
Introducing Rule-Based Machine Learning: 
Capturing Complexity

Ryan J. Urbanowicz
University of Pennsylvania

Philadelphia, PA, USA
ryanurb@upenn.edu

www.ryanurbanowicz.com
http://gecco-2017.sigevo.org/

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights 
for third-party components of this work must be honored. For all other 
uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-
0/17/07...$15.00
http://dx.doi.org/10.1145/3067695.3067719

Instructor

v Ryan Urbanowicz is a post-doctoral research 
associate at the University of Pennsylvania in the 
Pearlman School of Medicine. He completed a 
Bachelors and Masters degree in Biological 
Engineering at Cornell University (2004 & 2005) and 
a Ph.D in Genetics at Dartmouth College (2012).  His 
research focuses on the development and application 
of advanced machine learning methods for complex, 
heterogeneous problems in bioinformatics, genetics, 
and epidemiology.  He has been an active contributor 
to the rule-based machine learning and learning 
classifier system community since 2009.  

Course Agenda
v Introduction (What and Why?)

v LCS Applications
v Distinguishing Features of an LCS
v Historical Perspective

v Driving Mechanisms 
v Discovery
v Learning

v LCS Algorithm Walk-Through (How?)
v Rule Population
v Set Formation
v Covering
v Prediction/Action Selection
v Parameter Updates/Credit Assignment
v Subsumption
v Genetic Algorithm
v Deletion
v Rule Compaction

v Michigan vs. Pittsburgh-style
v Advanced Topics
v Resources

Multiplexer Benchmark Problem
• “Multiplexer functions have long been identified by researchers as functions that often pose difficulties for paradigms for 

machine learning, artificial intelligence, neural nets, and classifier systems.” – [John Koza - Foundations of Genetic 
Algorithms, 1991]

• Multiplexer Problem Characteristics:
– Multivariate, non-linearity, epistasis, heterogeneity/latent class.

• TO SOLVE: Any Multiplexer
– No single feature has any association with endpoint
– Only a certain subset of features are predictive for a given individual belonging to an underlying subgroup (i.e. latent 

class)

*Image	adapted	from	[37]
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6-bit Multiplexer Benchmark Problem
• Epistatic Non-linearity – A dependence between features that impacts outcome in a non-

linear, non-additive fashion.

• Heterogeneneous Pattern of Association – Independent features or groups of features 
impact outcome within different subsets of training/testing instances.

*Images	adapted	from	[37]

Solving the 135-bit Multiplexer

• TO SOLVE: 135-bit Multiplexer
– All 135 features are predictive in at least some subset of the dataset.
– Non-RBML approaches would need to include all 135 attributes together in a single model properly 

capturing underlying epistasis and heterogeneity.

• Few ML algorithms can make the claim that they can solve even the 6 or 11-bit multiplexer problems, let 
alone the 135-bit multiplexer.

*Images	adapted	from	[28]
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*Images	adapted	from	[1]

v Rule Based Machine Learning (RBML)

v What types of algorithms fall under this label?
v Learning Classifier Systems (LCS)*

v Michigan-style LCS
v Pittsburgh-style LCS

v Association Rule Mining
v Related Algorithms 

v Artificial Immune Systems

v Rule-Based – The solution/model/output is collectively comprised of 
individual rules typically of the form (IF: THEN).

v Machine Learning – “A subfield of computer science that evolved from the 
study of pattern recognition and computational learning theory in artificial 
intelligence.  Explores the construction and study of algorithms that can 
learn from and make predictions on data.” – Wikipedia

v Keep in mind that machine learning algorithms exist across a continuum.
v Hybrid Systems
v Conceptual overlaps in addressing different types of problem domains.

* LCS algorithms are the focus of this tutorial.

Introduction: What is Rule-Based Machine Learning?
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v Learning Classifier Systems (LCS)
v Developed primarily for modeling, sequential decision making, classification, and prediction in 

complex adaptive system .
v IF:THEN rules link independent variable states to dependent variable states. e.g. {V1, V2, V3} 

à Class/Action

v Association Rule Mining (ARM)
v Developed primarily for discovering interesting relations between variables in large datasets.
v IF:THEN rules link independent variable(s) to some other independent variable  e.g. {V1, V2, 

V3} à V4

v Artificial Immune Systems (AIS)
v Developed primarily for anomaly detection (i.e. differentiating between self vs. not-self)
v Multiple `Antibodies’ (i.e. detectors) are learned which collectively characterize ‘self’ or ‘’not-

self’  based on an affinity threshold.

v What’s in common? 
v In each case, the solution or output is determined piece-wise by a set of `rules’ that each 

cover part of the problem at hand.  No single, `model’ expression is output that seeks to 
describe the underlying pattern(s).

v This tutorial will focus on LCS algorithms, and approach them initially from a 
supervised learning perspective (for simplicity).

Introduction: Comparison of RBML Algorithms Introduction:	LCS	In	A	Nutshell	– A	Basic	Schematic

* The term `environment’ refers 
to the source of training 
instances for a problem/task.

*Image	adapted	from	[37]

A	Learning	Classifier	System
“Machine”

Introduction: LCS In A Nutshell – Cartoon Schematic

v Adaptive – Accommodate a changing environment.   Relevant parts of solution can 
evolve/update to accommodate changes in problem space.

v Model Free – Limited assumptions about the environment*
v Can accommodate complex, epistatic, heterogeneous, or distributed underlying patterns.
v No assumptions about the number of predictive vs. non-predictive attributes (feature selection).

v Ensemble Learner (unofficial) – No single model is applied to a given instance to yield a 
prediction.  Instead a set of relevant rules contribute a `vote’.

v Stochastic Learner – Non-deterministic learning is advantageous in large-scale or high 
complexity problems, where deterministic learning becomes intractable.

v Multi-objective (Implicitly) – Rules evolved towards accuracy and generality/simplicity.

v Interpretable (Data Mining/Knowledge Discovery) – Depending on rule representation, 
individual rules are logical and human readable IF:THEN statements.  Strategies have been 
proposed for global knowledge discovery over the rule population solution [23].

v Implicitly Parsimonious – Rule evolution has an implicit generalization pressure towards 
parsimonious rules/solutions.

Introduction: Why LCS Algorithms? {1 of 3}
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v Other Advantages

v Applicable to single-step or multi-step problems.

v Representation Flexibility: Can accommodate discrete or continuous-
valued endpoints* and attributes (i.e.  Dependent or Independent 
Variables)

v Can learn in clean or very noisy problem environments.

v Accommodates missing data (i.e. missing attribute values within 
training instances).

v Classifies binary or multi-class discrete endpoints (classification).

v Can accommodate balanced or imbalanced datasets (classification).

* We use the term `endpoints’ to refer to dependent variables . 

Introduction: Why LCS Algorithms? {2 of 3}

v Many Application Domains
v Cognitive Modeling
v Complex Adaptive Systems
v Reinforcement Learning
v Supervised Learning
v Unsupervised Learning (rare)
v Metaheuristics
v Data Mining
v …

*Slide adapted from Lanzi Tutorial: GECCO 2014

v LCS Algorithms: One concept, many 
components, infinite combinations.
v Rule Representations
v Learning Strategy
v Discovery Mechanisms
v Selection Mechanisms
v Prediction Strategy
v Fitness Function
v Supplemental Heuristics
v …

Introduction: Why LCS Algorithms? {3 of 3}

v Not widely known.

v Relatively limited software accessibility.

v Rule population interpretation and knowledge extraction can 
be challenging.

v Can suffer from overfitting, despite explicit and implicit 
pressures to generalize rules.

v Relatively little theoretical work or convergence proofs.

v Often many run parameters to consider/optimize.

LCS Disadvantages
v Categorized by the type of learning and 

the nature of the endpoint predictions.

v Supervised Learning:

v Classification / Data Mining Problems: (Label 
prediction)
v Find a compact set of rules that classify all 

problem instances with maximal accuracy. 

v Function Approximation Problems & 
Regression: (Numerical prediction)
v Find an accurate function approximation 

represented by a partially overlapping set of approximation rules. 

v Reinforcement Learning Problems & 
Sequential Decision Making

v Find an optimal behavioral policy 
represented by a compact set of rules.

Introduction: LCS Applications - General
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v Uniquely Suited To Problems with…
v Dynamic environments
v Perpetually novel events accompanied by large amounts of 

noisy or irrelevant data.
v Continual, often real-time, requirements for actions.
v Implicitly or inexactly defined goals.
v Sparse payoff or reinforcement obtainable only through long 

action sequences [Booker 89].

v And those that have…
v High Dimensionality
v Noise
v Multiple Classes
v Epistasis
v Heterogeneity
v Hierarchical dependencies
v Unknown underlying complexity or dynamics

Introduction: LCS Applications – Uniquely Suited To…

Search

Modelling

Knowledge-Handling
Routing

Visualisation

Game-playing

Data-mining

Prediction

Optimization

Scheduling
Design

Querying
Adaptive-control

Rule-Induction

Medical Diagnosis

Feature Selection

Navigation

Image classification

Introduction: LCS Applications – Specific Examples

Clustering

v Learning Classifier Systems typically combine:
v Global search of evolutionary computing (e.g. Genetic Algorithm)
v Local optimization of machine learning (supervised or 

reinforcement) 
THINK: Trial and error meets neo-Darwinian evolution.

v Solution/output is given by a set of IF:THEN rules.
v Learned patterns are distributed over this set.
v Output is a distributed and generalized probabilistic prediction 

model.
v IF:THEN rules can specify any subset of the attributes available in 

the environment.
v IF:THEN rules are only applicable to a subset of possible instances.
v IF:THEN rules have their own parameters (e.g. accuracy, fitness) 

that reflect performance on the instances they match.
v Rules with parameters are termed `classifiers.

v Incremental Learning (Michigan-style LCS)
v Rules are evaluated and evolved one instance from the 

environment at a time.

v Online or Offline Learning (Based on nature of 
environment)

[P]

Introduction: Distinguishing Features of an LCS

v Learning Classifier System (LCS)
v In retrospect , an odd name.
v There are many machine learning 

systems that learn to classify but 
are not LCS algorithms. 

v E.g. Decision trees

v Also referred to as…
v Rule-Based Machine Learning 

(RBML)
v Genetics Based Machine 

Learning (GBML)
v Adaptive Agents
v Cognitive Systems
v Production Systems
v Classifier System (CS, CFS)

Introduction: Naming Convention & Field Tree

*Image	adapted	from	[37]
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v LCSs are one of the earliest artificial cognitive systems -
developed by John Holland (1978).  His work at the 
University of Michigan introduced and popularized the 
genetic algorithm.

v Holland’s Vision: Cognitive System One (CS-1) [2]
v Fundamental concept of classifier rules and matching.
v Combining a credit assignment scheme with rule discovery.
v Function on environment with infrequent payoff/reward.

v The early work was ambitious and broad. This has led to 
many paths being taken to develop the concept over the 
following 40 years. 

v *CS-1 archetype would later become the basis for 
`Michigan-style’ LCSs.

1970’s

1980’s

1990’s

2000’s

2010’s

*Genetic algorithms and CS-1 emerge
*Research flourishes, but application success is limited.

Introduction: Historical Perspective {1 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*LCS subtypes appear:  Michigan-style vs. Pittsburgh-style
*Holland adds reinforcement learning to his system.

*Term `Learning Classifier System’ adopted.
*Research follows Holland’s vision with limited success.

*Interest in LCS begins to fade.

v Pittsburgh-style algorithms introduced by Smith
in Learning Systems One (LS-1) [3]

v Booker suggests niche-acting GA (in [M]) [4].

v Holland introduces bucket brigade credit 
assignment [5].  

v Interest in LCS begins to fade due to inherent 
algorithm complexity and failure of systems to 
behave and perform reliably. 

Introduction: Historical Perspective {2 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*REVOLUTION!
*Simplified LCS algorithm architecture with ZCS.
*XCS is born: First reliable and more comprehensible LCS. 
*First classification and robotics applications (real-world). 

v Wilson revolutionizes LCS algorithms with accuracy-based 
rule fitness in XCS [9].

v Holmes applies LCS to problems in epidemiology [10].

v Stolzmann introduces anticipatory classifier systems (ACS) 
[11].

v Frey & Slate present an LCS with predictive accuracy  fitness 
rather than payoff-based strength [6].

v Riolo introduces CFCS2, setting the scene for Q-learning like 
methods and anticipatory LCSs [7].

v Wilson introduces simplified LCS architecture with ZCS, a 
strength-based system [8].

Introduction: Historical Perspective {3 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

*LCS algorithm specializing in supervised learning and 
data mining start appearing.  
*LCS scalability becomes a central research theme.
*Increasing interest in epidemiological and bioinformatics.
*Facet-wise theory and applications

v Wilson introduces XCSF for function approximation [12].
v Kovacs explores a number of practical and theoretical LCS questions 

[13,14].
v Bernado-Mansilla introduce UCS for supervised learning [15].
v Bull explores LCS theory in simple systems [16].
v Bacardit introduces two Pittsburgh-style LCS systems GAssist and 

BioHEL with emphasis on data mining and improved scalability to larger 
datasets[17,18].

v Holmes introduces EpiXCS for epidemiological learning. Paired with the 
first LCS graphical user interface to promote accessibility and ease of 
use [19].

v Butz introduces first online learning visualization for function 
approximation [20].

v Lanzi & Loiacono explore computed actions [21].

Introduction: Historical Perspective {4 of 5}
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1970’s

1980’s

1990’s

2000’s

2010’s

*Increased interest in supervised learning applications persists. 
*Emphasis on solution interpretability and knowledge discovery.
*Scalability improving – 135-bit multiplexer solved!
*GPU interest for computational parallelization.
*Broadening research interest from American & European to include 
Australasian & Asian.

v Franco & Bacardit explored GPU parallelization of LCS for scalability [22].

v Urbanowicz & Moore introduced statistical and visualization strategies for 
knowledge discovery in an LCS [23]. Also explored use of `expert knowledge’ to 
efficiently guide GA [24], introduced attribute tracking for explicitly characterizing 
heterogeneous patterns [25]. 

v Browne and Iqbal explore new concepts in reusing building blocks (i.e., code 
fragments) .  Solved the 135-bit multiplexer reusing building blocks from simpler 
multiplexer problems [26].

v Bacardit successfully applied BioHEL to large-scale bioinformatics problems also 
exploring visualization strategies for knowledge discovery [27].  

v Urbanowicz introduced ExSTraCS for supervised learning [28]. Applied ExSTraCS
to solve the 135-bit multiplexer directly .

Introduction: Historical Perspective {5 of 5}

1970’s

1980’s

1990’s

2000’s

2010’s

v~40 years of research on LCS has…

vClarified understanding.
vProduced algorithmic descriptions.
vDetermined 'sweet spots' for run parameters.
vDelivered understandable 'out of the box' code.
vDemonstrated LCS algorithms to be…

vFlexible
vWidely applicable
vUniquely functional on particularly complex 
problems.

Introduction: Historical Perspective - Summary

Two mechanisms are primarily responsible for driving LCS algorithms.

v Discovery
v Refers to “rule discovery”.
v Traditionally performed by a genetic algorithm (GA).
v Can use any directed method to find new rules.

v Learning
v The improvement of performance in some environment through the 

acquisition of knowledge resulting from experience in that environment.
v Learning is constructing or modifying representations of what is being 

experienced.
v AKA: Credit Assignment
v LCSs traditionally utilized reinforcement learning (RL).
v Many different RL schemes have been applied as well as much simpler 

supervised learning schemes.

Driving Mechanisms
v Create hypothesised better rules from existing rules & genetic 

material.

v Genetic algorithm
• Original and most common method
• Well studied 
• Stochastic process
• The GA used in LCS is most similar to niching GAs

v Estimation of distribution algorithms 
• Sample the probability distribution, rather than mutation or crossover to 

create new rules
• Exploits genetic material

v Bayesian optimisation algorithm
• Use Bayesian networks
• Model-based learning

Driving Mechanisms: LCS Rule Discovery {1 of 2}
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v When to learn
v Too frequent: unsettled [P]
v Too infrequent: inefficient training

v What to learn
v Most frequent niches or…
v Underrepresented niches

v How much to learn
v How many good rules to keep (elitism)
v Size of niche

Driving Mechanisms: LCS Rule Discovery {2 of 2}

v Inspired by the neo-Darwinist theory of natural selection, the 
evolution of rules is modeled after the evolution of organisms 
using four biological analogies.

v Genome à Coded Rule (Condition)

v Phenotype à Class (Action)

v Survival of the Fittest à Rule Competition

v Genetic Operators à Rule Discovery

v Elitism (Essential to LCS)
v LCS preserves the majority of top rules each learning iteration.
v Rules are only deleted to maintain a maximum population size (N).

#	1	0	1	#			~			1

#	1	0	#	#			~			0

1	#	0	1	1			~			1

0	0	#	1	#			~			0

Condition		~	Action

Example Rules 
(Ternary Representation)

Driving Mechanisms: Genetic Algorithm (GA)

v Select parent rule

v Randomly select bit to mutate

v Apply mutation

r1 = 01110001

r1 = 01110001

r1 = 01100001

Driving Mechanisms: GA – Mutation Operator

*Image	adapted	from	[37]

Driving Mechanisms: GA – Crossover Operator

*Image	adapted	from	[37]
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Two mechanisms are primarily responsible for driving LCS algorithms.

v Discovery
v Refers to “rule discovery”
v Traditionally performed by a genetic algorithm (GA)
v Can use any directed method to find new rules

v Learning
v The improvement of performance in some environment through the 

acquisition of knowledge resulting from experience in that environment.
v Learning is constructing or modifying representations of what is being 

experienced.
v AKA: Credit Assignment
v LCSs traditionally utilized reinforcement learning (RL).
v Many different RL schemes have been applied as well as much simpler 

supervised learning (SL) schemes.

Driving Mechanisms
v With the advent of computers, humans have been 

interested in seeing how artificial ‘agents’ could learn. 
Either learning to…
v Solve problems of value that humans find difficult to solve 
v For the curiosity of how learning can be achieved.

v Learning strategies can be divided up in a couple ways.

v Categorized by presentation of instances
v Batch Learning (Offline) 
v Incremental Learning (Online or Offline) 

v Categorized by feedback
v Reinforcement Learning
v Supervised Learning 
v Unsupervised Learning

Driving Mechanisms: Learning

v Batch Learning (Offline) v Incremental Learning (Online) 

Dataset

Algorithm Algorithm

Environment
Or	Dataset01100011

All	Data

Driving Mechanisms: 
Learning Categorized by Presentation of Instances

Supervised learning: The environment 
contains a teacher that directly provides the 
correct response for environmental states.

Reinforcement learning: The 
environment does not directly indicate what 
the correct response should have been.  
Instead, it only provides reward or punishment 
to indicate the utility of actions that were 
actually taken by the system.

Unsupervised learning:
The learning system has an 
internally defined teacher 
with a prescribed goal that 
does not need utility 
feedback of any kind.

Driving Mechanisms: 
Learning Categorized by Feedback
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v LCS learning primarily involves the update of various rule 
parameters such as…
v Reward prediction (RL only)
v Error
v Fitness

v Many different learning strategies have been applied within LCS 
algorithms.
v Bucket Brigade [5]
v Implicit Bucket Brigade
v One-Step Payoff-Penalty
v Symmetrical Payoff Penalty
v Multi-Objective Learning
v Latent Learning
v Widrow-Hoff [8]
v Supervised Learning – Accuracy Update [15]
v Q-Learning-Like [9]

v Fitness Sharing 
v Give rule fitness some context within niches.

Driving Mechanisms: LCS Learning

v In order for artificial learning to occur data containing the 
patterns to learn is needed. 

v This can be through recorded past experiences or interactive 
with current events.

v If there are no clear patterns in the data, then LCSs will not 
learn.

Driving Mechanisms: Assumptions for Learning

v Demonstrate how a fairly typical modern Michigan-style 
LCS algorithm…
v is structured,
v is trained on a problem environment,
v makes predictions within that environment

v We use as an example, an LCS architecture most similar 
to UCS [15], a supervised learning LCS.

v We assume that it is learning to perform a 
classification/prediction task on a training dataset with 
discrete-valued attributes, and a binary endpoint.

v We provide discussion and examples beyond the UCS 
architecture throughout this walk-through to illustrate the 
diversity of system architectures available.

LCS Algorithm Walk-Through

Data Set INPUT

LCS	Algorithm	Walk-Through:		Input	{1	of	3}

vInput to the algorithm is often 
a training dataset.

vThe source of input is often 
referred to as the ‘environment’.

* We will add to this diagram progressively to illustrate components of the LCS 
algorithm and progress through a typical learning iteration.
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v Detectors 
v Sense the current state of the environment and encode it 

as a formatted data instance.
v Grab the next instance from a finite training dataset.

v Effectors
v Translate action messages into performed actions that 

modify the state of the environment

v The learning capabilities of LCS rely on and are 
constrained by the way the agent perceives the 
environment, e.g., by the detectors the system 
employs.

v Input data may be binary, integer, real-valued, or some 
other custom representation, assuming the LCS 
algorithm has been coded to handle it.

Environment

Detectors

Effectors

LCS	Algorithm	Walk-Through:		Input	{2	of	3}

* Primarily relevant to reinforcement learning 
systems outside the UCS framework.

Dataset

Features	(Attributes)

Class

0	2	1	2	0	~	1

LCS	Algorithm	Walk-Through:		Input	{3	of	3}

Feature	state	values

Class	Value

Dataset INPUT

[P]

LCS:  Michigan-Style 
Rule-Based Algorithm

Empty

Data Set INPUT

LCS	Algorithm	Walk-Through:	Rule	Population	{1	of	2}

vThe rule population set is given by [P].

v[P] typically starts off empty.  

vThis is different to a standard GA 
which typically has an initialized 
population.

v A finite set of rules [P] which collectively explore the 
‘search space’.

v Every valid rule can be thought of as part of a candidate 
solution (may or may not be good)

v The space of all candidate solutions is termed the ‘search 
space’.

v The size of the search space is determined by both the 
encoding of the LCS itself and the problem itself.

v The maximum population size (N) is one of the most 
critical run parameters.
v User specified
v N = 200 to 20000 rules but success depends on dataset 

dimensions and problem complexity.
v Too small à Solution may not be found
v Too large à Run time or memory limits too extreme.

LCS	Algorithm	Walk-Through:	Rule	Population	{2	of	2}

[P]
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v An analogy: 
v A termite in a mount.
v A rule on it’s own is not a viable solution.  
v Only in collaboration with other rules is the solution space covered.

v Each classifier is comprised of a condition, an action (a.k.a. class, endpoint, or 
phenotype), and associated parameters (statistics).

v These parameters are updated every learning iteration for relevant rules.

Training	Instance RuleAssociation	Model

LCS	Algorithm	Walk-Through:		LCS	Rules/Classifiers

Population [P]
Classifiern =	Condition	:	Action	::	Parameter(s)

v LCSs can use many different representation 
schemes. 
vAlso referred to as `encodings’
vSuited to binary input or 
vSuited to real-valued inputs and so forth...

v Ternary Encoding – traditionally most commonly 
used
v The ternary alphabet matches binary input

v A attribute in the condition that we don't care about 
is given the symbol '#‘ (wild card)

LCS	Algorithm	Walk-Through:		Rule	Representation -
Ternary

#	1	0	1	#			~			1

#	1	0	#	#			~			0

1	#	0	1	1			~			1

0	0	#	1	#			~			0

Condition		~	Class

(Ternary	Representation)

v Quaternary Encoding [29]
v 3 possible attribute states {0,1,2} plus ‘#’.
v For a specific application in genetics.

v Real-valued interval (XCSR [30])
v Interval is encoded with two variables: center and spread
v i.e. [center,spread] à [center-spread, center+spread]
v i.e. [0.125,0.023] à [0.097, 0.222]

v Real-valued interval (UBR [31])
v Interval is encoded with two variables: lower and upper bound
v i.e. [lower, upper]
v i.e. [0.097, 0.222]

v Messy Encoding (Gassist, BIOHel, ExSTraCS [17,18,28])
v Attribute-List Knowledge Representation (ALKR) [33]
v 11##0:1 shorten to 110:1 with reference encoding
v Improves transparency, reduces memory and speeds processing

(Quaternary	Encoding)

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{1	of	4}

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{2	of	4}

v Real-valued intervals form hyperrectangles.

v Hyperellipses may offer a more effective alternative in problems with non-
orthogonal class boundaries. 

*Images	adapted	from	[37]
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v Mixed Discrete-Continuous ALKR 
[28]

v Useful for big and data with 
multiple attribute types
v Discrete (Binary, Integer, String)
v Continuous (Real-Valued)

v Similar to ALKR (Attribute List 
Knowledge Representation): 
[Bacardit et al. 09]

v Intervals used for continuous 
attributes and direct encoding 
used for discrete.

Ternary Mixed

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{3	of	4}

v Decision trees [32]

v Code Fragments [26]

v Artificial neural networks

v Fuzzy logic/sets

v Horn clauses and logic

v S-expressions, GP-like trees and code fragments.

v NOTE – Alternative action encodings also utilized
v Computed actions – replaces action value with a function [21]

LCS	Algorithm	Walk-Through:		Rule	Representation –
Other	{4	of	4}

[P]

2

Data Set1

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

Empty v A single training instance is 
passed to the LCS each 
learning cycle /iteration.

v All the learning and discovery 
that takes place this iteration 
will focus on this instance.

LCS	Algorithm	Walk-Through:		Get	Training	Instance

INPUT

[P]

[M]

2

3

Data Set1

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

LCS	Algorithm	Walk-Through:		Form	Match	Set	[M]

INPUT
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vHow do we form a  match set?
vFind any rules in [P] that match the current instance.
vA rule matches an instance if…

vAll attribute states specified in the rule equal or include the 
complementary attribute state in the instance.
vA `#’ (wild card) will match any state value in the instance.

vAll matching rules are placed in [M].

vWhat constitutes a match?
vGiven: An instance with 4 binary attributes states `1101’ and class 1.
vGiven: Rulea = 1##0 ~ 1
vThe first attribute matches because the ‘1’ specified by Rulea equals 
the ‘1’ for the corresponding attribute state in the instance.
vThe second attributes because the ‘#’ in Rulea matches state value 
for that attribute.

vNote: Matching strategies are adjusted for different data/rule 
encodings.

LCS	Algorithm	Walk-Through:		Matching	{1	of	3}

[M]

LCS	Algorithm	Walk-Through:		Matching	{2	of	3}

[M]

*Image	adapted	from	[37]

LCS	Algorithm	Walk-Through:		Matching	{3	of	3}

[M]

*Image	adapted	from	[37]

[P]

[M]

2

3

Data Set1

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

INPUT

Covering

4

LCS	Algorithm	Walk-Through:		Covering		{1	of	2}

v What happens if [M] is empty?

v This is expected to happen early 
on in running an LCS.

v Covering mechanism (one form 
of rule discovery) is activated.

v Covering is effectively most 
responsible for the initialization 
of the rule population.
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v Covering initializes a rule by generalizing an instance.
v Condition: Generalization of instance attribute states.
v Class: 

v If supervised learning: Assigned correct class
v If reinforcement learning: Assigned random class/action

v Covering adds #’s to a new rule with probability of 
generalization (P#) of 0.33 - 0.5 (common settings).

v New rule is assigned initial rule parameter values.

v NOTE: Covering will only add rules to the population 
that match at least one data instance.
v This avoids searching irrelevant parts of the search 

space.

Covering

LCS	Algorithm	Walk-Through:		Covering		{2	of	2}

0	2	1	2	0	~	1

0	#	1	2	#	~	1

(Instance)

(New	Rule)

LCS	Algorithm	Walk-Through:		Special	Cases	for	
Matching	and	Covering
v Matching:

v Continuous-valued attributes: Specified attribute interval in rule must 
include instance value for attribute.  E.g. [0.2, 0.5] includes 0.34.

v Alternate strategy-
vPartial match of rule is acceptable (e.g. 3/4 states).  Might be useful in high 

dimensional problem spaces.
v Covering:

v For supervised learning – also activated if no rules are found for [C]
v Alternate activation strategies-

vHaving an insufficient number of matching classifiers for:
v Given class (Good for best action mapping)
v All possible classes (Good for complete action mapping and reinforcement 

learning)
v Alternate rule generation-

vRule specificity limit covering [28]:
v Removes need for P#., useful/critical for problems with many attributes or 

high dimensionality.
v Picks some number of attributes from the instance to specify up to a 

dataset-dependent maximum.

[P]

[M]

Covering

2

3

4

Data Set1

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

INPUT

Prediction

5

LCS	Algorithm	Walk-Through:Prediction Array	{1	of	3}

v At this point there is a fairly big 
difference between LCS operation 
depending on learning type.

v Supervised Learning: Prediction 
array plays no part in 
training/learning.  It is only useful in 
making novel predictions on unseen 
data, or evaluating predictive 
performance on training data during 
training.

v Reinforcement Learning (RL): 
Prediction array is responsible for 
action selection (if this is an exploit 
iteration).

v Rules in [M] advocate for different classes!

v Want to predict a class (known as action selection in RL).

v In SL, prediction array just makes prediction.

v In RL, prediction array choses predicted action during 
exploit phase.  A random action is chosen for explore 
phases.  This action is sent out into the environment.  All 
rules in [M] with this chosen action forms the action set [A].

v Consider the fitness (F) of the rules in an SL example.
Rulea 1##101 ~ 1   F = 0.8, 

Ruleb 1#0##1 ~ 0   F = 0.3,

Rulec 1##1#1 ~ 0   F = 0.4, …

v Class/Action can be selected:
v Deterministically – Class of classifier with best F in [M].
v Probabilistically – Class with best average F across 

rules in [M], i.e. Classifiers vote for the best class.

Action 
Selection

LCS	Algorithm	Walk-Through:Prediction Array	{2	of	3}

[M]

3

[C][I]

6

Prediction

5

Supervised	Learning	(SL)

Reinforcement	Learning	(RL)

[M]

3

[A]

6

Prediction

5
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v One of the biggest problems in evolutionary computation…
• When to exploit the knowledge that is being learned (i.e. vote for action)? 
• When to explore to learn new knowledge (i.e. random action)? 

v LCS algorithms commonly alternate between explore and exploit for each iteration 
(incoming data instance).

v In SL based LCS, there is no need to separate explore and exploit iterations.  Every 
iteration: a prediction array is formed,  the [C] is formed (since we know the correct 
class of the instance), and the GA can discover new rules.

LCS	Algorithm	Walk-Through:	 RL	- Explore	vs.	Exploit

[P]

[M]

Covering

2

3

4

Data Set1

[C][I]

6

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

INPUT

Prediction

5

LCS	Algorithm	Walk-Through: Form	Correct	Set	[C]

v Assuming SL: All classifiers in [M] 
that specify the correct class form 
[C].

v The rest form the incorrect set [I].

v The prediction from the last set can 
be reported to track learning 
progress.

[M]
0 2 1 2 0 ~ 1 2 # 1 # # ~ 1

Rules

# 2 1 # 0 ~ 1

# # 1 2 # ~ 0

Data Instance

[C]

[I]

LCS Algorithm Walk-Through: Example [M] 
and [C] 

0#12# ~ 0

2#1## ~ 1

###02 ~ 0

0#1## ~ 1

#2##1 ~ 1

##### ~ 0

02##0~ 1

##12# ~ 0

#1211 ~ 0

10102 ~ 0

22##2 ~ 1

####0 ~ 0

#101# ~ 1

2#2## ~ 1

010## ~ 0

##2#0 ~ 0

1#22# ~ 1

###20 ~ 0

#0#2# ~ 1

#21#0 ~ 1

22#1# ~ 0

#1### ~ 0

####2 ~ 1

##12# ~ 1

2##2# ~ 0

221## ~ 1

##100~ 1

#122# ~ 0

01### ~ 1

##2## ~ 0

##00# ~ 1

0###0 ~ 0

Sample Instance from Training Set 

02120 ~ 1Match Set Correct  Set 
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[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

vA number of parameters are 
stored for each rule.

v In supervised learning LCS, 
fewer parameters are required. 

v After the formation of [M] and 
either [C] or [A] , certain 
parameters are updated for 
classifiers in [M]. 

INPUT

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	{1	of	2}

Prediction

5

vAn action/class has been chosen and passed to 
the environment.  

vSupervised Learning:
vParameter Updates: 

vRules in [C] get boost in accuracy.
vRules in [M] that didn’t make it to [C] get decreased in 

accuracy.

vReinforcement Learning:
vA reward may be returned from the environment
vRL parameters are updated for rules in [M] and/or [A]

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	{2	of	2}

Update Rule
Parameters

v Experience is increased in all rules in [M]

v Accuracy is calculated, e.g. UCS
acc = number of correct classifications

experience

v Fitness is computed as a function of accuracy:
F = (acc)ν

v ν used to separate similar fitness classifiers 
vOften set to 10 (in problems assuming without noise)
vPressure to emphasize importance of accuracy

LCS	Algorithm	Walk-Through:
Update	Rule	Parameters	/	Credit	Assignment	for	SL

LCS	Algorithm	Walk-Through:
Credit	Assignment	for	Reinforcement	Learning

v LCS algorithms were originally all designed with RL in mind.

v Credit traditionally took the form of classifier strength
v The cumulative credit coming from reward feedback from the 

environment
v This reflects the reward the system can expect if that rule is fired.

v Two examples of strength-based credit assignment/fitness:
v ZCS – Zeroth-Level Classifier System [8]

v Implicit Bucket Brigade back-propagation of strength (deferred reward)
v Fraction (β ) of strength of all rules in [A] is placed in a common ‘bucket’.
v If an immediate reward (rimm) is received from environment all rules in [A] add (β 

rimm/ [A]) 

v Classifiers in the action set of the previous time-step [A]-1 receive a discounted 
(γ) distribution of the strength put in the ‘bucket’  (back-propagation)

v Total strength  of members of [A]

v MCS – Minimal Classifying System [16]
v Widrow-Hoff delta rule with learning rate β
v valuenew = value + β x (signal - value)

v Filters the 'noise' in the reward signal
v β = 1 the new value is signal, β = 0 then old value kept

v Also applies fitness sharing….

Action 
Selection

Reinforcement	Learning	(RL)

[M]

3

[A]

6

Prediction

5

Action Set [A]

Learning Strategy
Credit  Assignment

Classifiera

[A]t-1
Classifiert-1
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LCS	Algorithm	Walk-Through: Fitness	Sharing

v Fitness sharing takes the strength/payoff and updates a 
fitness so that the strength of a classifier is considered 
relative to the strengths of other classifiers in the action 
set.

v This pressures the classifiers with the best strength 
relative to their niche to have the highest fitness.  This 
helps eliminate the takeover effect of ‘strong’ classifiers 
from one particular niche.

v Niche: A set of environmental states each of which is 
matched by approximately the same set of classifiers.

v We will detail fitness sharing in the context of XCS and 
accuracy-based fitness.

v Different niches of the environment usually have different payoff levels.

v In fitness sharing, a classifier’s strength no longer correctly predicts payoff -
Fitness sharing prevents takeover

v Fitness sharing does not prevent more renumerative niches gaining more 
classifiers - Niche rule discovery helps

v Rule discovery cannot distinguish an accurate classifier with moderate payoff 
from an overly general classifier having the same payoff on average – Over-
generals proliferate

v No reason for accurate generalizations to evolve

v ZCS à XCS : “Wilson’s intuition was the prediction should estimate how 
much reward might result from a certain action but that the evolution learning 
should be focused on the most reliable classifiers, that is, classifiers that give 
a more precise (accurate) prediction)”

LCS	Algorithm	Walk-Through:
Why	not	Strength	vs.	Accuracy-based	Fitness	in	RL?

LCS	Algorithm	Walk-Through:
XCS	Accuracy-Based	Fitness	+	Fitness	Sharing

vClassifier considered 
accurate if:
vError < tolerance, 

otherwise scaled.

vAccuracy relative to 
action set

vFitness based on 
relative accuracy, e.g. 
XCS
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[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

LCS	Algorithm	Walk-Through: Subsumption {1	of	2}

v Subsumption adds an explicit rule 
generalization pressure in addition to the 
implicit generalization pressure.

v This mechanism has been applied at 
two points in an LCS learning iteration. 

v Among rules in [C] right after its 
formation. (Rarely used anymore)

v Following GA rule discovery 
offspring rules checked for 
subsumption against parent 
classifiers and classifiers in [C].
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v In sparse or noisy environments over-specific rules can take over population.

v Starvation of generals, so delete specific ‘sub-copies’

v Need accurate rules first:
v How to set level of accuracy (often not 100%)
v If rule A is completely accurate (ε < ε0)  Then can delete rule B from the population without 

loss of performance

v Subsumption = General rule (A) absorbs a more specific one (B)
v Increases rule numerosity

LCS	Algorithm	Walk-Through: Subsumption {2	of	2}

*Image	adapted	from	[37]

v Numerosity is a useful concept (trick):

v Reduces memory usage
v Instead of population carrying multiple copies of the same classifier it just carries one copy.
v Each rule has a numerosity value (initialised as 1)

v Protects rule from deletion
v Stabilises rule population

v Numerosity is increased by 1
v When subsumes another rule
v When RD makes a copy 

v Numerosity is decreased by 1
v Rule is selected for deletion

LCS	Algorithm	Walk-Through: Numerosity {1	of	2}

v Numerosity (n) affects action selection and update 
procedures:

v The fitness sums take numerosity into account:

v Terminology:
v Macroclassifiers: all unique classifiers n ≥ 1
v Microclassifiers: all individual classifiers (n copies of 

macroclassifiers)

v Ratio of macroclassifiers to microclassifiers often used 
as a measure of training progress. 

v Numerosity is also often applied as a `best-available’ 
strategy to ranking rules for manual rule inspection (i.e. 
knowledge discovery).

LCS	Algorithm	Walk-Through: Numerosity {2	of	2}

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

vGA rule discovery is activated if 
average experience of classifiers in 
selection pool is above a user 
defined cut-off. 

v Classifier experience is the 
number of instances that the 
classifier has matched.

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Genetic	Algorithm
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v Parent Selection (typically 2 parents selected)

v Selection Pool:
v Panmictic – Parents selected from [P] [34]
v Niche – Parents selected from [M], [4]
v Refined Niche – Parents selected from [C] or [A], [9]

v Niche GA (Closest to LCS GA)
v Niching GAs developed for multi modal problems
v Maintain population diversity to promote identification of multiple peaks
v Fitness sharing – pressure to deter aggregation of too many ‘similar’ rules

v Selection Strategy:
v Deterministic – Pick rules with best fitness from pool.
v Random – rarely used
v Probabilistic –

v Roulette Wheel
v Tournament Selection

LCS	Algorithm	Walk-Through: Genetic	Algorithm	–
Other	Considerations

Genetic
Algorithm

LCS	Algorithm	Walk-Through: Selection	- Tournament	

v Tournament Selection is typically used for GA parent selection

*Image	adapted	from	[37]

LCS	Algorithm	Walk-Through: Selection	– Roulette	
Wheel

v Roulette Wheel Selection is typically used for deletion (where probability of selection 
is inversely proportional to fitness)

*Images	adapted	from	[37]

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Deletion

Deletion
10

vIf no deletion…
v Population grows without 

bound
v Waste memory and takes 

time so not often used

vPanmictic deletion [P]
v Most common technique 

based on inverse fitness 
roulette wheel

v Other factors may come into 
play…
v Rule age
v [A] size parameter
v Numerosity
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INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Output	[P]

Deletion
10

OUTPUT

[P]

[P]

[M]

Covering

2

3

4

Update Rule
Parameters7

Data Set1

[C][I]

6

Subsumption
8

LCS:  Michigan-Style 
Rule-Based Algorithm

Training Instance

Prediction

5

INPUT

Genetic
Algorithm

9

LCS	Algorithm	Walk-Through: Rule	Compaction

Deletion
10

OUTPUT

[Pc]

Rule 
Compaction

[P]

vRule compaction is a post-
processing step applied to [P]

vRule compaction seeks to 
remove rules that are:

vInexperienced (young)
vPoor quality
vCovering redundant 
problem space
vOverspecific

vAlternatively similar 
‘condensation’ approaches have 
been proposed to 

Supervised LCS

*Image	adapted	from	[37]

Reinforcement LCS

*Image	adapted	from	[37]
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Learning Classifier Systems in a Nutshell

https://www.youtube.com/watch?v=CRge_cZ2cJc

v Entire population is the 
solution

v Learns iteratively

v GA operates between 
individual rules

v Single rule-set is the 
solution

v Learns batch-wise

v GA operates between 
rule-sets

Michigan vs. Pittsburgh-Style LCSs: Major Variations

v Michigan Style LCS
vZCS (Strength Based)
vXCS (Accuracy Based – Most popular)
vUCS (Supervised Learning)
vACS (Anticipatory)
vExSTraCS (Extended Supervised Tracking and Learning)

v Pittsburgh Style LCS
vGALE (Spatial Rule Population)
vGAssist (Data mining – Pitt Style Archetype)
vBIOHEL (Focused on Biological Problems and Scalability)

v Other Hybrid Styles also exist!

Michigan vs. Pittsburgh-Style LCSs: Implementations Advanced Topics: Learning Parameters {1 of 2}

*Table	adapted	from	[37]
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Advanced Topics: Learning Parameters {2 of 2}

*Table	adapted	from	[37]

v The intention is to form a map of the problem space

v Breaks the problem into simpler pieces as needed.

Advanced Topics: LCS as Map Generators

*Image	adapted	from	[37]

v One rule models a distinct part of the data (a rule covers a single niche in the 
domain). 

v If there was only one niche in the domain, then only one rule would be needed. 

v Domains of interest have multiple parts that require modelling with different 
rules. 

v LCSs must learn a set of rules 

v The rules within an LCS are termed the population, which is given the symbol 
[P], the set of all rules in the population.

v The rules within a population cooperate to map the domain

Advanced Topics: Cooperation

v Ideally, there would only be one unique and correct rule for each niche

v Number of rules would equal number of niches 

v No prior knowledge, so each rule must be learnt. 

v LCSs allow multiple, slightly different rules per niche.  Multiple hypotheses are 
available to find the optimum rule (implicit ensemble)

v Each rule ‘covers’, i.e. describes, its part of the search space.

v The rules within a niche compete to map the domain.

Advanced Topics: Competition
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v Over-generals are undesired, inaccurate rules that typically match 
many instances. 

v When additional reward offsets any additional penalty

v Strength-based fitness is more prone to overgenerals

v Accuracy-based fitness is less prediction orientated

Want  10011###1:1 get 10011####:1, where 10011###0:0

v Can occur in unbalanced datasets or where the error tolerance ε0 is 
set too high.

Advanced Topics: Overgenerals Advanced Topics: LCS Pressures

*Image	adapted	from	[37]

v Fitness pressure is fundamental to evolutionary computation:  
“survival of the fittest”

v Fitter rules assumed to include better genetic material,

v Fitter rules are proportionately more likely to be selected for mating,

v Genetic material hypothesised to improve each generation.

v Fitness measures based on error or accuracy drive the population to 
rules that don’t make mistakes

v Favors specific rules (cover less domain)

v Fitness measures based on reward trade mistakes for more reward

v Favors general rules (cover more domain) 95

Advanced Topics: Fitness Pressure
v Set pressure is related to the opportunity to breed,

v Does not occur in panmictic rule selection

v Need Niching through [M] or [A]  rule discovery

v Class imbalance affects set pressure

v Set pressure is more effective when replacing ‘weaker’ rules

v Often panmictic deletion, thus one action can replace a different action

v To prevent an action type disappearing, relative fitness is used (rare rules have high 
relative fitness and so breed)

v Rules that occur in more sets have more opportunity to be selected from mating

v Favours general rules 96

Advanced Topics: Set Pressure

599



v Genotypically change the specificity-generality balance

v Mutation can

97

Accuracy	based	systems	often	use	
generalise	only	to	balance	strong	
fitness	pressure

Advanced Topics: Mutation Pressure

*Image	adapted	from	[37]

v Should LCS discover:
• The most optimum action in a niche or
• The predicted payoff for all actions in a niche

v The danger with optimum action only is: a suboptimal rule could be converged upon … 
difficult to discover and switch policy.  Also, no memory of bad rules is preserved.

v The problem with predicting all actions:
• Memory and time intensive
• Identifies and keeps consistently incorrect action (100% accurate prediction) rules
• Harder to interpret rule base

98

Advanced Topics: Complete vs. Best Action Mapping

v What is scalability?
vMaintaining algorithm tractability as problem scale increases.
vProblem scale increases can include…

vHigher pattern dimensionality

vLarger-scale datasets with
vIncreased number of potentially predictive attributes.
vIncreased number of training instances.

v Strategies for improving LCS scalability.
vMore efficient rule representations [18,28] (Pittsburgh and Michigan)
vWindowing  [ 36] (Pittsburgh)
vComputational Parallelization (GPGPUs) [22]
vEnsemble learning with available attributes partitioned into subsets [27]

vExpert knowledge guided GA [25]
vRule Specificity Limit [28]

Advanced Topics: LCS Scalability

v Description of global summary statistics for [P] (SpS, AWSpS) [23]

X

X X

X

XXX

XX

SpS (X1)   =  5 + 2 = 7

AWSpS (X1)   =  (0.73) * 5 + (0.88) * 2  = 5.41 

Advanced Topics: Knowledge Discovery {1 of 5}
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v Permutation-Based Significance Testing [23]

Dataset

1000 X 
Permutations

Dataset

10-fold CV

Average Testing Accuracy = 0.7

Statistics of Interest:
Testing Accuracy

SpS
AWSpS

CoS

LCS

LCS

1000 X

0.5 0.60.4 0.7
Frequency Distribution

10-fold CV 95% 

Advanced Topics: Knowledge Discovery {2 of 5}
Individual Attributes Pairs

• Attributes: 20
– Predictive: 4
– Non-Predictive: 16

• Heritability = 0.4
• MAF = 0.2
• Sample Size = 1600

• Testing Accuracy = 0.70     
(p = 0.001)

• See [23]

X0 X1 X2 X3

.50 .50

Advanced Topics: Knowledge Discovery {3 of 5}

Rules in Population
A

ttr
ib

ut
es

#
0,1,2*See [23]

Advanced Topics: Knowledge Discovery {4 of 5}
Pairs

*See [23]

Advanced Topics: Knowledge Discovery {5 of 5}
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v An extension to the LCS algorithm that allows for the 
explicit characterization of heterogeneity, and allows for 

the identification of heterogeneous subject groups.

v Akin to long-term memory.  Experiential knowledge 
stored separately from the rule population that is never 

lost.

v Relies on learning that is both incremental and 
supervised.

v Stored knowledge may be fed back into LCS during 
learning.

Advanced Topics: Attribute Tracking & Feedback

[P]

[M]

Covering
Genetic

Algorithm
[C]

2

3

5
9

Update Rule
Parameters6

Deletion
10

Pre-Processing:   Expert Knowledge Discovery

Post-Processing:  Rule Compaction

Data Set1

[C][I]

4

Subsumption
7

Attribute 
Feedback

Expert 
Knowledge

Attribute Tracking8

A

B

C

Training Instance

[PC]
Prediction

Advanced Topics: ExSTraCS – A Shameless Plug

v Previous:
v Data with many attributes yields absurdly over-fit ExSTraCS rules – not sufficient 

pressure to generalize.
v Allows for an impractically sized search space
v Relying on Pspec problematic.

v RSL:
v IDEA: Limit maximum rule dimensionality based on dataset characteristics (i.e. what 

we might have any hope of being powered to find).
v Calculate unique attribute state combinations

Example:  SNP dataset
• = 3
• Training Instances = 2000
• Find where : 

Advanced Topics: Rule Specificity Limit
v Additional Information :

v Keep up to date with the latest LCS research
v Get in contact with an LCS researcher
v Contribute to the LCS community research and discussions.

v Active Websites:
v GBML Central - http://gbml.org/
v Illinois GA Lab – http://www.illigal.org

v LCS Researcher Webpages:
v Urbanowicz, Ryan - http://www.ryanurbanowicz.com/
v Browne, Will - http://ecs.victoria.ac.nz/Main/WillBrowne
v Lanzi, Pier Luca - http://www.pierlucalanzi.net/
v Wilson, Stewart - https://www.eskimo.com/~wilson/
v Bacardit, Jaume - http://homepages.cs.ncl.ac.uk/jaume.bacardit/
v Holmes, John - http://www.med.upenn.edu/apps/faculty/index.php/g359/c1807/p19936
v Kovacs, Tim - http://www.cs.bris.ac.uk/home/kovacs/
v Bull, Larry - http://www.cems.uwe.ac.uk/~lbull/

v International Workshop Learning Classifier Systems (IWLCS) - held annually at GECCO 
v Renamed for GECCO ‘15 – Evolutionary Rule-based Machine Learning

v Other:
v Mailing List:: Yahoo Group: lcs-and-gbml @ Yahoo
v Proceedings of IWLCS 
v Annual Special Issue of Learning Classifier Systems published by Evolutionary Intelligence 

v LAST ISSUE THEME: 20 Years of XCS!!! – Dedicated to Stewart Wilson

Resources – Additional Information
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v Educational LCS (eLCS) – in Python.
v https://github.com/ryanurbs/eLCS
v Simple Michigan-style LCS for learning how they work and how they are implemented.
v Code intended to be paired with first LCS introductory textbook by Urbanowicz/Browne.

v ExSTraCS 2.0 – Extended Supervised Learning LCS – in Python
v https://github.com/ryanurbs/ExSTraCS_2.0
v For prediction, classification, data mining, knowledge discovery in complex, noisy, epistatic, or 

heterogeneous problems.  

v BioHEL – Bioinformatics-oriented Hierarchical Evolutionary Learning – in C++
v http://ico2s.org/software/biohel.html
v GAssist also available through this link.

v XCS & ACS (by Butz in C and Java) & XCSLib (XCS and XCSF) (by Lanzi in C++)
v http://www.illigal.org

v XCSF with function approximation visualization – in Java
v http://medal.cs.umsl.edu/files/XCSFJava1.1.zip

v EpiXCS

Resources – Software
v Select Review Papers:

v Bull, Larry. "A brief history of learning classifier systems: from CS-1 to XCS and its 
variants." Evolutionary Intelligence (2015): 1-16.

v Bacardit, Jaume, and Xavier Llorà. "Large-scale data mining using genetics-based machine 
learning." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3.1 (2013): 37-61.

v Urbanowicz, Ryan J., and Jason H. Moore. "Learning classifier systems: a complete introduction, 
review, and roadmap." Journal of Artificial Evolution and Applications 2009 (2009): 1.

v Sigaud, Olivier, and Stewart W. Wilson. "Learning classifier systems: a survey." Soft Computing 11.11 
(2007): 1065-1078.

v Holland, John H., et al. "What is a learning classifier system?." Learning Classifier Systems. Springer 
Berlin Heidelberg, 2000. 3-32.

v Lanzi, Pier Luca, and Rick L. Riolo. "A roadmap to the last decade of learning classifier system 
research (from 1989 to 1999)." Learning Classifier Systems. Springer Berlin Heidelberg, 2000. 33-61.

v Books: 
v Drugowitsch, J., (2008) Design and Analysis of Learning Classifier Systems: A Probabilistic Approach.  

Springer-Verlag.
v Bull, L., Bernado-Mansilla, E., Holmes, J. (Eds.) (2008) Learning Classifier Systems in Data Mining. 

Springer
v Butz, M (2006) Rule-based evolutionary online learning systems: A principled approach to LCS 

analysis and design.  Studies in Fuzziness and Soft Computing Series, Springer.
v Bull, L., Kovacs, T. (Eds.) (2005) Foundations of learning classifier systems. Springer.
v Kovacs, T. (2004) Strength or accuracy: Credit assignment in learning classifier systems. Springer.
v Butz, M. (2002) Anticipatory learning classifier systems. Kluwer Academic Publishers. 
v Lanzi, P.L., Stolzmann, W., Wilson, S., (Eds.) (2000). Learning classifier systems: From foundations to 

applications (LNAI 1813). Springer.
v Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.

Resources – LCS Review Papers & Books

v Textbook: Introduction to Learning Classifier Systems 
(Urbanowicz & Brown, 2017). Now available from Springer.

v YouTube video on LCS:
v Learning Classifier Systems in a Nutshell
v Animated, narrated explanation of basic LCS concepts.
v https://www.youtube.com/watch?v=CRge_cZ2cJc

v LCS and Rule-Based Machine Learning Wikipedia Pages – recently updated and 
revised. (https://en.wikipedia.org/wiki/Learning_classifier_system) 

v Please join us for the Evolutionary Rule Based Machine Learning Workshop
v Two accepted LCS research talks
v One invited speaker (David Howard)
v Open panel session of LCS researchers

New Resources
vWhat and Why

vMany branches of RBML, e.g. ARM, AIS, LCS
vPowerful, human interpretable, learning algorithms

vDriving Mechanisms 
vDiscovery
vLearning

vHow?
vLCS Algorithm Walk-Through 
vFlexible and robust methods developed

vMultiple styles 

vAdvanced methods: solutions to complex & real-world problems

vIncreasing resources available

Conclusions
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