
Evolution of Neural Networks

Risto Miikkulainen

The University of Texas at Austin and
Sentient Technologies, Inc.

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany
ACM 978-1-4503-4939-0/17/07.
http://dx.doi.org/10.1145/3067695.3067716

Why Use Neural Networks?
OUTPUTS

INPUTS

I Neural nets powerful in many statistical domains
I E.g. control, pattern recognition, prediction, decision making
I Where no good theory of the domain exists

I Good supervised training algorithms exist
I Learn a nonlinear function that matches the examples
I Utilize big datasets

Why Evolve Neural Networks?

I Traditional role (since 1990s): Solving POMDP tasks
I Both the structure and the weights evolved (no training)
I Power from recurrency

I A new role: Optimization of Deep Learning Architectures
I Components, topology, hyperparameters evolved; weights trained
I Power from complexity

I Allows solving more challenging tasks with neural networks

Outline

I I. Neuroevolution for POMDP tasks
I NE vs. traditional RL
I Basic and advanced NE techniques; Novelty search
I Applications: Control, Robotics, Games, Alife

I II. Optimization of Deep Learning Architectures
I Deep neural networks, Autoencoders, LSTMs
I Computational requirements
I Applications: Vision, language modeling
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Sequential Decision Tasks

I A sequence of decisions creates a sequence of states
I States are only partially known
I Optimal outputs are not known
I We can only tell how well we are doing

I Exist in many important real-world domains
I Robot/vehicle/traffic control
I Computer/manufacturing/process optimization
I Game playing; Artificial Life; Biological Behavior

Standard Reinforcement Learning

Win!

Function
Approximator

Sensors

Value

Decision

I AHC, Q-learning, Temporal Differences
I Generate targets through prediction errors
I Learn when successive predictions differ

I Predictions represented as a value function
I Values of alternatives at each state

I Difficult with large/continuous state and action spaces
I Difficult with hidden states

Neuroevolution (NE) Reinforcement Learning

Neural NetSensors Decision

I NE = constructing neural networks with evolutionary algorithms
I Direct nonlinear mapping from sensors to actions
I Large/continuous states and actions easy

I Generalization in neural networks
I Hidden states (in POMDP) disambiguated through

memory
I Recurrency in neural networks73

I Deep Reinforcement Learning52,59

How Well Does It Work?

Poles Method Evals Succ.
One VAPS (500,000) 0%

SARSA 13,562 59%
Q-MLP 11,331

NE 127
Two NE 3,416

I Difficult RL benchmark: POMDP Pole Balancing
I NE 2-3 orders of magnitude faster than standard RL22

I NE can solve harder problems
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Neuroevolution for POMDP

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Input variables describe the state observed through sensors
I Output variables describe actions
I Network between input and output:

I Recurrent connections implement memory
I Memory helps with POMDP

Basic Neuroevolution (1)

I Evolving connection weights in a population of networks 44,58,87,88

I Chromosomes are strings of connection weights (bits or real)
I E.g. 10010110101100101111001
I Usually fully connected, fixed topology
I Initially random

Basic Neuroevolution (2)

I Parallel search for a solution network
I Each NN evaluated in the task
I Good NN reproduce through crossover, mutation
I Bad thrown away

I Natural mapping between genotype and phenotype
I GA and NN are a good match!

Problems with Basic Neuroevolution

I Evolution converges the population (as usual with EAs)
I Diversity is lost; progress stagnates

I Competing conventions
I Different, incompatible encodings for the same solution

I Too many parameters to be optimized simultaneously
I Thousands of weight values at once
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Advanced NE 1: Evolving Partial Networks

I Evolving individual neurons to cooperate in networks1,45,51

I E.g. Enforced Sub-Populations (ESP19)
I Each (hidden) neuron in a separate subpopulation
I Fully connected; weights of each neuron evolved
I Populations learn compatible subtasks

I Can be applied at the level of weights, and modules

Evolving Neurons with ESP
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I Evolution encourages diversity automatically
I Good networks require different kinds of neurons

I Evolution discourages competing conventions
I Neurons optimized for compatible roles

I Large search space divided into subtasks
I Optimize compatible neurons

Advanced NE 2: Evolutionary Strategies

I Evolving complete networks with ES (CMA-ES28)

I Small populations, no crossover

I Instead, intelligent mutations
I Adapt covariance matrix of mutation distribution
I Take into account correlations between weights

I Smaller space, less convergence, fewer conventions

Advanced NE 3: Evolving Network Structure

I Optimizing connection weights and network topology2,15,17,89

I E.g. Neuroevolution of Augmenting Topologies (NEAT66,69)

I Based on Complexification

I Of networks:
I Mutations to add nodes and connections

I Of behavior:
I Elaborates on earlier behaviors
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Why Complexification?

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

I Challenge with NE: Search space is very large
I Complexification keeps the search tractable

I Start simple, add more sophistication
I Incremental construction of intelligent agents

Advanced NE 4: Indirect Encodings (1)

I Instructions for constructing the network evolved
I Instead of specifying each unit and connection2,15,43,64,89

I E.g. Cellular Encoding (CE24)
I Grammar tree describes construction

I Sequential and parallel cell division
I Changing thresholds, weights
I A “developmental” process that results in a network

Indirect Encodings (2)

I Encode the networks as spatial patterns
I E.g. Hypercube-based NEAT (HyperNEAT9)
I Evolve a neural network (CPPN)

to generate spatial patterns
I 2D CPPN: (x, y) input! grayscale output
I 4D CPPN: (x

1

, y
1

, x
2

, y
2

) input! w output
I Connectivity and weights can be evolved indirectly
I Works with very large networks (millions of connections)

Properties of Indirect Encodings (1)

I Smaller search space

I Avoids competing conventions

I Describes classes of networks
efficiently

I Modularity, reuse of structures
I Recurrency symbol in CE: XOR! parity
I Repetition with variation in CPPNs
I Useful for evolving morphology
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Properties of Indirect Encodings (2)

I Not fully explored (yet)
I See e.g. CS track at GECCO

I Promising current work
I More general L-systems;

developmental codings;
embryogeny70

I Scaling up spatial coding10,18

I Genetic Regulatory Networks54

I Evolution of symmetries80

Further NE Techniques

I Incremental and multiobjective evolution21,61,75,88

I Utilizing population culture5,40,72

I Utilizing evaluation history37

I Evolving NN ensembles and modules29,36,50,55,84

I Evolving transfer functions and learning rules7,56,71

I Bilevel optimization of NE35

I Evolving LSTMs for strategic behavior
I Combining learning and evolution
I Evolving for novelty

Extending to LSTMs

I A re-discovered way to implement recurrency in NNs

I Allow integrating inputs over longer time scales
I Recognize and implement strategic behavior?

I Can neuroevolution take advantage of LSTMS as well?

Adapting to Opponent Strategies in Poker (1)

I Evolve weights of poker players34

I 10-LSTM Game Module integrates over each game
I A 1-LSTM Opponent Module integrates over each opponent
I A fully connected Decision Network makes moves
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Adapting to Opponent Strategies in Poker (2)

Opponent Evolved LSTM Slumbot
Scared Limper 999 792
Calling Machine 40368 2761
Hothead Maniac 36158 4988
Candid Statistician 9800 4512

I Does not evolve a single strategy against all opponents
I Changes the strategy according to games played
I Better than Slumbot against these opponents (in mBB)

I Indeed LSTMs extend neuroevolution to strategic behavior

Combining Learning and Evolution

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Good learning algorithms exist for NN
I Why not use them as well?

I Evolution provides structure and initial weights
I Fine tune the weights by learning

Lamarckian Evolution

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On 
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

I Lamarckian evolution is possible6,24

I Coding weight changes back to chromosome
I Difficult to make it work

I Diversity reduced; progress stagnates

Baldwin Effect

Fi
tn

es
s With learning

Without learning

Genotype

I Learning can guide Darwinian evolution as well4,24,25

I Makes fitness evaluations more accurate
I With learning, more likely to find the optimum if close
I Can select between good and bad individuals better

I Lamarckian not necessary
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Where to Get Learning Targets?

Where to Get Learning Targets?

sensory input

predicted

proprioceptive
input

motor output sensory input

...And Uses Them to Train
Game−Playing Agents

...While Machine Learning System
Captures Example Decisions...
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Prepare to Die!
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Human Plays Games...

I From a related task48

I Useful internal representations

I Evolve the targets49

I Useful training situations

I From Q-learning equations85

I When evolving a value function

I Utilize Hebbian learning16,67,78

I Correlations of activity

I From the population40,72

I Social learning

I From humans6

I E.g. expert players, drivers

Evolving for Novelty
(All are 100% evolved: no retouching) 

47 

I Motivated by humans as fitness functions
I E.g. picbreeder.com, endlessforms.com62

I CPPNs evolved; Human users select parents
I No specific goal

I Interesting solutions preferred
I Similar to biological evolution?

Novelty Search

I Evolutionary algorithms maximize a performance objective
I But sometimes hard to achieve it step-by-step

I Novelty search rewards candidates that are simply different31,68

I Stepping stones for constructing complexity (Meyerson
GECCO’17)41,42

Novelty Search Demo (1)

I 1D function to optimize; Fitness-based search would converge

I Novelty search finds stepping stones

I DEMO
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Novelty Search Demo (2)

I Fitness-based evolution is rigid
I Requires gradual progress

I Novelty-based evolution is more innovative, natural31,68

I Allows building on stepping stones
I As a secondary objective—or even the only one!

I DEMO

Neuroevolution Applications

Control
Pole-Balancing

Satellite Asst. Helicopter
Rocket

Robotics
Soccer

Driving Bipedal Multilegged

Games

a b

1

2

3

4

5

6

7

8

c d e f g h

Othello NERO Pac-Man Unreal

Alife
Duel

Predators Hyenas/Zebras Virtual Creatures

Robotics: Multilegged Walking

I Navigate rugged terrain better than wheeled robots
I Controller design is more challenging

I Leg coordination, robustness, stability, fault-tolerance, ...
I Hand-design is generally difficult and brittle
I Large design space often makes evolution ineffective

ENSO: Symmetry Evolution Approach

x2

y2

y4

x4

Module 3

Module 1

Module 2

Module 4
x1

y1

y3

x3

1 2

3 4

I Symmetry evolution approach77,79,80

I A neural network controls each leg
I Connections between controllers evolved

through symmetry breaking
I Connections within individual controllers evolved

through neuroevolution
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Versatile, Robust Gaits

Different gaits Obstacle field

I Different gaits on flat ground
I Pronk, pace, bound, trot
I Changes gait to get over obstacles

I DEMO

Innovative, Effective Solutions

Evolved Handcoded

I Asymmetric gait on inclines
I One leg pushes up, others forward
I Hard to design by hand

I DEMO

Transfer to a Physical Robot I

Simulated Real

I Built at Hod Lipson’s lab (Cornell U.)
I Standard motors, battery, controller board
I Custom 3D-printed legs, attachments
I Simulation modified to match

I General, robust transfer76

I Noise to actuators during simulation
I Generalizes to different surfaces, motor speeds

I DEMO

Transfer to a Physical Robot II

Evolved Handcoded

I Evolved a solution for three-legged walking!

I DEMO
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Games: Evolving Humanlike Behavior

I Botprize competition, 2007-2012
I Turing Test for game bots ($10,000 prize)

I Three players in Unreal Tournament 2004:
I Human confederate: tries to win
I Software bot: pretends to be human
I Human judge: tries to tell them apart!

Evolving an Unreal Bot

I Evolve effective fighting behavior
I Human-like with resource limitations (speed, accuracy...)

I Also scripts & learning from humans (unstuck, wandering...)

I 2007-2011: bots 25-30% vs. humans 35-80% human

I 6/2012 best bot better than 50% of the humans

I 9/2012...?

Success!!!

I In 2012, two teams reach the 50% mark!
I Fascinating challenges remain:

I Judges can still differentiate in seconds
I Judges lay cognitive, high-level traps
I Team competition: collaboration as well

I DEMO

Alife: Evolved Virtual Creatures

Body

Brain

I Body-Brain Coevolution32,33,65

I Body: Blocks, muscles, joints, sensors
I Brain: A neural network (with general nodes)
I Evolved together in a physical simulation

I Syllabus, Encapsulation, Pandemodium
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Syllabus

I Constructed by hand; body and brain evolved together

Encapsulation

I Once evolved, a trigger node is added
I DEMO

Pandemonium

I Conflicting behaviors: Highest trigger wins
I DEMO

Evolving Fight-or-Flight Behavior

I Step-by-step construction of complex behavior
I Primitives and three levels of complexity
I DEMOS
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Turn to Light

I First level of complexity
I Selecting between alternative primitives

Move to light

I First level of complexity (Sims 1994)
I Selecting between alternative primitives

Strike

I Alternative behavior primitive

Attack

I Second level of complexity (beyond Sims and others)
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Turn from Light

I Alternative first-level behavior

Retreat

I Alternative second-level behavior

Fight or Flight

I Third level of complexity

Insight: Body/Brain Coevolution

I Evolving body and brain together poses strong constraints
I Behavior appears believable
I Worked well also in BotPrize (Turing test for game bots)60

I Possible to construct innovative, situated behavior
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Numerous Other Applications

I Creating art, music, dance...8,12,27,63

I Theorem proving11

I Time-series prediction39

I Computer system optimization20

I Manufacturing optimization23

I Process control optimization81,82

I Game strategy optimization3

I Measuring top quark mass86

I Etc.

II. Optimization of DL Architectures

Szegedy et al. 2014

I Big Data and Big Compute available since 2000s
I Machine learning systems have scaled up

I E.g. Deep Learning ideas existed since the 1990s
I With million times more data & compute, they now work!

I A new problem: How to configure such systems?

Configuring Complex Systems

I A new general approach to engineering
I Humans design just the framework
I Machines optimize the details

I Programming by optimization26

E.g. Optimizing NE in Helicopter Hovering

I A challenging benchmark
I RL, NE solutions exist

I Eight parameters optimized by hand30

I Hard for a human designer to do more
I With EA, increased to 15

I !Significantly better performance35
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Evolving Deep Learning Architectures

Szegedy et al. 2014

I Different (complex) architectures for different tasks
I Components matter—how to design them?
I Architecture matters—how to compose it?
I Hyperparameters matter—how to set them?

I Need to optimize architectures for each task

State of the Art in ENN/DL

Fernando et al. 2016

I Partial optimization only, due to limited resources
I Evolve DL hyperparameters38

I Evolve a CPPN for weights; Lamarckian training13

I Evolve weights with limited evaluation47

I Emerging area starting in 2016

State of the Art in ENN/DL (2017)

Esteban et al. 2017 Fernando et al. 2017

I PathNet (DeepMind)
I Pathways across multiple supervised and RL tasks14

I Evolutionary Strategy (OpenAI)
I Using ES instead of RL to construct networks for games57

I NEAT (Google Brain)
I Evolution of deep networks on CIFAR-10 and CIFAR-10053

Computational Requirements

I Requires significant computational resources
I Each DL network trains for 2 days on a GPU

I E.g. Sentient DarkCycle Distributed AI platform
I Developed to harness idle cycles around the world
I Includes 2M CPUs, 5K GPUs
I In trading, 40 trillion candidates evaluated / year
I Peak performance 9 Petaflops - #6 in the world

465



Initial Approach: NEAT

I Use NEAT to discover optimal network topology
I Select components and connect them

I Also optimize hyperparameters
I Sizes of layers, kernels, etc.

I Results in a complex network architectures
I Tend to have less structure than best DL networks

Advanced Approach: Cooperative Coevolution

I Many of the best architectures are modular
I E.g. Googlenet, residual networks...
I Implements stepwise refinement?

I Does not emerge in NEAT by itself
I Solution: Evolve modules and blueprints

I cf. ESP, bilevel evolution; Hierarchical SANE46

Cooperative Coevolution (2)

I Evolution at two levels
I Module subpopulations optimize building blocks
I Blueprint population optimizes their combinations

I Fitness of the complete network drives evolution
I Applies to both CNN (vision), LSTM (language) networks

Evaluation in CIFAR-10
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Evaluation in Language Modeling (1)

I Evolution of LSTM units with skip and gated connections
I At the blueprint level, combined into layers

Evaluation in Language Modeling (2)

I Discovered a new LSTM unit with cell-to-cell connection
I In a 2-layer stacked LSTM, improves perplexity by 5%

Image Captioning Application

Vinyals et al. 2015

I Generating image captions for the blind
I Automatically on a magazine website
I Added 17,000 iconic image/caption pairs to MSCOCO
I Evolves elements from Show & Tell network83

Evolved Image Captioning Network

I Complex network with
repeated modules, a
bypass pathway

I Improves 9% over
Show and Tell baseline
on MSCOCO

I Good on 50% of iconic,
20% of all images
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Future Work on ENN/DL

I Utilize HPC such as DarkCycle
I Extend the search space for DL

I Evolve with more components: residuals, timing
I Utilize ensembles for LSTMs

I Evolve diversity through novelty search
I A promising start on image captioning
I Automated design of DL for new applications

Conclusion

I Neuroevolution is a powerful approach for POMDPs
I Discovers robust, believable behavior
I Games, robotics, control, alife...

I Evolution makes more complex DL architectures possible
I Structure, components, hyperparameters fit to the task
I Vision, speech, language,...
I Automatic design of learning machines

Further Material

I www.cs.utexas.edu/users/risto/talks/enn-tutorial
I Slides and references
I Demos
I A step-by-step neuroevolution exercise (evolving behavior

in the NERO game)

I www.scholarpedia.org/article/Neuroevolution
I A short summary of neuroevolution
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