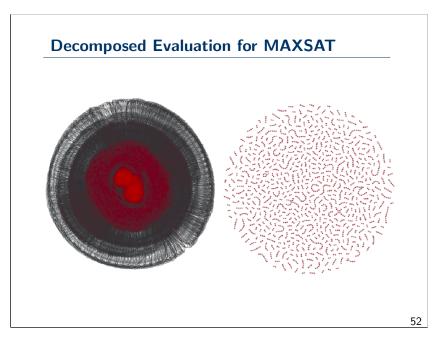






Tunneling Crossover Theorem:

If the recombination graph of f contains q connected components, then Partition Crossover returns the best of 2^q solutions.



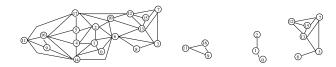
MAXSAT Number of recombining components

N	Min	Median	Max
308,480	7	20	38
37,726	11	1373	1620
991,419	937	1020	1090
182,015	231	371	2084
72,001	34	55	1218
	308,480 37,726 991,419 182,015	308,480 7 37,726 11 991,419 937 182,015 231	308,480 7 20 37,726 11 1373 991,419 937 1020 182,015 231 371

Tunneling "scans" 2^{1000} local optima and returns the best in O(n) time

53

Decomposed Evaluation



A new evaluation function can be constructed:

 $g(x) = c + g_1(x_0, x_1, x_2) + g_2(x_9, x_{11}, x_{16}) + g_2(x_3, x_7, x_8, x_{12}, x_{13}, x_{15})$

where g(x) evaluates any solution (parents or offspring) that resides in the subspace ****000***0***0**.

In general:

$$g(x) = c + \sum_{i=1}^{q} g_i(x, mask_i)$$

54

Partition Crossover and Local Optima

The Subspace Optimality Theorem: For any k-bounded pseudo-Boolean function f, if Parition Crossover is used to recombine two parent solutions that are locally optimal, then the offspring must be a local optima in the hyperplane subspace defined by the bits shared in common by the two parents.

Example: if the parents 000000000 and 1100011101 are locally optimal, then the best offspring is locally optimal in the hyperplane subspace **000***0*.

Percent of Offspring that are Local Optima

Using a Very Simple (Stupid) Hybrid GA:

N	k	Model	2-point Xover	Uniform Xover	PX
100	2	Adj	74.2 ±3.9	0.3 ± 0.3	$100.0\ \pm0.0$
300	4	Adj	$30.7\ \pm 2.8$	$0.0\ \pm 0.0$	$94.4\ \pm 4.3$
500	2	Adj	78.0 ±2.3	0.0 ±0.0	97.9 ±5.0
500	4	Adj	$31.0\ \pm 2.5$	$0.0\ \pm 0.0$	$93.8~{\pm}4.0$
100	2	Rand	0.8 ±0.9	0.5 ± 0.5	100.0 ± 0.0
300	4	Rand	$0.0\ \pm 0.0$	$0.0\ \pm 0.0$	$86.4\ \pm 17.1$
500	2	Rand	0.0 ±0.0	0.0 ±0.0	98.3 ±4.9
500	4	Rand	$0.0\ \pm 0.0$	$0.0\ \pm 0.0$	$83.6 \ \pm 16.8$

Number of partition components discovered

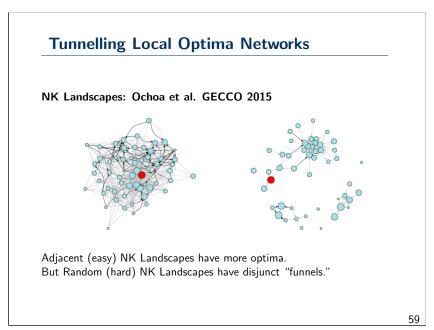
\overline{N}	k	Model	Paired PX	
			Mean	Max
100	2	Adjacent	3.34 ±0.16	16
300	4	Adjacent	5.24 ±0.10	26
500	2	Adjacent	7.66 ±0.47	55
500	4	Adjacent	$7.52\ \pm0.16$	41
100	2	Random	3.22 ±0.16	15
300	4	Random	2.41 ± 0.04	13
500	2	Random	6.98 ±0.47	47
500	4	Random	2.46 ± 0.05	13

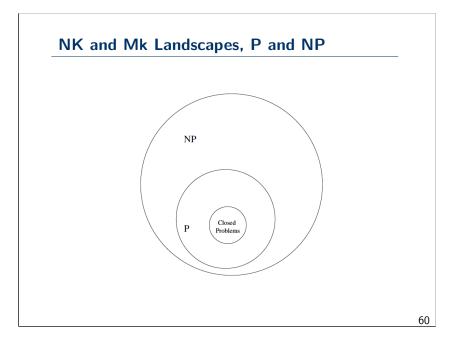
Paired PX uses Tournament Selection. The first parent is selected by fitness. The second parent is selected by Hamming Distance.

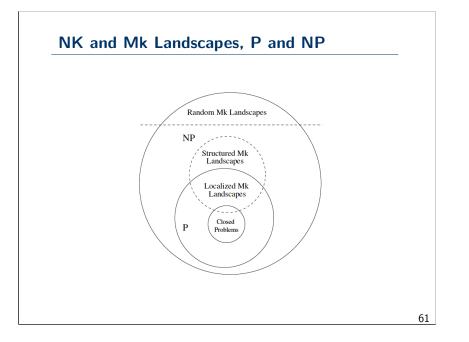
57

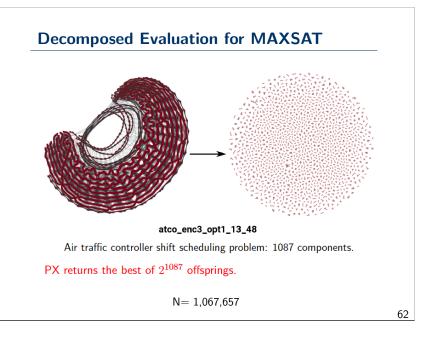
		2-point	Uniform	Paired PX
N	k	Found	Found	Found
300	2	18	0	100
300	3	0	0	100
300	4	0	0	98
500	2	0	0	100
500	3	0	0	98
500	4	0	0	70

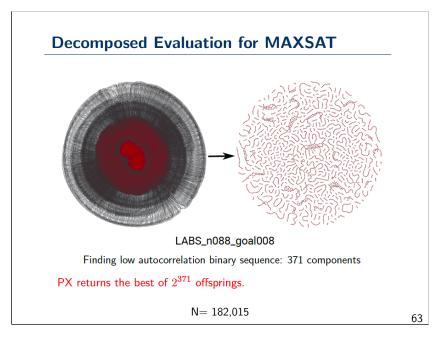
Percentage over 50 runs where the global optimum was Found in the experiments of the hybrid GA with the Adjacent NK Landscape.

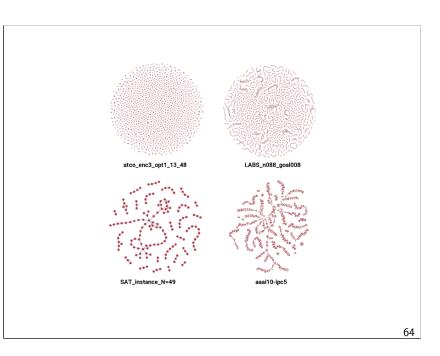










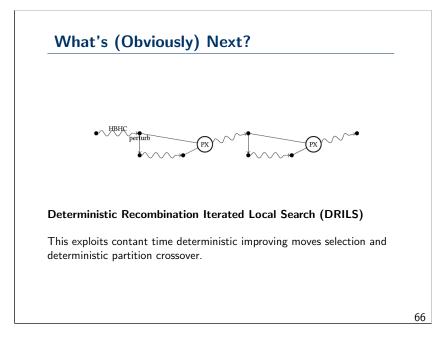


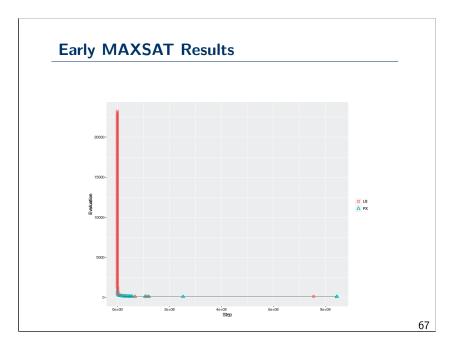
MAXSAT Number of recombining components

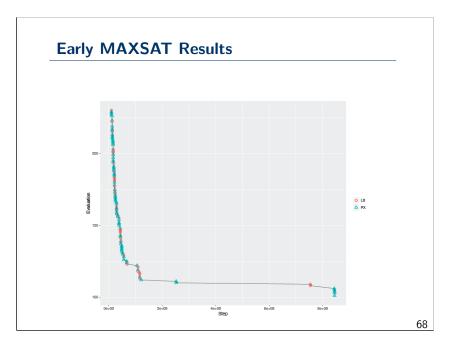
Instance	Ν	Min	Median	Max
aaai10ipc5	308,480	7	20	38
AProVE0906	37,726	11	1373	1620
atcoenc3opt19353	991,419	937	1020	1090
LABSno88goal008	182,015	231	371	2084
SATinstanceN111	72,001	34	55	1218

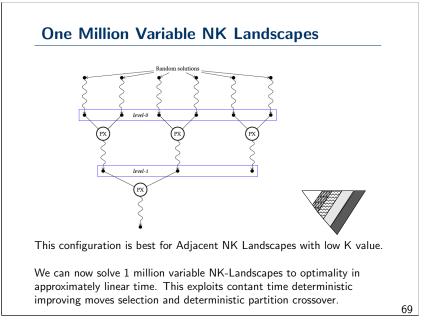
Imagine:

crossover "scans" 2^{1000} local optima and returns the best in O(n) time

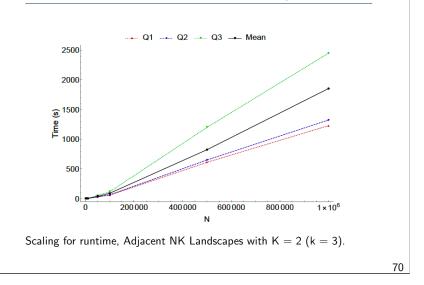


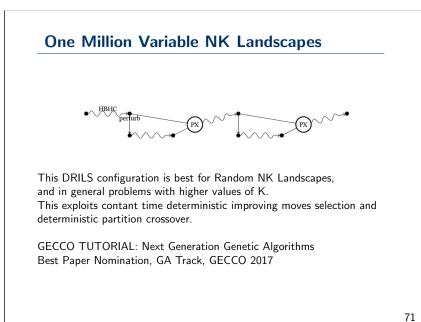






One Million Variable NK Landscapes





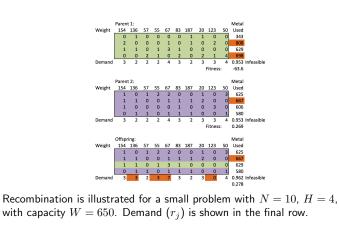
Cast Scheduling: K. Deb and C. Myburgh.

A foundry casts objects of various sizes and numbers by melting metal on a crucible of capacity *W*. Each melt is called a *heat*.

Assume there N total objects to be cast, with r_j copies of the j^{th} object. Each object has a fixed weight w_i , thereby requiring $M = \sum_{j=1}^N r_j w_j$ units of metal.

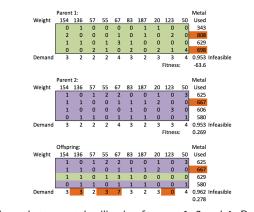
DEMAND: Number of copies of the j^{th} object. CAPACITY of the crucible, W.

Cast Scheduling: Deterministic Recombination



Cast Scheduling: Deterministic Recombination 154 136 57 55 67 83 187 20 123 50 Used Weight 343 0 0 0 0 1 0 0 1 0 0 808 1 0 0 629 0 3 0 0 2 1 0 2 0 2 1 4 698 3 2 2 2 4 3 2 3 3 4 0.953 Infeasible Demand Fitness: -63.6 Parent 2: Metal Weight 154 136 57 55 67 83 187 20 123 50 Used 1 2 2 0 0 1 0 625 1 1 1 2 0 667 606 1 0 0 1 0 0 3 580 1 0 0 0 1 1 3 2 2 2 4 3 2 3 3 4 0.953 Infeasible Demand Fitness: 0.269 Offspring: Metal 154 136 57 55 67 83 187 20 123 50 Used Weight 2 2 0 0 1 625 0 1 1 1 2 667 629 0 1 3 1 580 4 0.962 Infeasible Demand 0.278 Columns indicate objects and rows indicate heats. The last column prints $\sum_{i=1}^{N} w_i x_{ij}$ for each heat. Offspring are constructed using the best rows.

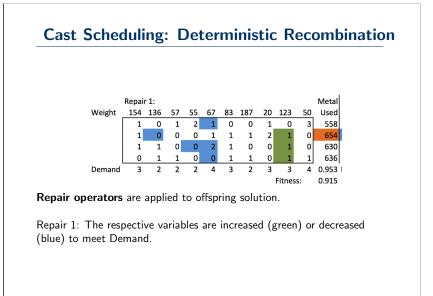
Cast Scheduling: Deterministic Recombination



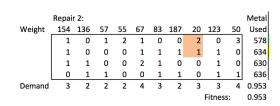
Parent 2 has a better metal utilization for rows 1, 2 and 4. Row 3 is taken from Parent 1. Recombination is greedy.

940

75



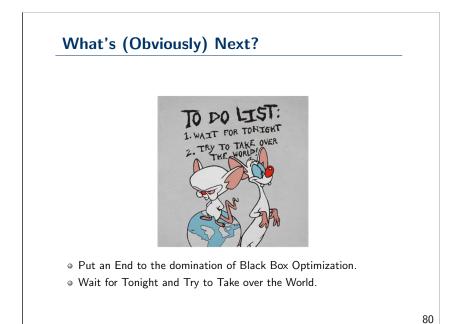
Cast Scheduling: Deterministic Recombination



Repair operators are applied to offspring solution.

Repair 2: Objects are moved to different heats within the individual columns to reduce or minimize infeasibility.

One Billion Variables Computational Time (sec) 10 Not 10 Computational Time (sec) 10 Utime (sec) 1M6.2d 1.6d 2.8h 16.7m Slope=1.11 100 1.7m 10s 1s50k 500k 5M 50M 500M 1M 10M 100M 100k 1BNumber of Variables Breaking the Billion-Variable Barrier in Real World Optimization Using a Customized Genetic Algorithm. K. Deb and C. Myburgh. GECCO 2016.



77