
Introducing Rule-Based Machine Learning:
Capturing Complexity

Ryan J. Urbanowicz
University of Pennsylvania

Philadelphia, PA, USA
ryanurb@upenn.edu

www.ryanurbanowicz.com
http://gecco-2017.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-
0/17/07...$15.00
http://dx.doi.org/10.1145/3067695.3067719

Instructor

v Ryan Urbanowicz is a post-doctoral research
associate at the University of Pennsylvania in the
Pearlman School of Medicine. He completed a
Bachelors and Masters degree in Biological
Engineering at Cornell University (2004 & 2005) and
a Ph.D in Genetics at Dartmouth College (2012). His
research focuses on the development and application
of advanced machine learning methods for complex,
heterogeneous problems in bioinformatics, genetics,
and epidemiology. He has been an active contributor
to the rule-based machine learning and learning
classifier system community since 2009.

Course Agenda
v Introduction (What and Why?)

v LCS Applications
v Distinguishing Features of an LCS
v Historical Perspective

v Driving Mechanisms
v Discovery
v Learning

v LCS Algorithm Walk-Through (How?)
v Rule Population
v Set Formation
v Covering
v Prediction/Action Selection
v Parameter Updates/Credit Assignment
v Subsumption
v Genetic Algorithm
v Deletion
v Rule Compaction

v Michigan vs. Pittsburgh-style
v Advanced Topics
v Resources

Multiplexer Benchmark Problem
• “Multiplexer functions have long been identified by researchers as functions that often pose difficulties for paradigms for

machine learning, artificial intelligence, neural nets, and classifier systems.” – [John Koza - Foundations of Genetic
Algorithms, 1991]

• Multiplexer Problem Characteristics:
– Multivariate, non-linearity, epistasis, heterogeneity/latent class.

• TO SOLVE: Any Multiplexer
– No single feature has any association with endpoint
– Only a certain subset of features are predictive for a given individual belonging to an underlying subgroup (i.e. latent

class)

*Image	adapted	from	[37]

576

6-bit Multiplexer Benchmark Problem
• Epistatic Non-linearity – A dependence between features that impacts outcome in a non-

linear, non-additive fashion.

• Heterogeneneous Pattern of Association – Independent features or groups of features
impact outcome within different subsets of training/testing instances.

*Images	adapted	from	[37]

Solving the 135-bit Multiplexer

• TO SOLVE: 135-bit Multiplexer
– All 135 features are predictive in at least some subset of the dataset.
– Non-RBML approaches would need to include all 135 attributes together in a single model properly

capturing underlying epistasis and heterogeneity.

• Few ML algorithms can make the claim that they can solve even the 6 or 11-bit multiplexer problems, let
alone the 135-bit multiplexer.

*Images	adapted	from	[28]

Bladder Cancer Study: Clinical
Variable Analysis-Survivorship

B

D

p < 0.05

B
A

D

*Images	adapted	from	[1]

v Rule Based Machine Learning (RBML)

v What types of algorithms fall under this label?
v Learning Classifier Systems (LCS)*

v Michigan-style LCS
v Pittsburgh-style LCS

v Association Rule Mining
v Related Algorithms

v Artificial Immune Systems

v Rule-Based – The solution/model/output is collectively comprised of
individual rules typically of the form (IF: THEN).

v Machine Learning – “A subfield of computer science that evolved from the
study of pattern recognition and computational learning theory in artificial
intelligence. Explores the construction and study of algorithms that can
learn from and make predictions on data.” – Wikipedia

v Keep in mind that machine learning algorithms exist across a continuum.
v Hybrid Systems
v Conceptual overlaps in addressing different types of problem domains.

* LCS algorithms are the focus of this tutorial.

Introduction: What is Rule-Based Machine Learning?

577

v Learning Classifier Systems (LCS)
v Developed primarily for modeling, sequential decision making, classification, and prediction in

complex adaptive system .
v IF:THEN rules link independent variable states to dependent variable states. e.g. {V1, V2, V3}

à Class/Action

v Association Rule Mining (ARM)
v Developed primarily for discovering interesting relations between variables in large datasets.
v IF:THEN rules link independent variable(s) to some other independent variable e.g. {V1, V2,

V3} à V4

v Artificial Immune Systems (AIS)
v Developed primarily for anomaly detection (i.e. differentiating between self vs. not-self)
v Multiple `Antibodies’ (i.e. detectors) are learned which collectively characterize ‘self’ or ‘’not-

self’ based on an affinity threshold.

v What’s in common?
v In each case, the solution or output is determined piece-wise by a set of `rules’ that each

cover part of the problem at hand. No single, `model’ expression is output that seeks to
describe the underlying pattern(s).

v This tutorial will focus on LCS algorithms, and approach them initially from a
supervised learning perspective (for simplicity).

Introduction: Comparison of RBML Algorithms Introduction:	LCS	In	A	Nutshell	– A	Basic	Schematic

* The term `environment’ refers
to the source of training
instances for a problem/task.

*Image	adapted	from	[37]

A	Learning	Classifier	System
“Machine”

Introduction: LCS In A Nutshell – Cartoon Schematic

v Adaptive – Accommodate a changing environment. Relevant parts of solution can
evolve/update to accommodate changes in problem space.

v Model Free – Limited assumptions about the environment*
v Can accommodate complex, epistatic, heterogeneous, or distributed underlying patterns.
v No assumptions about the number of predictive vs. non-predictive attributes (feature selection).

v Ensemble Learner (unofficial) – No single model is applied to a given instance to yield a
prediction. Instead a set of relevant rules contribute a `vote’.

v Stochastic Learner – Non-deterministic learning is advantageous in large-scale or high
complexity problems, where deterministic learning becomes intractable.

v Multi-objective (Implicitly) – Rules evolved towards accuracy and generality/simplicity.

v Interpretable (Data Mining/Knowledge Discovery) – Depending on rule representation,
individual rules are logical and human readable IF:THEN statements. Strategies have been
proposed for global knowledge discovery over the rule population solution [23].

v Implicitly Parsimonious – Rule evolution has an implicit generalization pressure towards
parsimonious rules/solutions.

Introduction: Why LCS Algorithms? {1 of 3}

578

v Other Advantages

v Applicable to single-step or multi-step problems.

v Representation Flexibility: Can accommodate discrete or continuous-
valued endpoints* and attributes (i.e. Dependent or Independent
Variables)

v Can learn in clean or very noisy problem environments.

v Accommodates missing data (i.e. missing attribute values within
training instances).

v Classifies binary or multi-class discrete endpoints (classification).

v Can accommodate balanced or imbalanced datasets (classification).

* We use the term `endpoints’ to refer to dependent variables .

Introduction: Why LCS Algorithms? {2 of 3}

v Many Application Domains
v Cognitive Modeling
v Complex Adaptive Systems
v Reinforcement Learning
v Supervised Learning
v Unsupervised Learning (rare)
v Metaheuristics
v Data Mining
v …

*Slide adapted from Lanzi Tutorial: GECCO 2014

v LCS Algorithms: One concept, many
components, infinite combinations.
v Rule Representations
v Learning Strategy
v Discovery Mechanisms
v Selection Mechanisms
v Prediction Strategy
v Fitness Function
v Supplemental Heuristics
v …

Introduction: Why LCS Algorithms? {3 of 3}

v Not widely known.

v Relatively limited software accessibility.

v Rule population interpretation and knowledge extraction can
be challenging.

v Can suffer from overfitting, despite explicit and implicit
pressures to generalize rules.

v Relatively little theoretical work or convergence proofs.

v Often many run parameters to consider/optimize.

LCS Disadvantages
v Categorized by the type of learning and

the nature of the endpoint predictions.

v Supervised Learning:

v Classification / Data Mining Problems: (Label
prediction)
v Find a compact set of rules that classify all

problem instances with maximal accuracy.

v Function Approximation Problems &
Regression: (Numerical prediction)
v Find an accurate function approximation

represented by a partially overlapping set of approximation rules.

v Reinforcement Learning Problems &
Sequential Decision Making

v Find an optimal behavioral policy
represented by a compact set of rules.

Introduction: LCS Applications - General

579

v Uniquely Suited To Problems with…
v Dynamic environments
v Perpetually novel events accompanied by large amounts of

noisy or irrelevant data.
v Continual, often real-time, requirements for actions.
v Implicitly or inexactly defined goals.
v Sparse payoff or reinforcement obtainable only through long

action sequences [Booker 89].

v And those that have…
v High Dimensionality
v Noise
v Multiple Classes
v Epistasis
v Heterogeneity
v Hierarchical dependencies
v Unknown underlying complexity or dynamics

Introduction: LCS Applications – Uniquely Suited To…

Search

Modelling

Knowledge-Handling
Routing

Visualisation

Game-playing

Data-mining

Prediction

Optimization

Scheduling
Design

Querying
Adaptive-control

Rule-Induction

Medical Diagnosis

Feature Selection

Navigation

Image classification

Introduction: LCS Applications – Specific Examples

Clustering

v Learning Classifier Systems typically combine:
v Global search of evolutionary computing (e.g. Genetic Algorithm)
v Local optimization of machine learning (supervised or

reinforcement)
THINK: Trial and error meets neo-Darwinian evolution.

v Solution/output is given by a set of IF:THEN rules.
v Learned patterns are distributed over this set.
v Output is a distributed and generalized probabilistic prediction

model.
v IF:THEN rules can specify any subset of the attributes available in

the environment.
v IF:THEN rules are only applicable to a subset of possible instances.
v IF:THEN rules have their own parameters (e.g. accuracy, fitness)

that reflect performance on the instances they match.
v Rules with parameters are termed `classifiers.

v Incremental Learning (Michigan-style LCS)
v Rules are evaluated and evolved one instance from the

environment at a time.

v Online or Offline Learning (Based on nature of
environment)

[P]

Introduction: Distinguishing Features of an LCS

v Learning Classifier System (LCS)
v In retrospect , an odd name.
v There are many machine learning

systems that learn to classify but
are not LCS algorithms.

v E.g. Decision trees

v Also referred to as…
v Rule-Based Machine Learning

(RBML)
v Genetics Based Machine

Learning (GBML)
v Adaptive Agents
v Cognitive Systems
v Production Systems
v Classifier System (CS, CFS)

Introduction: Naming Convention & Field Tree

*Image	adapted	from	[37]

580

v LCSs are one of the earliest artificial cognitive systems -
developed by John Holland (1978). His work at the
University of Michigan introduced and popularized the
genetic algorithm.

v Holland’s Vision: Cognitive System One (CS-1) [2]
v Fundamental concept of classifier rules and matching.
v Combining a credit assignment scheme with rule discovery.
v Function on environment with infrequent payoff/reward.

v The early work was ambitious and broad. This has led to
many paths being taken to develop the concept over the
following 40 years.

v *CS-1 archetype would later become the basis for
`Michigan-style’ LCSs.

1970’s

1980’s

1990’s

2000’s

2010’s

*Genetic algorithms and CS-1 emerge
*Research flourishes, but application success is limited.

Introduction: Historical Perspective {1 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*LCS subtypes appear: Michigan-style vs. Pittsburgh-style
*Holland adds reinforcement learning to his system.

*Term `Learning Classifier System’ adopted.
*Research follows Holland’s vision with limited success.

*Interest in LCS begins to fade.

v Pittsburgh-style algorithms introduced by Smith
in Learning Systems One (LS-1) [3]

v Booker suggests niche-acting GA (in [M]) [4].

v Holland introduces bucket brigade credit
assignment [5].

v Interest in LCS begins to fade due to inherent
algorithm complexity and failure of systems to
behave and perform reliably.

Introduction: Historical Perspective {2 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*REVOLUTION!
*Simplified LCS algorithm architecture with ZCS.
*XCS is born: First reliable and more comprehensible LCS.
*First classification and robotics applications (real-world).

v Wilson revolutionizes LCS algorithms with accuracy-based
rule fitness in XCS [9].

v Holmes applies LCS to problems in epidemiology [10].

v Stolzmann introduces anticipatory classifier systems (ACS)
[11].

v Frey & Slate present an LCS with predictive accuracy fitness
rather than payoff-based strength [6].

v Riolo introduces CFCS2, setting the scene for Q-learning like
methods and anticipatory LCSs [7].

v Wilson introduces simplified LCS architecture with ZCS, a
strength-based system [8].

Introduction: Historical Perspective {3 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*LCS algorithm specializing in supervised learning and
data mining start appearing.
*LCS scalability becomes a central research theme.
*Increasing interest in epidemiological and bioinformatics.
*Facet-wise theory and applications

v Wilson introduces XCSF for function approximation [12].
v Kovacs explores a number of practical and theoretical LCS questions

[13,14].
v Bernado-Mansilla introduce UCS for supervised learning [15].
v Bull explores LCS theory in simple systems [16].
v Bacardit introduces two Pittsburgh-style LCS systems GAssist and

BioHEL with emphasis on data mining and improved scalability to larger
datasets[17,18].

v Holmes introduces EpiXCS for epidemiological learning. Paired with the
first LCS graphical user interface to promote accessibility and ease of
use [19].

v Butz introduces first online learning visualization for function
approximation [20].

v Lanzi & Loiacono explore computed actions [21].

Introduction: Historical Perspective {4 of 5}

581

1970’s

1980’s

1990’s

2000’s

2010’s

*Increased interest in supervised learning applications persists.
*Emphasis on solution interpretability and knowledge discovery.
*Scalability improving – 135-bit multiplexer solved!
*GPU interest for computational parallelization.
*Broadening research interest from American & European to include
Australasian & Asian.

v Franco & Bacardit explored GPU parallelization of LCS for scalability [22].

v Urbanowicz & Moore introduced statistical and visualization strategies for
knowledge discovery in an LCS [23]. Also explored use of `expert knowledge’ to
efficiently guide GA [24], introduced attribute tracking for explicitly characterizing
heterogeneous patterns [25].

v Browne and Iqbal explore new concepts in reusing building blocks (i.e., code
fragments) . Solved the 135-bit multiplexer reusing building blocks from simpler
multiplexer problems [26].

v Bacardit successfully applied BioHEL to large-scale bioinformatics problems also
exploring visualization strategies for knowledge discovery [27].

v Urbanowicz introduced ExSTraCS for supervised learning [28]. Applied ExSTraCS
to solve the 135-bit multiplexer directly .

Introduction: Historical Perspective {5 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

v~40 years of research on LCS has…

vClarified understanding.
vProduced algorithmic descriptions.
vDetermined 'sweet spots' for run parameters.
vDelivered understandable 'out of the box' code.
vDemonstrated LCS algorithms to be…

vFlexible
vWidely applicable
vUniquely functional on particularly complex
problems.

Introduction: Historical Perspective - Summary

Two mechanisms are primarily responsible for driving LCS algorithms.

v Discovery
v Refers to “rule discovery”.
v Traditionally performed by a genetic algorithm (GA).
v Can use any directed method to find new rules.

v Learning
v The improvement of performance in some environment through the

acquisition of knowledge resulting from experience in that environment.
v Learning is constructing or modifying representations of what is being

experienced.
v AKA: Credit Assignment
v LCSs traditionally utilized reinforcement learning (RL).
v Many different RL schemes have been applied as well as much simpler

supervised learning schemes.

Driving Mechanisms
v Create hypothesised better rules from existing rules & genetic

material.

v Genetic algorithm
• Original and most common method
• Well studied
• Stochastic process
• The GA used in LCS is most similar to niching GAs

v Estimation of distribution algorithms
• Sample the probability distribution, rather than mutation or crossover to

create new rules
• Exploits genetic material

v Bayesian optimisation algorithm
• Use Bayesian networks
• Model-based learning

Driving Mechanisms: LCS Rule Discovery {1 of 2}

582

v When to learn
v Too frequent: unsettled [P]
v Too infrequent: inefficient training

v What to learn
v Most frequent niches or…
v Underrepresented niches

v How much to learn
v How many good rules to keep (elitism)
v Size of niche

Driving Mechanisms: LCS Rule Discovery {2 of 2}

v Inspired by the neo-Darwinist theory of natural selection, the
evolution of rules is modeled after the evolution of organisms
using four biological analogies.

v Genome à Coded Rule (Condition)

v Phenotype à Class (Action)

v Survival of the Fittest à Rule Competition

v Genetic Operators à Rule Discovery

v Elitism (Essential to LCS)
v LCS preserves the majority of top rules each learning iteration.
v Rules are only deleted to maintain a maximum population size (N).

#	1	0	1	#			~			1

#	1	0	#	#			~			0

1	#	0	1	1			~			1

0	0	#	1	#			~			0

Condition		~	Action

Example Rules
(Ternary Representation)

Driving Mechanisms: Genetic Algorithm (GA)

v Select parent rule

v Randomly select bit to mutate

v Apply mutation

r1 = 01110001

r1 = 01110001

r1 = 01100001

Driving Mechanisms: GA – Mutation Operator

*Image	adapted	from	[37]

Driving Mechanisms: GA – Crossover Operator

*Image	adapted	from	[37]

583

Two mechanisms are primarily responsible for driving LCS algorithms.

v Discovery
v Refers to “rule discovery”
v Traditionally performed by a genetic algorithm (GA)
v Can use any directed method to find new rules

v Learning
v The improvement of performance in some environment through the

acquisition of knowledge resulting from experience in that environment.
v Learning is constructing or modifying representations of what is being

experienced.
v AKA: Credit Assignment
v LCSs traditionally utilized reinforcement learning (RL).
v Many different RL schemes have been applied as well as much simpler

supervised learning (SL) schemes.

Driving Mechanisms
v With the advent of computers, humans have been

interested in seeing how artificial ‘agents’ could learn.
Either learning to…
v Solve problems of value that humans find difficult to solve
v For the curiosity of how learning can be achieved.

v Learning strategies can be divided up in a couple ways.

v Categorized by presentation of instances
v Batch Learning (Offline)
v Incremental Learning (Online or Offline)

v Categorized by feedback
v Reinforcement Learning
v Supervised Learning
v Unsupervised Learning

Driving Mechanisms: Learning

v Batch Learning (Offline) v Incremental Learning (Online)

Dataset

Algorithm Algorithm

Environment
Or	Dataset01100011

All	Data

Driving Mechanisms:
Learning Categorized by Presentation of Instances

Supervised learning: The environment
contains a teacher that directly provides the
correct response for environmental states.

Reinforcement learning: The
environment does not directly indicate what
the correct response should have been.
Instead, it only provides reward or punishment
to indicate the utility of actions that were
actually taken by the system.

Unsupervised learning:
The learning system has an
internally defined teacher
with a prescribed goal that
does not need utility
feedback of any kind.

Driving Mechanisms:
Learning Categorized by Feedback

584

v LCS learning primarily involves the update of various rule
parameters such as…
v Reward prediction (RL only)
v Error
v Fitness

v Many different learning strategies have been applied within LCS
algorithms.
v Bucket Brigade [5]
v Implicit Bucket Brigade
v One-Step Payoff-Penalty
v Symmetrical Payoff Penalty
v Multi-Objective Learning
v Latent Learning
v Widrow-Hoff [8]
v Supervised Learning – Accuracy Update [15]
v Q-Learning-Like [9]

v Fitness Sharing
v Give rule fitness some context within niches.

Driving Mechanisms: LCS Learning

v In order for artificial learning to occur data containing the
patterns to learn is needed.

v This can be through recorded past experiences or interactive
with current events.

v If there are no clear patterns in the data, then LCSs will not
learn.

Driving Mechanisms: Assumptions for Learning

v Demonstrate how a fairly typical modern Michigan-style
LCS algorithm…
v is structured,
v is trained on a problem environment,
v makes predictions within that environment

v We use as an example, an LCS architecture most similar
to UCS [15], a supervised learning LCS.

v We assume that it is learning to perform a
classification/prediction task on a training dataset with
discrete-valued attributes, and a binary endpoint.

v We provide discussion and examples beyond the UCS
architecture throughout this walk-through to illustrate the
diversity of system architectures available.

LCS Algorithm Walk-Through

Data Set INPUT

LCS	Algorithm	Walk-Through:		Input	{1	of	3}

vInput to the algorithm is often
a training dataset.

vThe source of input is often
referred to as the ‘environment’.

* We will add to this diagram progressively to illustrate components of the LCS
algorithm and progress through a typical learning iteration.

585

v Detectors
v Sense the current state of the environment and encode it

as a formatted data instance.
v Grab the next instance from a finite training dataset.

v Effectors
v Translate action messages into performed actions that

modify the state of the environment

v The learning capabilities of LCS rely on and are
constrained by the way the agent perceives the
environment, e.g., by the detectors the system
employs.

v Input data may be binary, integer, real-valued, or some
other custom representation, assuming the LCS
algorithm has been coded to handle it.

Environment

Detectors

Effectors

LCS	Algorithm	Walk-Through:		Input	{2	of	3}

* Primarily relevant to reinforcement learning
systems outside the UCS framework.

Dataset

Features	(Attributes)

Class

0	2	1	2	0	~	1

LCS	Algorithm	Walk-Through:		Input	{3	of	3}

Feature	state	values

Class	Value

Dataset INPUT

[P]

LCS: Michigan-Style
Rule-Based Algorithm

Empty

Data Set INPUT

LCS	Algorithm	Walk-Through:	Rule	Population	{1	of	2}

vThe rule population set is given by [P].

v[P] typically starts off empty.

vThis is different to a standard GA
which typically has an initialized
population.

v A finite set of rules [P] which collectively explore the
‘search space’.

v Every valid rule can be thought of as part of a candidate
solution (may or may not be good)

v The space of all candidate solutions is termed the ‘search
space’.

v The size of the search space is determined by both the
encoding of the LCS itself and the problem itself.

v The maximum population size (N) is one of the most
critical run parameters.
v User specified
v N = 200 to 20000 rules but success depends on dataset

dimensions and problem complexity.
v Too small à Solution may not be found
v Too large à Run time or memory limits too extreme.

LCS	Algorithm	Walk-Through:	Rule	Population	{2	of	2}

[P]

586

v An analogy:
v A termite in a mount.
v A rule on it’s own is not a viable solution.
v Only in collaboration with other rules is the solution space covered.

v Each classifier is comprised of a condition, an action (a.k.a. class, endpoint, or
phenotype), and associated parameters (statistics).

v These parameters are updated every learning iteration for relevant rules.

Training	Instance RuleAssociation	Model

LCS	Algorithm	Walk-Through:		LCS	Rules/Classifiers

Population [P]
Classifiern =	Condition	:	Action	::	Parameter(s)

v LCSs can use many different representation
schemes.
vAlso referred to as `encodings’
vSuited to binary input or
vSuited to real-valued inputs and so forth...

v Ternary Encoding – traditionally most commonly
used
v The ternary alphabet matches binary input

v A attribute in the condition that we don't care about
is given the symbol '#‘ (wild card)

LCS	Algorithm	Walk-Through:		Rule	Representation -
Ternary

#	1	0	1	#			~			1

#	1	0	#	#			~			0

1	#	0	1	1			~			1

0	0	#	1	#			~			0

Condition		~	Class

(Ternary	Representation)

v Quaternary Encoding [29]
v 3 possible attribute states {0,1,2} plus ‘#’.
v For a specific application in genetics.

v Real-valued interval (XCSR [30])
v Interval is encoded with two variables: center and spread
v i.e. [center,spread] à [center-spread, center+spread]
v i.e. [0.125,0.023] à [0.097, 0.222]

v Real-valued interval (UBR [31])
v Interval is encoded with two variables: lower and upper bound
v i.e. [lower, upper]
v i.e. [0.097, 0.222]

v Messy Encoding (Gassist, BIOHel, ExSTraCS [17,18,28])
v Attribute-List Knowledge Representation (ALKR) [33]
v 11##0:1 shorten to 110:1 with reference encoding
v Improves transparency, reduces memory and speeds processing

(Quaternary	Encoding)

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{1	of	4}

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{2	of	4}

v Real-valued intervals form hyperrectangles.

v Hyperellipses may offer a more effective alternative in problems with non-
orthogonal class boundaries.

*Images	adapted	from	[37]

587

v Mixed Discrete-Continuous ALKR
[28]

v Useful for big and data with
multiple attribute types
v Discrete (Binary, Integer, String)
v Continuous (Real-Valued)

v Similar to ALKR (Attribute List
Knowledge Representation):
[Bacardit et al. 09]

v Intervals used for continuous
attributes and direct encoding
used for discrete.

Ternary Mixed

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{3	of	4}

v Decision trees [32]

v Code Fragments [26]

v Artificial neural networks

v Fuzzy logic/sets

v Horn clauses and logic

v S-expressions, GP-like trees and code fragments.

v NOTE – Alternative action encodings also utilized
v Computed actions – replaces action value with a function [21]

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{4	of	4}

[P]

2

Data Set1

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Empty v A single training instance is
passed to the LCS each
learning cycle /iteration.

v All the learning and discovery
that takes place this iteration
will focus on this instance.

LCS	Algorithm	Walk-Through:		Get	Training	Instance

INPUT

[P]

[M]

2

3

Data Set1

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

LCS	Algorithm	Walk-Through:		Form	Match	Set	[M]

INPUT

588

vHow do we form a match set?
vFind any rules in [P] that match the current instance.
vA rule matches an instance if…

vAll attribute states specified in the rule equal or include the
complementary attribute state in the instance.
vA `#’ (wild card) will match any state value in the instance.

vAll matching rules are placed in [M].

vWhat constitutes a match?
vGiven: An instance with 4 binary attributes states `1101’ and class 1.
vGiven: Rulea = 1##0 ~ 1
vThe first attribute matches because the ‘1’ specified by Rulea equals
the ‘1’ for the corresponding attribute state in the instance.
vThe second attributes because the ‘#’ in Rulea matches state value
for that attribute.

vNote: Matching strategies are adjusted for different data/rule
encodings.

LCS	Algorithm	Walk-Through:		Matching	{1	of	3}

[M]

LCS	Algorithm	Walk-Through:		Matching	{2	of	3}

[M]

*Image	adapted	from	[37]

LCS	Algorithm	Walk-Through:		Matching	{3	of	3}

[M]

*Image	adapted	from	[37]

[P]

[M]

2

3

Data Set1

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

INPUT

Covering

4

LCS	Algorithm	Walk-Through:		Covering		{1	of	2}

v What happens if [M] is empty?

v This is expected to happen early
on in running an LCS.

v Covering mechanism (one form
of rule discovery) is activated.

v Covering is effectively most
responsible for the initialization
of the rule population.

589

v Covering initializes a rule by generalizing an instance.
v Condition: Generalization of instance attribute states.
v Class:

v If supervised learning: Assigned correct class
v If reinforcement learning: Assigned random class/action

v Covering adds #’s to a new rule with probability of
generalization (P#) of 0.33 - 0.5 (common settings).

v New rule is assigned initial rule parameter values.

v NOTE: Covering will only add rules to the population
that match at least one data instance.
v This avoids searching irrelevant parts of the search

space.

Covering

LCS	Algorithm	Walk-Through:		Covering		{2	of	2}

0	2	1	2	0	~	1

0	#	1	2	#	~	1

(Instance)

(New	Rule)

LCS	Algorithm	Walk-Through:		Special	Cases	for	
Matching	and	Covering
v Matching:

v Continuous-valued attributes: Specified attribute interval in rule must
include instance value for attribute. E.g. [0.2, 0.5] includes 0.34.

v Alternate strategy-
vPartial match of rule is acceptable (e.g. 3/4 states). Might be useful in high

dimensional problem spaces.
v Covering:

v For supervised learning – also activated if no rules are found for [C]
v Alternate activation strategies-

vHaving an insufficient number of matching classifiers for:
v Given class (Good for best action mapping)
v All possible classes (Good for complete action mapping and reinforcement

learning)
v Alternate rule generation-

vRule specificity limit covering [28]:
v Removes need for P#., useful/critical for problems with many attributes or

high dimensionality.
v Picks some number of attributes from the instance to specify up to a

dataset-dependent maximum.

[P]

[M]

Covering

2

3

4

Data Set1

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

INPUT

Prediction

5

LCS	Algorithm	Walk-Through:Prediction Array	{1	of	3}

v At this point there is a fairly big
difference between LCS operation
depending on learning type.

v Supervised Learning: Prediction
array plays no part in
training/learning. It is only useful in
making novel predictions on unseen
data, or evaluating predictive
performance on training data during
training.

v Reinforcement Learning (RL):
Prediction array is responsible for
action selection (if this is an exploit
iteration).

v Rules in [M] advocate for different classes!

v Want to predict a class (known as action selection in RL).

v In SL, prediction array just makes prediction.

v In RL, prediction array choses predicted action during
exploit phase. A random action is chosen for explore
phases. This action is sent out into the environment. All
rules in [M] with this chosen action forms the action set [A].

v Consider the fitness (F) of the rules in an SL example.
Rulea 1##101 ~ 1 F = 0.8,

Ruleb 1#0##1 ~ 0 F = 0.3,

Rulec 1##1#1 ~ 0 F = 0.4, …

v Class/Action can be selected:
v Deterministically – Class of classifier with best F in [M].
v Probabilistically – Class with best average F across

rules in [M], i.e. Classifiers vote for the best class.

Action
Selection

LCS	Algorithm	Walk-Through:Prediction Array	{2	of	3}

[M]

3

[C][I]

6

Prediction

5

Supervised	Learning	(SL)

Reinforcement	Learning	(RL)

[M]

3

[A]

6

Prediction

5

590

v One of the biggest problems in evolutionary computation…
• When to exploit the knowledge that is being learned (i.e. vote for action)?
• When to explore to learn new knowledge (i.e. random action)?

v LCS algorithms commonly alternate between explore and exploit for each iteration
(incoming data instance).

v In SL based LCS, there is no need to separate explore and exploit iterations. Every
iteration: a prediction array is formed, the [C] is formed (since we know the correct
class of the instance), and the GA can discover new rules.

LCS	Algorithm	Walk-Through:	 RL	- Explore	vs.	Exploit

[P]

[M]

Covering

2

3

4

Data Set1

[C][I]

6

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

INPUT

Prediction

5

LCS	Algorithm	Walk-Through: Form	Correct	Set	[C]

v Assuming SL: All classifiers in [M]
that specify the correct class form
[C].

v The rest form the incorrect set [I].

v The prediction from the last set can
be reported to track learning
progress.

[M]
0 2 1 2 0 ~ 1 2 # 1 # # ~ 1

Rules

2 1 # 0 ~ 1

1 2 # ~ 0

Data Instance

[C]

[I]

LCS Algorithm Walk-Through: Example [M]
and [C]

0#12# ~ 0

2#1## ~ 1

###02 ~ 0

0#1## ~ 1

#2##1 ~ 1

~ 0

02##0~ 1

##12# ~ 0

#1211 ~ 0

10102 ~ 0

22##2 ~ 1

####0 ~ 0

#101# ~ 1

2#2## ~ 1

010## ~ 0

##2#0 ~ 0

1#22# ~ 1

###20 ~ 0

#0#2# ~ 1

#21#0 ~ 1

22#1# ~ 0

#1### ~ 0

####2 ~ 1

##12# ~ 1

2##2# ~ 0

221## ~ 1

##100~ 1

#122# ~ 0

01### ~ 1

##2## ~ 0

##00# ~ 1

0###0 ~ 0

Sample Instance from Training Set

02120 ~ 1Match Set Correct Set

591

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

vA number of parameters are
stored for each rule.

v In supervised learning LCS,
fewer parameters are required.

v After the formation of [M] and
either [C] or [A] , certain
parameters are updated for
classifiers in [M].

INPUT

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	{1	of	2}

Prediction

5

vAn action/class has been chosen and passed to
the environment.

vSupervised Learning:
vParameter Updates:

vRules in [C] get boost in accuracy.
vRules in [M] that didn’t make it to [C] get decreased in

accuracy.

vReinforcement Learning:
vA reward may be returned from the environment
vRL parameters are updated for rules in [M] and/or [A]

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	{2	of	2}

Update Rule
Parameters

v Experience is increased in all rules in [M]

v Accuracy is calculated, e.g. UCS
acc = number of correct classifications

experience

v Fitness is computed as a function of accuracy:
F = (acc)ν

v ν used to separate similar fitness classifiers
vOften set to 10 (in problems assuming without noise)
vPressure to emphasize importance of accuracy

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	for	SL

LCS	Algorithm	Walk-Through:
Credit	Assignment	for	Reinforcement	Learning

v LCS algorithms were originally all designed with RL in mind.

v Credit traditionally took the form of classifier strength
v The cumulative credit coming from reward feedback from the

environment
v This reflects the reward the system can expect if that rule is fired.

v Two examples of strength-based credit assignment/fitness:
v ZCS – Zeroth-Level Classifier System [8]

v Implicit Bucket Brigade back-propagation of strength (deferred reward)
v Fraction (β) of strength of all rules in [A] is placed in a common ‘bucket’.
v If an immediate reward (rimm) is received from environment all rules in [A] add (β

rimm/ [A])

v Classifiers in the action set of the previous time-step [A]-1 receive a discounted
(γ) distribution of the strength put in the ‘bucket’ (back-propagation)

v Total strength of members of [A]

v MCS – Minimal Classifying System [16]
v Widrow-Hoff delta rule with learning rate β
v valuenew = value + β x (signal - value)

v Filters the 'noise' in the reward signal
v β = 1 the new value is signal, β = 0 then old value kept

v Also applies fitness sharing….

Action
Selection

Reinforcement	Learning	(RL)

[M]

3

[A]

6

Prediction

5

Action Set [A]

Learning Strategy
Credit Assignment

Classifiera

[A]t-1
Classifiert-1

592

LCS	Algorithm	Walk-Through: Fitness	Sharing

v Fitness sharing takes the strength/payoff and updates a
fitness so that the strength of a classifier is considered
relative to the strengths of other classifiers in the action
set.

v This pressures the classifiers with the best strength
relative to their niche to have the highest fitness. This
helps eliminate the takeover effect of ‘strong’ classifiers
from one particular niche.

v Niche: A set of environmental states each of which is
matched by approximately the same set of classifiers.

v We will detail fitness sharing in the context of XCS and
accuracy-based fitness.

v Different niches of the environment usually have different payoff levels.

v In fitness sharing, a classifier’s strength no longer correctly predicts payoff -
Fitness sharing prevents takeover

v Fitness sharing does not prevent more renumerative niches gaining more
classifiers - Niche rule discovery helps

v Rule discovery cannot distinguish an accurate classifier with moderate payoff
from an overly general classifier having the same payoff on average – Over-
generals proliferate

v No reason for accurate generalizations to evolve

v ZCS à XCS : “Wilson’s intuition was the prediction should estimate how
much reward might result from a certain action but that the evolution learning
should be focused on the most reliable classifiers, that is, classifiers that give
a more precise (accurate) prediction)”

LCS	Algorithm	Walk-Through:
Why	not	Strength	vs.	Accuracy-based	Fitness	in	RL?

LCS	Algorithm	Walk-Through:
XCS	Accuracy-Based	Fitness	+	Fitness	Sharing

vClassifier considered
accurate if:
vError < tolerance,

otherwise scaled.

vAccuracy relative to
action set

vFitness based on
relative accuracy, e.g.
XCS

()
()

()

[]

()FFF

pR
pRpp

Ax
x

v

-+¬

=

î
í
ì <

=

--+¬

-+¬

å
Î

-

'

,'

,
otherwise/

 if1

,
,

0

0

kb

k
kk

eea
ee

k

ebee
b

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

LCS	Algorithm	Walk-Through: Subsumption {1	of	2}

v Subsumption adds an explicit rule
generalization pressure in addition to the
implicit generalization pressure.

v This mechanism has been applied at
two points in an LCS learning iteration.

v Among rules in [C] right after its
formation. (Rarely used anymore)

v Following GA rule discovery
offspring rules checked for
subsumption against parent
classifiers and classifiers in [C].

593

v In sparse or noisy environments over-specific rules can take over population.

v Starvation of generals, so delete specific ‘sub-copies’

v Need accurate rules first:
v How to set level of accuracy (often not 100%)
v If rule A is completely accurate (ε < ε0) Then can delete rule B from the population without

loss of performance

v Subsumption = General rule (A) absorbs a more specific one (B)
v Increases rule numerosity

LCS	Algorithm	Walk-Through: Subsumption {2	of	2}

*Image	adapted	from	[37]

v Numerosity is a useful concept (trick):

v Reduces memory usage
v Instead of population carrying multiple copies of the same classifier it just carries one copy.
v Each rule has a numerosity value (initialised as 1)

v Protects rule from deletion
v Stabilises rule population

v Numerosity is increased by 1
v When subsumes another rule
v When RD makes a copy

v Numerosity is decreased by 1
v Rule is selected for deletion

LCS	Algorithm	Walk-Through: Numerosity {1	of	2}

v Numerosity (n) affects action selection and update
procedures:

v The fitness sums take numerosity into account:

v Terminology:
v Macroclassifiers: all unique classifiers n ≥ 1
v Microclassifiers: all individual classifiers (n copies of

macroclassifiers)

v Ratio of macroclassifiers to microclassifiers often used
as a measure of training progress.

v Numerosity is also often applied as a `best-available’
strategy to ranking rules for manual rule inspection (i.e.
knowledge discovery).

LCS	Algorithm	Walk-Through: Numerosity {2	of	2}

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

vGA rule discovery is activated if
average experience of classifiers in
selection pool is above a user
defined cut-off.

v Classifier experience is the
number of instances that the
classifier has matched.

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Genetic	Algorithm

594

v Parent Selection (typically 2 parents selected)

v Selection Pool:
v Panmictic – Parents selected from [P] [34]
v Niche – Parents selected from [M], [4]
v Refined Niche – Parents selected from [C] or [A], [9]

v Niche GA (Closest to LCS GA)
v Niching GAs developed for multi modal problems
v Maintain population diversity to promote identification of multiple peaks
v Fitness sharing – pressure to deter aggregation of too many ‘similar’ rules

v Selection Strategy:
v Deterministic – Pick rules with best fitness from pool.
v Random – rarely used
v Probabilistic –

v Roulette Wheel
v Tournament Selection

LCS	Algorithm	Walk-Through: Genetic	Algorithm	–
Other	Considerations

Genetic
Algorithm

LCS	Algorithm	Walk-Through: Selection	- Tournament	

v Tournament Selection is typically used for GA parent selection

*Image	adapted	from	[37]

LCS	Algorithm	Walk-Through: Selection	– Roulette	
Wheel

v Roulette Wheel Selection is typically used for deletion (where probability of selection
is inversely proportional to fitness)

*Images	adapted	from	[37]

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Deletion

Deletion
10

vIf no deletion…
v Population grows without

bound
v Waste memory and takes

time so not often used

vPanmictic deletion [P]
v Most common technique

based on inverse fitness
roulette wheel

v Other factors may come into
play…
v Rule age
v [A] size parameter
v Numerosity

595

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Output	[P]

Deletion
10

OUTPUT

[P]

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS: Michigan-Style
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Rule	Compaction

Deletion
10

OUTPUT

[Pc]

Rule
Compaction

[P]

vRule compaction is a post-
processing step applied to [P]

vRule compaction seeks to
remove rules that are:

vInexperienced (young)
vPoor quality
vCovering redundant
problem space
vOverspecific

vAlternatively similar
‘condensation’ approaches have
been proposed to

Supervised LCS

*Image	adapted	from	[37]

Reinforcement LCS

*Image	adapted	from	[37]

596

Learning Classifier Systems in a Nutshell

https://www.youtube.com/watch?v=CRge_cZ2cJc

v Entire population is the
solution

v Learns iteratively

v GA operates between
individual rules

v Single rule-set is the
solution

v Learns batch-wise

v GA operates between
rule-sets

Michigan vs. Pittsburgh-Style LCSs: Major Variations

v Michigan Style LCS
vZCS (Strength Based)
vXCS (Accuracy Based – Most popular)
vUCS (Supervised Learning)
vACS (Anticipatory)
vExSTraCS (Extended Supervised Tracking and Learning)

v Pittsburgh Style LCS
vGALE (Spatial Rule Population)
vGAssist (Data mining – Pitt Style Archetype)
vBIOHEL (Focused on Biological Problems and Scalability)

v Other Hybrid Styles also exist!

Michigan vs. Pittsburgh-Style LCSs: Implementations Advanced Topics: Learning Parameters {1 of 2}

*Table	adapted	from	[37]

597

Advanced Topics: Learning Parameters {2 of 2}

*Table	adapted	from	[37]

v The intention is to form a map of the problem space

v Breaks the problem into simpler pieces as needed.

Advanced Topics: LCS as Map Generators

*Image	adapted	from	[37]

v One rule models a distinct part of the data (a rule covers a single niche in the
domain).

v If there was only one niche in the domain, then only one rule would be needed.

v Domains of interest have multiple parts that require modelling with different
rules.

v LCSs must learn a set of rules

v The rules within an LCS are termed the population, which is given the symbol
[P], the set of all rules in the population.

v The rules within a population cooperate to map the domain

Advanced Topics: Cooperation

v Ideally, there would only be one unique and correct rule for each niche

v Number of rules would equal number of niches

v No prior knowledge, so each rule must be learnt.

v LCSs allow multiple, slightly different rules per niche. Multiple hypotheses are
available to find the optimum rule (implicit ensemble)

v Each rule ‘covers’, i.e. describes, its part of the search space.

v The rules within a niche compete to map the domain.

Advanced Topics: Competition

598

v Over-generals are undesired, inaccurate rules that typically match
many instances.

v When additional reward offsets any additional penalty

v Strength-based fitness is more prone to overgenerals

v Accuracy-based fitness is less prediction orientated

Want 10011###1:1 get 10011####:1, where 10011###0:0

v Can occur in unbalanced datasets or where the error tolerance ε0 is
set too high.

Advanced Topics: Overgenerals Advanced Topics: LCS Pressures

*Image	adapted	from	[37]

v Fitness pressure is fundamental to evolutionary computation:
“survival of the fittest”

v Fitter rules assumed to include better genetic material,

v Fitter rules are proportionately more likely to be selected for mating,

v Genetic material hypothesised to improve each generation.

v Fitness measures based on error or accuracy drive the population to
rules that don’t make mistakes

v Favors specific rules (cover less domain)

v Fitness measures based on reward trade mistakes for more reward

v Favors general rules (cover more domain) 95

Advanced Topics: Fitness Pressure
v Set pressure is related to the opportunity to breed,

v Does not occur in panmictic rule selection

v Need Niching through [M] or [A] rule discovery

v Class imbalance affects set pressure

v Set pressure is more effective when replacing ‘weaker’ rules

v Often panmictic deletion, thus one action can replace a different action

v To prevent an action type disappearing, relative fitness is used (rare rules have high
relative fitness and so breed)

v Rules that occur in more sets have more opportunity to be selected from mating

v Favours general rules 96

Advanced Topics: Set Pressure

599

v Genotypically change the specificity-generality balance

v Mutation can

97

Accuracy	based	systems	often	use	
generalise	only	to	balance	strong	
fitness	pressure

Advanced Topics: Mutation Pressure

*Image	adapted	from	[37]

v Should LCS discover:
• The most optimum action in a niche or
• The predicted payoff for all actions in a niche

v The danger with optimum action only is: a suboptimal rule could be converged upon …
difficult to discover and switch policy. Also, no memory of bad rules is preserved.

v The problem with predicting all actions:
• Memory and time intensive
• Identifies and keeps consistently incorrect action (100% accurate prediction) rules
• Harder to interpret rule base

98

Advanced Topics: Complete vs. Best Action Mapping

v What is scalability?
vMaintaining algorithm tractability as problem scale increases.
vProblem scale increases can include…

vHigher pattern dimensionality

vLarger-scale datasets with
vIncreased number of potentially predictive attributes.
vIncreased number of training instances.

v Strategies for improving LCS scalability.
vMore efficient rule representations [18,28] (Pittsburgh and Michigan)
vWindowing [36] (Pittsburgh)
vComputational Parallelization (GPGPUs) [22]
vEnsemble learning with available attributes partitioned into subsets [27]

vExpert knowledge guided GA [25]
vRule Specificity Limit [28]

Advanced Topics: LCS Scalability

v Description of global summary statistics for [P] (SpS, AWSpS) [23]

X

X X

X

XXX

XX

SpS (X1) = 5 + 2 = 7

AWSpS (X1) = (0.73) * 5 + (0.88) * 2 = 5.41

Advanced Topics: Knowledge Discovery {1 of 5}

600

v Permutation-Based Significance Testing [23]

Dataset

1000 X
Permutations

Dataset

10-fold CV

Average Testing Accuracy = 0.7

Statistics of Interest:
Testing Accuracy

SpS
AWSpS

CoS

LCS

LCS

1000 X

0.5 0.60.4 0.7
Frequency Distribution

10-fold CV 95%

Advanced Topics: Knowledge Discovery {2 of 5}
Individual Attributes Pairs

• Attributes: 20
– Predictive: 4
– Non-Predictive: 16

• Heritability = 0.4
• MAF = 0.2
• Sample Size = 1600

• Testing Accuracy = 0.70
(p = 0.001)

• See [23]

X0 X1 X2 X3

.50 .50

Advanced Topics: Knowledge Discovery {3 of 5}

Rules in Population
A

ttr
ib

ut
es

#
0,1,2*See [23]

Advanced Topics: Knowledge Discovery {4 of 5}
Pairs

*See [23]

Advanced Topics: Knowledge Discovery {5 of 5}

601

v An extension to the LCS algorithm that allows for the
explicit characterization of heterogeneity, and allows for

the identification of heterogeneous subject groups.

v Akin to long-term memory. Experiential knowledge
stored separately from the rule population that is never

lost.

v Relies on learning that is both incremental and
supervised.

v Stored knowledge may be fed back into LCS during
learning.

Advanced Topics: Attribute Tracking & Feedback

[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters6

Deletion
10

Pre-Processing: Expert Knowledge Discovery

Post-Processing: Rule Compaction

Data Set1

[C][I]

4

Subsumption
7

Attribute
Feedback

Expert
Knowledge

Attribute Tracking8

A

B

C

Training Instance

[PC]
Prediction

Advanced Topics: ExSTraCS – A Shameless Plug

v Previous:
v Data with many attributes yields absurdly over-fit ExSTraCS rules – not sufficient

pressure to generalize.
v Allows for an impractically sized search space
v Relying on Pspec problematic.

v RSL:
v IDEA: Limit maximum rule dimensionality based on dataset characteristics (i.e. what

we might have any hope of being powered to find).
v Calculate unique attribute state combinations

Example: SNP dataset
• = 3
• Training Instances = 2000
• Find where :

Advanced Topics: Rule Specificity Limit
v Additional Information :

v Keep up to date with the latest LCS research
v Get in contact with an LCS researcher
v Contribute to the LCS community research and discussions.

v Active Websites:
v GBML Central - http://gbml.org/
v Illinois GA Lab – http://www.illigal.org

v LCS Researcher Webpages:
v Urbanowicz, Ryan - http://www.ryanurbanowicz.com/
v Browne, Will - http://ecs.victoria.ac.nz/Main/WillBrowne
v Lanzi, Pier Luca - http://www.pierlucalanzi.net/
v Wilson, Stewart - https://www.eskimo.com/~wilson/
v Bacardit, Jaume - http://homepages.cs.ncl.ac.uk/jaume.bacardit/
v Holmes, John - http://www.med.upenn.edu/apps/faculty/index.php/g359/c1807/p19936
v Kovacs, Tim - http://www.cs.bris.ac.uk/home/kovacs/
v Bull, Larry - http://www.cems.uwe.ac.uk/~lbull/

v International Workshop Learning Classifier Systems (IWLCS) - held annually at GECCO
v Renamed for GECCO ‘15 – Evolutionary Rule-based Machine Learning

v Other:
v Mailing List:: Yahoo Group: lcs-and-gbml @ Yahoo
v Proceedings of IWLCS
v Annual Special Issue of Learning Classifier Systems published by Evolutionary Intelligence

v LAST ISSUE THEME: 20 Years of XCS!!! – Dedicated to Stewart Wilson

Resources – Additional Information

602

v Educational LCS (eLCS) – in Python.
v https://github.com/ryanurbs/eLCS
v Simple Michigan-style LCS for learning how they work and how they are implemented.
v Code intended to be paired with first LCS introductory textbook by Urbanowicz/Browne.

v ExSTraCS 2.0 – Extended Supervised Learning LCS – in Python
v https://github.com/ryanurbs/ExSTraCS_2.0
v For prediction, classification, data mining, knowledge discovery in complex, noisy, epistatic, or

heterogeneous problems.

v BioHEL – Bioinformatics-oriented Hierarchical Evolutionary Learning – in C++
v http://ico2s.org/software/biohel.html
v GAssist also available through this link.

v XCS & ACS (by Butz in C and Java) & XCSLib (XCS and XCSF) (by Lanzi in C++)
v http://www.illigal.org

v XCSF with function approximation visualization – in Java
v http://medal.cs.umsl.edu/files/XCSFJava1.1.zip

v EpiXCS

Resources – Software
v Select Review Papers:

v Bull, Larry. "A brief history of learning classifier systems: from CS-1 to XCS and its
variants." Evolutionary Intelligence (2015): 1-16.

v Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine
learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.

v Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction,
review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.

v Sigaud, Olivier, and Stewart W. Wilson. "Learning classifier systems: a survey." Soft Computing 11.11
(2007): 1065-1078.

v Holland, John H., et al. "What is a learning classifier system?." Learning Classifier Systems. Springer
Berlin Heidelberg, 2000. 3-32.

v Lanzi, Pier Luca, and Rick L. Riolo. "A roadmap to the last decade of learning classifier system
research (from 1989 to 1999)." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 33-61.

v Books:
v Drugowitsch, J., (2008) Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.

Springer-Verlag.
v Bull, L., Bernado-Mansilla, E., Holmes, J. (Eds.) (2008) Learning Classifier Systems in Data Mining.

Springer
v Butz, M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS

analysis and design. Studies in Fuzziness and Soft Computing Series, Springer.
v Bull, L., Kovacs, T. (Eds.) (2005) Foundations of learning classifier systems. Springer.
v Kovacs, T. (2004) Strength or accuracy: Credit assignment in learning classifier systems. Springer.
v Butz, M. (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers.
v Lanzi, P.L., Stolzmann, W., Wilson, S., (Eds.) (2000). Learning classifier systems: From foundations to

applications (LNAI 1813). Springer.
v Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Resources – LCS Review Papers & Books

v Textbook: Introduction to Learning Classifier Systems
(Urbanowicz & Brown, 2017). Now available from Springer.

v YouTube video on LCS:
v Learning Classifier Systems in a Nutshell
v Animated, narrated explanation of basic LCS concepts.
v https://www.youtube.com/watch?v=CRge_cZ2cJc

v LCS and Rule-Based Machine Learning Wikipedia Pages – recently updated and
revised. (https://en.wikipedia.org/wiki/Learning_classifier_system)

v Please join us for the Evolutionary Rule Based Machine Learning Workshop
v Two accepted LCS research talks
v One invited speaker (David Howard)
v Open panel session of LCS researchers

New Resources
vWhat and Why

vMany branches of RBML, e.g. ARM, AIS, LCS
vPowerful, human interpretable, learning algorithms

vDriving Mechanisms
vDiscovery
vLearning

vHow?
vLCS Algorithm Walk-Through
vFlexible and robust methods developed

vMultiple styles

vAdvanced methods: solutions to complex & real-world problems

vIncreasing resources available

Conclusions

603

References		{1	of	4}
1) Urbanowicz, Ryan John, et al. "Role of genetic heterogeneity and epistasis in bladder cancer

susceptibility and outcome: a learning classifier system approach." Journal of the American
Medical Informatics Association (2013)

2) Holland, J., and J. Reitman. "Cognitive systems based on adaptive agents."Pattern-directed
inference systems (1978).

3) Smith, Stephen Frederick. "A learning system based on genetic adaptive algorithms." (1980).
4) Booker, Lashon Bernard. "Intelligent behavior as an adaptation to the task environment,

University of Michigan." Ann Arbor, MI (1982).
5) Holland, J. “Properties of the Bucket brigade.” In Proceedings of the 1st International

Conference on Genetic Algorithms, 1-7 (1985)
6) Frey, Peter W., and David J. Slate. "Letter recognition using Holland-style adaptive

classifiers." Machine Learning 6.2 (1991): 161-182.
7) Riolo, Rick L. "Lookahead planning and latent learning in a classifier system."Proceedings of

the first international conference on simulation of adaptive behavior on From animals to
animats. MIT Press, 1991.

8) Wilson, Stewart W. "ZCS: A zeroth level classifier system." Evolutionary computation 2.1
(1994): 1-18.

9) Wilson, Stewart W. "Classifier fitness based on accuracy." Evolutionary computation 3.2
(1995): 149-175.

10) Holmes, John H. "A genetics-based machine learning approach to knowledge discovery in
clinical data." Proceedings of the AMIA Annual Fall Symposium. American Medical
Informatics Association, 1996.

11) Stolzmann, Wolfgang. "An introduction to anticipatory classifier systems."Learning Classifier
Systems. Springer Berlin Heidelberg, 2000. 175-194.

References		{2	of	4}
12) Wilson, Stewart W. "Classifiers that approximate functions." Natural Computing1.2-3 (2002):

211-234.
13) Kovacs, Tim. "A comparison of strength and accuracy-based fitness in learning classifier

systems." School of Computer Science, University of Birmingham, Birmingham, UK (2002).
14) Kovacs, Tim. "What should a classifier system learn and how should we measure it?." Soft

Computing 6.3-4 (2002): 171-182.
15) Bernadó-Mansilla, Ester, and Josep M. Garrell-Guiu. "Accuracy-based learning classifier

systems: models, analysis and applications to classification tasks."Evolutionary
Computation 11.3 (2003): 209-238.

16) Bull, Larry. "A simple accuracy-based learning classifier system." Learning Classifier
Systems Group Technical Report UWELCSG03-005, University of the West of England,
Bristol, UK (2003).

17) Peñarroya, Jaume Bacardit. Pittsburgh genetic-based machine learning in the data mining
era: representations, generalization, and run-time. Diss. Universitat Ramon Llull, 2004.

18) Bacardit, Jaume, Edmund K. Burke, and Natalio Krasnogor. "Improving the scalability of rule-
based evolutionary learning." Memetic Computing 1.1 (2009): 55-67.

19) Holmes, John H., and Jennifer A. Sager. "The EpiXCS workbench: a tool for experimentation
and visualization." Learning Classifier Systems. Springer Berlin Heidelberg, 2007. 333-344.

20) Butz, Martin V. "Documentation of XCSFJava 1.1 plus visualization." MEDAL
Report 2007008 (2007).

21) Lanzi, Pier Luca, and Daniele Loiacono. "Classifier systems that compute action
mappings." Proceedings of the 9th annual conference on Genetic and evolutionary
computation. ACM, 2007.

References		{3	of	4}
22) Franco, María A., Natalio Krasnogor, and Jaume Bacardit. "Speeding up the evaluation of

evolutionary learning systems using GPGPUs." Proceedings of the 12th annual conference
on Genetic and evolutionary computation. ACM, 2010.

23) Urbanowicz, Ryan J., Ambrose Granizo-Mackenzie, and Jason H. Moore. "An analysis
pipeline with statistical and visualization-guided knowledge discovery for michigan-style
learning classifier systems." Computational Intelligence Magazine, IEEE 7.4 (2012): 35-45.

24) Urbanowicz, Ryan, Ambrose Granizo-Mackenzie, and Jason Moore. "Instance-linked
attribute tracking and feedback for michigan-style supervised learning classifier
systems." Proceedings of the 14th annual conference on Genetic and evolutionary
computation. ACM, 2012.

25) Urbanowicz, Ryan J., Delaney Granizo-Mackenzie, and Jason H. Moore. "Using expert
knowledge to guide covering and mutation in a michigan style learning classifier system to
detect epistasis and heterogeneity." Parallel Problem Solving from Nature-PPSN XII.
Springer Berlin Heidelberg, 2012. 266-275.

26) Iqbal, Muhammad, Will N. Browne, and Mengjie Zhang. "Extending learning classifier system
with cyclic graphs for scalability on complex, large-scale boolean problems." Proceedings of
the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.

27) Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine
learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013):
37-61.

28) Urbanowicz, Ryan J., and Jason H. Moore. "ExSTraCS 2.0: description and evaluation of a
scalable learning classifier system." Evolutionary Intelligence(2015): 1-28.

References		{4	of	4}
29) Urbanowicz, Ryan J., and Jason H. Moore. "The application of michigan-style learning

classifier systems to address genetic heterogeneity and epistasis in association
studies." Proceedings of the 12th annual conference on Genetic and evolutionary
computation. ACM, 2010.

30) Wilson, Stewart W. "Get real! XCS with continuous-valued inputs." Learning Classifier
Systems. Springer Berlin Heidelberg, 2000. 209-219.

31) Stone, Christopher, and Larry Bull. "For real! XCS with continuous-valued
inputs." Evolutionary Computation 11.3 (2003): 299-336.

32) Llora, Xavier, and Josep Maria Garrell i Guiu. "Coevolving Different Knowledge
Representations With Fine-grained Parallel Learning Classifier Systems."GECCO. 2002.

33) Bacardit, Jaume, and Natalio Krasnogor. "A mixed discrete-continuous attribute list
representation for large scale classification domains." Proceedings of the 11th Annual
conference on Genetic and evolutionary computation. ACM, 2009.

34) Goldberg, David E. "E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning." Reading: Addison-Wesley (1990).

35) Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete
introduction, review, and roadmap." Journal of Artificial Evolution and Applications 2009
(2009): 1.

36) Bacardit, Jaume, et al. "Speeding-up Pittsburgh learning classifier systems: Modeling time
and accuracy." Parallel Problem Solving from Nature-PPSN VIII. Springer Berlin Heidelberg,
2004.

37) Urbanowicz, Ryan J., and Will Browne. “An Introduction to Learning Classifier Systems”.
Springer, 2017, In Press

604

