Evolutionary Computation:
A Unified Approach

Kenneth De Jong

Computer Science Department
George Mason University
kdejong@gmu.edu
www.cs.gmu.edu/~eclab

anted without fee provided that copies
d the full citation on the first page. Copyrights

http://dx.doi.org/10.1145/3067695 3067715

Historical roots:

* Evolutionary Programming (EP):
— Developed by Fogel in 1960s
— Goal: evolve intelligent behavior
— Individuals: finite state machines
— Offspring via mutation of FSMs

— M parents, M offspring

ARTIFICIAL
INTELLIGENCE

THROUGH

SIMULATED

EVOLUTION

373

Historical roots:

* Evolution Strategies (ESs):
— developed by Rechenberg, Schwefel, etc. in 9605.
— focus: real-valued parameter optimization
— individual: vector of real-valued parameters

— reproduction: Gaussian “mutation” of parameters

— M parents, K>>M offspring

Historical roots:

* Genetic Algorithms (GAs):

— developed by Holland in 1960s

— goal: robust, adaptive systems
— used an internal “genetic” encoding of points

— reproduction via mutation and recombination of
the genetic code.

— M parents, M offspring

By the year 2000:

* A variety of evolutionary algorithms (EAs)
* A variety of applications:
— optimization
— search

— learning, adaptation

* A variety of analysis tools:
— theoretical

— experimental

A Personal Interest:

* Develop a general framework that:

— Helps one compare and contrast approaches.

— Encourages crossbreeding.

— Facilitates intelligent design choices.

374

Interesting dilemma:

 Lots of new and difficult application
opportunities.

* A bewildering variety of algorithms
and approaches:
— GAs, ESs, EP, GP, ...

» Hard to see relationships, assess

strengths & weaknesses, make
choices, ...

I

Viewpoint:

Starting point:

e Common features

* Basic definitions and terminology

Key Element:
An Evolutionary Algorithm

» Based on a Darwinian notion of an
evolutionary system.

* Basic elements:
— a population of “individuals”
— a notion of “fitness”
— a birth/death cycle biased by fitness
— a notion of “inheritance”

375

Common Features:

» Use of Darwinian-like evolutionary
processes to solve difficult computational
problems.

* Hence, the name:
Evolutionary Computation

10

An EA template:

1. Randomly generate an initial population.

2. Do until some stopping criteria is met:
Select individuals to be parents (biased by fitness).
Produce offspring.
Select individuals to die (biased by fitness).

End Do.

3. Return a result.

Instantiate by specifying:

* Population dynamics:
— Population size
— Parent selection
— Reproduction and inheritance
— Survival competition

» Representation:

— Internal to external mapping

* Fitness
13
Population sizing:
» Parent population size M:
— degree of parallelism
» Offspring population size K:
— amount of activity w/o feedback
15

376

EA Population Dynamics:

M parents

K
offspring

Overlapping

Non-overlapping

14
Population sizing:
» Examples:
— M=1, K small: early ESs
— M small, K large: typical ESs
— M moderate, K=M: traditional GAs and EP
— M large, K small: steady state GAs
— M =K large: traditional GP
16

Selection pressure:

* Overlapping generations:
— more pressure than non-overlapping

* Selection strategies (decreasing pressure):

— truncation

— tournament and ranking
— fitness proportional

— uniform

e Stochastic vs. deterministic

17

Exploitation/Exploration Balance:

* Selection pressure: exploitation
— reduce scope of search

* Reproduction: exploration

— expand scope of search

+ Key issue: appropriate balance
— e.g., strong selection + high mutation rates
— e.g, weak selection + low mutation rates

377

Reproduction:

e Preserve useful features
* Introduce variety and novelty

* Strategies:
— single parent: cloning + mutation

— multi-parent: recombination + mutation
* Price’ s theorem:

— fitness covariance
18

Representation:

* How to represent the space to be searched?

— Genotypic representations:
* universal encodings
* portability

* minimal domain knowledge

20

Representation:

» How to represent the space to be searched?

— Phenotypic representations:
* problem-specific encodings
* leverage domain knowledge

* lack of portability

21
The Art of EC:
* Choosing problems that make sense.
* Choosing an appropriate EA:
— reuse an existing one
— hand-craft a new one
23

378

Fitness landscapes:

 Continuous/discrete

» Number of local/global peaks
* Ruggedness

* Constraints

* Static/dynamic

22

EC: Using EAs to Solve Problems

* What kinds of problems?

e What kinds of EAs?

24

Intuitive view:

* Parallel, adaptive search procedure.
» Useful global search heuristic.

* A paradigm that can be instantiated in a
variety of ways.

« Can be very general or problem specific.

+ Strong sense of fitness “optimization”.

25

Useful Optimization Properties:

» Applicable to continuous, discrete, mixed
optimization problems.

* No a priori assumptions about convexity,
continuity, differentiability, etc.

» Relatively insensitive to noise.

 Easy to parallelize.

27

379

Evolutionary Optimization:

* Fitness: function to be optimized
¢ Individuals: points in the space

» Reproduction: generating new sample
points from existing ones.

26

Real-valued Param. Optimization:

* High dimensional problems
* Highly multi-modal problems

¢ Problems with non-linear constraints

28

Discrete Optimization:

TSP problems
» Boolean satisfiability problems
* Frequency assignment problems

* Job shop scheduling problems

29
Properties of standard EAs:
* GAs:
— universality encourages new applications
— well-balanced for global search
— requires mapping to internal representation
31

380

Multi-objective Optimization:

* Pareto optimality problems

* A variety of difficult industrial problems

30

Properties of standard EAs:

* ESs:
— well-suited for real-valued optimization.
— built-in self-adaptation.

— requires significant redesign for other

application areas.

32

Properties of standard EAs:

 EP:
— well-suited for phenotypic representations.

— encourages domain-specific representation and

operators.

— requires significant design for each application

arca.

33

Other EAs:
* CMA-ESs: (Hansen et al)
— Covariance Matrix Adaptation

— ES variation to deal with parameter interactions

— Maintains/updates matrix used to help generate
useful offspring.

35

381

Other EAs:

* GP: (Koza)
— standard GA population dynamics
— individuals: parse trees of Lisp code
— large population sizes
— specialized crossover
— minimal mutation

34

Other EAs:
* (mk)EAs: (Wegener et al)

— Combines ES dynamics with GA representation
and operators:
* Binary representations
* Bit-flip mutation
— Applied to discrete optimization problems
— Simplicity yields strong convergence proofs

36

Other EAs:

« Differential Evolution: (Storn & Price)

— Specifically for continuous function optimization
» K=1 offspring
* overlapping generations
— parent selection: deterministic
— 1 offspring via crossover with a 3-parent combo
— survival selection: parent vs. offspring

37

Designing an EA:

* Choose an appropriate representation
— effective building blocks
— semantically meaningful subassemblies

* Choose effective reproductive operators

— fitness covariance

39

382

Other EAs:

* Messy GAs (Goldberg)

* Genitor (Whitley)

* Genocop (Michalewicz)

* CHC (Eschelman et al)

* Geometric Semantic GP: (Moraglio et al)
» Gene Expression Programming (Ferreira)

» Neuroevolution (Stanley)

38

Designing an EA:

* Choose appropriate selection pressure
— local vs. global search

* Choosing a useful fitness function
— exploitable information

Result: a well-designed EA
40

The Present ...

* New applications pressing state of the art.

« Unified view of “simple EAs” is not

sufficient.

* Principled extensions are required.

41

Example:
Evolving NLP Tagging Rules

* Given:
— Existing tagging engine
— Existing rule syntax
— Existing rule semantics
* Goal:

— Improve development time for new
domains. by evolving tagging rule sets.

— Improve tagging accuracy. 5

383

Broader Problem domains:

» Objects to be evolved:
— Parameter values
— Non-linear structures
— Variable-size structures
— Executable programs

* Goals:
— Optimization (single, multiple objectives)
— Adaptation (tracking, tuning)
— Learning (induction, prediction)
42

Example:
Adaptive Testing

* How to validate complex systems?
— Prove theorems?
— Develop test suites?
— Hire test engineers?

* Interesting alternative:
— Use EAs to search scenario spaces.

— Scenario’ s fithess related to the difficulties
it creates.

» Testing autonomous vehicle controllers 44

Example:
Evolving agent behavior

» Evolve interesting/robust behavior for:
— Web crawlers
— Teams of robots
— Stock market trading programs
— War games: semi-automated forces

45

EC extensions:

* Reduced knob twiddling:

—To “get it right” we:
 vary population size
* vary selection pressure
* vary representation LY

Self-Adaptive Heuristics

* vary reproductive operators Rr;::l;;l‘iizl:'afy
— Far better to have:

* Principled choices

+ Self-adapting mechanisms

47

384

To Repeat ...

« Unified view of “simple EAs” is not sufficient.

* Principled extensions are required.

46

EC extensions:

* Automated EA Design:
— Meta-heuristics

— Hyper-heuristics

48

EC extensions:

« Exploiting parallelism: |
— Low hanging fruit: parallel evaluation

— Tougher challenges:

* coarsely grained network models

. . . . N Massively Parallel
— isolated islands with occasional migrations Eiolorar

Computation
on GPGPUs

» finely grained diffusion models

— continuous interaction in local neighborhoods

49

EC extensions:

 Evolutionary Design:

— Exploring design spaces

— Exploiting morphogenesis:

— Evolutionary art, music, ...

51

385

EC extensions:

» Understanding co-evolutionary models:

— Competitive co-evolution

— Cooperative co-evolution s

Gomputation and
Multiagent Systems

— Agent-oriented models 5

EC extensions:

» Understand multi-objective
optimization better:

— Standard feature of industrial problems.

— Goal: find a set of non-dominated
alternatives. Evolitiopdly

Multiobjective
Optimization

— Considerable progress already.

— Need a deeper theoretical understanding.

52

EC extensions:

* Understand time-varying
environments better:

— Fitness landscape changes during
evolution

— Goal: adaptation, tracking
— Considerable progress already

— Need deeper theoretical understanding

thms

ing Evolutionary
for
| Dynamic Environments

53

EC extensions:

* Need stronger analysis tools:

3 Th

< Aspects of

— Markov models

— Statistical mechanics

— Evolutionary game theory
— Test problem generators

— Visualization

 Evolutionary
3 Computing

55

386

EC extensions:

» Agent-oriented problems:

Evolutionary

Multi-Agent

— Individuals more autonomous, active Sisens

— Fitness is a function of other agents
and environment-altering actions

-E.g.,

 Evolutionary Robotics
» HIV evolution

 Evolution of cooperation

54

EC extensions:

* Need better hybrid systems:

— Memetic algorithms: EAs and local
search

— EAs and ANNs
— EAs and machine learning

— EAs and agent-based models

The Future ...

» Continuing development of extensions

* Expanding contact with other communities:
— Heuristic search
—Al
— Optimization
— Automated design

57

Broader picture:

“Computational Intelligence”

COMPUTATIONAL

* Preferred by many over “Artificial Intelligence”
— Evolutionary computation
— Fuzzy systems

— Artificial neural networks >

< Advances in
: Computational
: Intelligence

= 59

387

Broader picture:

“Natural Computation” -

» Computational models inspired by nature:
— Evolutionary computation
— Simulated annealing
— Ant colony optimization

— Particle swarm optimization

— Artificial neural networks

— Artificial immune systems

58

Conclusions:

» Powerful tool for your toolbox.
* Complements other techniques.

* Best viewed as a paradigm to be instantiated,
guided by theory and practice.

* Success a function of particular instantiation.

60

More information:

 Journals:
— Evolutionary Computation (MIT Press)
— Trans. on Evolutionary Computation (IEEE)
— Genetic Programming & Evolvable Hardware
» Conferences:
— GECCO, CEC, PPSN, FOGA, ...

e Internet:

— www.cs.gmu.edu/~eclab

* My book:

— Evolutionary Computation: A Unified Approach
* MIT Press

61

388

