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We are happy to answer questions at any time.
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Topics

3

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

• Normal Distribution, Rank-Based Recombination
• Step-Size Adaptation (CSA)
• Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work 
effectively on your problem?

• Restart, Increasing Population Size
• Restricted Covariance Matrix
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Task: minimize an objective function (fitness function, loss
function) in continuous domain

f : X ✓ Rn ! R, x 7! f (x)

Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful
I problem domain specific knowledge is used only within the black

box, e.g. within an appropriate encoding
Search costs: number of function evaluations
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Problem Statement Black Box Optimization and Its Difficulties

Problem Statement
Continuous Domain Search/Optimization

Goal
I fast convergence to the global optimum

. . . or to a robust solution x
I solution x with small function value f (x) with least search cost

there are two conflicting objectives

Typical Examples
I shape optimization (e.g. using CFD) curve fitting, airfoils
I model calibration biological, physical
I parameter calibration controller, plants, images

Problems
I exhaustive search is infeasible
I naive random search takes too long
I deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
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Problem Statement Black Box Optimization and Its Difficulties

Objective Function Properties
We assume f : X ⇢ Rn ! R to be non-linear, non-separable and to
have at least moderate dimensionality, say n 6⌧ 10.
Additionally, f can be

non-convex
multimodal

there are possibly many local optima
non-smooth

derivatives do not exist
discontinuous, plateaus
ill-conditioned
noisy
. . .

Goal : cope with any of these function properties
they are related to real-world problems
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Problem Statement Black Box Optimization and Its Difficulties

What Makes a Function Difficult to Solve?
Why stochastic search?

non-linear, non-quadratic, non-convex
on linear and quadratic functions much better

search policies are available

ruggedness
non-smooth, discontinuous, multimodal, and/or

noisy function

dimensionality (size of search space)
(considerably) larger than three

non-separability
dependencies between the objective variables

ill-conditioning
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Problem Statement Black Box Optimization and Its Difficulties

Ruggedness
non-smooth, discontinuous, multimodal, and/or noisy

Fi
tn

es
s

−4 −3 −2 −1 0 1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

cut from a 5-D example, (easily) solvable with evolution strategies
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Problem Statement Black Box Optimization and Its Difficulties

Curse of Dimensionality
The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]10. To get similar
coverage in terms of distance between adjacent points requires
20

10 ⇡ 10

13 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Problem Statement Non-Separable Problems

Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min

(x
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) it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively
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f (x
1

, . . . , x

n

) =
nX

i=1

f

i

(x
i

)

Rastrigin function

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 9 / 8111

Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system
f : x 7! f (x) separable
f : x 7! f (Rx) non-separable

R rotation matrix
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1Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). ”Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
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Problem Statement Ill-Conditioned Problems

Ill-Conditioned Problems
Curvature of level sets
Consider the convex-quadratic function
f (x) = 1

2

(x�x⇤)TH(x�x⇤) = 1

2

P
i

h

i,i (xi
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⇤
i

)2+ 1
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)
H is Hessian matrix of f and symmetric positive definite

gradient direction �f

0(x)T

Newton direction �H�1

f

0(x)T

Ill-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10

10

are not unusual in real world problems.

If H ⇡ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H�1) is necessary.
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Problem Statement Ill-Conditioned Problems

What Makes a Function Difficult to Solve?
. . . and what can be done

The Problem Possible Approaches

Dimensionality exploiting the problem structure
separability, locality/neighborhood, encoding

Ill-conditioning second order approach
changes the neighborhood metric

Ruggedness non-local policy, large sampling width (step-size)
as large as possible while preserving a

reasonable convergence speed

population-based method, stochastic, non-elitistic

recombination operator
serves as repair mechanism

restarts
. . . metaphors
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Problem Statement Ill-Conditioned Problems

Metaphors
Evolutionary Computation Optimization/Nonlinear Programming

individual, offspring, parent  ! candidate solution
decision variables
design variables
object variables

population  ! set of candidate solutions
fitness function  ! objective function

loss function
cost function
error function

generation  ! iteration

. . . methods: ESs
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Questions?

15

Topics

16

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

• Normal Distribution, Rank-Based Recombination
• Step-Size Adaptation (CSA)
• Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work 
effectively on your problem?

• Restart, Increasing Population Size
• Restricted Covariance Matrix
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : Rn ! R
Initialize distribution parameters ✓, set population size � 2 N
While not terminate

1 Sample distribution P (x|✓)! x
1

, . . . , x� 2 Rn

2 Evaluate x
1

, . . . , x� on f

3 Update parameters ✓  F✓(✓, x
1

, . . . , x�, f (x
1

), . . . , f (x�))

Everything depends on the definition of P and F✓

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined
via operators on a population, in particular, selection, recombination
and mutation
Natural template for (incremental) Estimation of Distribution Algorithms
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Evolution Strategies (ES) A Search Template

The CMA-ES
Input: m 2 Rn, � 2 R+, �
Initialize: C = I, and pc = 0, p� = 0,
Set: cc ⇡ 4/n, c� ⇡ 4/n, c

1

⇡ 2/n

2, cµ ⇡ µ
w

/n

2, c

1

+ cµ  1, d� ⇡ 1 +
pµ

w

n

,
and w

i=1...� such that µ
w

= 1Pµ
i=1

w

i

2

⇡ 0.3 �

While not terminate
x

i

= m + � y
i

, y
i

⇠ N
i

(0, C) , for i = 1, . . . , � sampling

m Pµ
i=1

w

i

x
i:� = m + �y

w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

pc  (1� cc) pc + 1I{kp�k<1.5
p

n}
p

1� (1� cc)2

p
µ

w

y
w

cumulation for C

p�  (1� c�) p� +
p

1� (1� c�)2

p
µ

w

C� 1

2 y
w

cumulation for �

C (1� c

1

� cµ) C + c

1

pc pc
T + cµ

Pµ
i=1

w

i

y
i:�yT

i:� update C

�  � ⇥ exp

⇣
c�
d�

⇣
kp�k

EkN(0,I)k � 1

⌘⌘
update of �

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding
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Evolution Strategies (ES) A Search Template

Evolution Strategies

New search points are sampled normally distributed

x
i

⇠ m + � N
i

(0, C) for i = 1, . . . , �

as perturbations of m, where x
i

, m 2 Rn, � 2 R+, C 2 Rn⇥n

where
the mean vector m 2 Rn represents the favorite solution
the so-called step-size � 2 R+ controls the step length
the covariance matrix C 2 Rn⇥n determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and �.
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Evolution Strategies (ES) The Normal Distribution

Why Normal Distributions?

1 widely observed in nature, for example as phenotypic traits
2 only stable distribution with finite variance

stable means that the sum of normal variates is again
normal:

N (x,A) +N (y,B) ⇠ N (x + y, A + B)

helpful in design and analysis of algorithms
related to the central limit theorem

3 most convenient way to generate isotropic search points
the isotropic distribution does not favor any direction, rotational

invariant
4 maximum entropy distribution with finite variance

the least possible assumptions on f in the distribution shape
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Evolution Strategies (ES) The Normal Distribution

Normal Distribution
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Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution
Any multi-variate normal distribution N (m,C) is uniquely determined by its mean
value m 2 Rn and its symmetric positive definite n ⇥ n covariance matrix C.

The mean value m

determines the displacement (translation)

value with the largest density (modal value)

the distribution is symmetric about the distribution
mean
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2−D Normal Distribution

The covariance matrix C

determines the shape

geometrical interpretation: any covariance matrix can be uniquely identified with
the iso-density ellipsoid {x 2 Rn | (x � m)TC�1(x � m) = 1}
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the distribution is symmetric about the distribution
mean

−5
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5

−5

0

5
0

0.1

0.2

0.3

0.4

2−D Normal Distribution

The covariance matrix C

determines the shape

geometrical interpretation: any covariance matrix can be uniquely identified with
the iso-density ellipsoid {x 2 Rn | (x � m)TC�1(x � m) = 1}
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Evolution Strategies (ES) The Normal Distribution

. . . any covariance matrix can be uniquely identified with the iso-density ellipsoid
{x 2 Rn | (x � m)TC�1(x � m) = 1}

Lines of Equal Density

N
�
m,�2I

�
⇠ m + �N (0, I)

one degree of freedom �
components are
independent standard
normally distributed

N
�
m,D2

�
⇠ m + DN (0, I)

n degrees of freedom
components are
independent, scaled

N (m,C)⇠ m + C
1

2 N (0, I)
(n2 + n)/2 degrees of freedom

components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A ⇥N (0, I) ⇠ N

�
0,AAT

�
holds for all A.
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N (0,C) � AN (0, I)

� BDN (0, I)

� N1(0, 1)d1b1 + · · · + Nn(0, 1)dnbn

for any A s.t. C = AAT

C = BD2BT (Eigen decomposition of C)

di: square root of the eigenvalue of C

bi: eigenvector of C, corresponding to di

d1 · b1

d2 · b2
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Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

kN (0, I) k �! N
⇣p

n � 1/2, 1/2
⌘

with modal value
p

n � 1

yet: maximum entropy distribution
also consider a difference between two vectors:
kN (0, I) � N (0, I) k ⇠ kN (0, I) + N (0, I) k ⇠ p

2kN (0, I) k
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2−D Normal Distribution

. . .
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Evolution Strategies (ES) The Normal Distribution

. . . any covariance matrix can be uniquely identified with the iso-density ellipsoid
{x 2 Rn | (x � m)TC�1(x � m) = 1}

Lines of Equal Density

What is the implication for the distribution in this picture (considering large
dimension)?

. . . ESs
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68%, 95%, 99.7% of samples drop into (x � m)TC�1(x � m) � n � 1
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2 , ± 32

2

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies
Terminology
Let µ: # of parents, �: # of offspring

Plus (elitist) and comma (non-elitist) selection
(µ + �)-ES: selection in {parents} [ {offspring}
(µ, �)-ES: selection in {offspring}

(1 + 1)-ES
Sample one offspring from parent m

x = m + � N (0, C)

If x better than m select

m x

. . . why?
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The (µ/µ,�)-ES
Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution point x

i

= m + � N
i

(0, C)| {z }
=: y

i

= m + � y
i

Let x
i:� the i-th ranked solution point, such that f (x

1:�)  · · ·  f (x�:�).
The new mean reads

m 
µX

i=1

w

i

x
i:� = m + �

µX

i=1

w

i

y
i:�

| {z }
=: y

w

where

w

1

� · · · � wµ > 0,
Pµ

i=1

w

i

= 1, 1Pµ
i=1

w

i

2

=: µ
w

⇡ �
4

The best µ points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
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Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions
Rank-based algorithms
Update of all parameters uses only the ranks

f (x
1:�)  f (x

2:�)  ...  f (x�:�)

g(f (x
1:�))  g(f (x

2:�))  ...  g(f (x�:�)) 8g

g is strictly monotonically increasing
g preserves ranks3

3Whitley 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,
ICGA
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Basic Invariance in Search Space

translation invariance
is true for most optimization algorithms

f (x) $ f (x � a)

Identical behavior on f and fa

f : x 7! f (x), x(t=0) = x
0

fa : x 7! f (x � a), x(t=0) = x
0

+ a

No difference can be observed w.r.t. the argument of f
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Evolution Strategies (ES) Summary

Summary

39

On 20D Sphere Function: f (x) =
PN

i=1[x]
2
i

ES without adaptation can’t approach the optimum ) adaptation required
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PN
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i

ES without adaptation can’t approach the optimum ) adaptation required

Step-Size Control

Evolution Strategies
Recalling

New search points are sampled normally distributed

x
i

⇠ m + � N
i

(0, C) for i = 1, . . . , �

as perturbations of m, where x
i

, m 2 Rn, � 2 R+, C 2 Rn⇥n

where
the mean vector m 2 Rn represents the favorite solution
and m Pµ

i=1

w

i

x
i:�

the so-called step-size � 2 R+ controls the step length
the covariance matrix C 2 Rn⇥n determines the shape of
the distribution ellipsoid

The remaining question is how to update � and C.
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Why Step-Size Control?
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(scale invariant)

(1+1)-ES
(red & green)

f (x) =
nX

i=1

x

2

i

in [�2.2, 0.8]n

for n = 10
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5w, 10)-ES, 11 runs

km
�

x⇤
k=

p
f
(x

)

f (x) =
nX

i=1

x

2

i

for n = 10 and
x0 2 [�0.2, 0.8]n

with optimal step-size �
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(5/5w,10)-ES, 11 runs
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5w, 10)-ES, 2⇥11 runs

km
�

x⇤
k=

p
f
(x

)

f (x) =
nX

i=1

x

2

i

for n = 10 and
x0 2 [�0.2, 0.8]n

with optimal versus adaptive step-size � with too small initial �
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(5/5w,10)-ES, 2 times 11 runs
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5w, 10)-ES

km
�

x⇤
k=

p
f
(x

)

f (x) =
nX

i=1

x

2

i

for n = 10 and
x0 2 [�0.2, 0.8]n

comparing number of f -evals to reach kmk = 10

�5: 1100�100

650

⇡ 1.5
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Why Step-Size Control?
(5/5w, 10)-ES

km
�

x⇤
k=

p
f
(x

)

f (x) =
nX

i=1

x

2

i

in [�0.2, 0.8]n

for n = 10

comparing optimal versus default damping parameter d�: 1700

1100

⇡ 1.5
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(5/5w,10)-ES
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Why Step-Size Control?
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Step-Size Control Why Step-Size Control

Methods for Step-Size Control
1/5-th success ruleab, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

�-self-adaptationc, applied with “,”-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

path length controld (Cumulative Step-size Adaptation, CSA)e

self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
cSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.

9(2)
eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN IV
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)
The Concept of Cumulative Step-Size Adaptation

x
i

= m + � y
i

m  m + �y
w

Measure the length of the evolution path
the pathway of the mean vector m in the generation sequence

+
decrease �

+
increase �

loosely speaking steps are

perpendicular under random selection (in expectation)
perpendicular in the desired situation (to be most efficient)
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Step-Size Control Path Length Control (CSA)

Path Length Control (CSA)
The Equations

Initialize m 2 Rn, � 2 R+, evolution path p� = 0,
set c� ⇡ 4/n, d� ⇡ 1.

m  m + �y
w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

p�  (1� c�) p� +
q

1� (1� c�)2

| {z }
accounts for 1�c�

p
µ

w|{z}
accounts for w

i

y
w

�  � ⇥ exp

✓
c�

d�

✓ kp�k
EkN (0, I) k � 1

◆◆

| {z }
>1 () kp�k is greater than its expectation

update step-size
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Step-Size Control Path Length Control (CSA)

(5/5, 10)-CSA-ES, default parameters

km
�

x⇤
k

f (x) =
nX

i=1

x

2

i

in [�0.2, 0.8]n

for n = 30
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Step-Size Control

Step-Size Control: Summary

51

Why Step-Size Control?
to achieve linear convergence

Cumulative Step-Size Adaptation
efficient and robust for �  N
inefficient (1) � � N, (2) function with ineffective axes

Alternative Step-Size Adaptation Mechanisms
Two-Point Step-Size Adaptation
Median Success Rule, Population Success Rule

the effective adaptation of the overall population diversity seems yet to

pose open questions, in particular with recombination or without entire

control over the realized distribution.

a

aHansen et al. How to Assess Step-Size Adaptation Mechanisms in Randomised
Search. PPSN 2014

Summary
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Step-Size Control: Summary

52

On 20D TwoAxes Function: f (x) =
PN/2

i=1 [Rx]2i + a2 PN
i=N/2+1[Rx]2i , R: orthogonal

convergence speed of CSA-ES becomes lower as the function becomes ill conditioned
(a2 becomes greater) ) covariance matrix adaptation required
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On 20D TwoAxes Function: f (x) =
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i=1 [Rx]2i + a2 PN
i=N/2+1[Rx]2i , R: orthogonal

convergence speed of CSA-ES becomes lower as the function becomes ill conditioned
(a2 becomes greater) ) covariance matrix adaptation required

Covariance Matrix Adaptation (CMA)

Evolution Strategies
Recalling

New search points are sampled normally distributed

x
i

⇠ m + � N
i

(0, C) for i = 1, . . . , �

as perturbations of m, where x
i

, m 2 Rn, � 2 R+, C 2 Rn⇥n

where
the mean vector m 2 Rn represents the favorite solution
the so-called step-size � 2 R+ controls the step length
the covariance matrix C 2 Rn⇥n determines the shape of
the distribution ellipsoid

The remaining question is how to update C.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

initial distribution, C = I

. . . equations
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Covariance Matrix Adaptation
Rank-One Update
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initial distribution, C = I
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Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

y
w

, movement of the population mean m (disregarding �)

. . . equations
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Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

mixture of distribution C and step y
w

,
C 0.8⇥ C + 0.2⇥ y

w

yT

w

. . . equations
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Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
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=
Pµ
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w

i

y
i:�, y

i

⇠ N
i

(0, C)

new distribution (disregarding �)

. . . equations
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Covariance Matrix Adaptation
Rank-One Update
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m  m + �y
w

, y
w

=
Pµ

i=1

w

i

y
i:�, y

i

⇠ N
i

(0, C)

new distribution,
C 0.8⇥ C + 0.2⇥ y

w

yT

w

the ruling principle: the adaptation increases the likelihood of
successful steps, y

w

, to appear again
another viewpoint: the adaptation follows a natural gradient
approximation of the expected fitness

. . . equations
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update
Initialize m 2 Rn, and C = I, set � = 1, learning rate c

cov

⇡ 2/n

2

While not terminate

x
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= m + � y
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, y
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⇠ N
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(0, C) ,

m  m + �y
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=
µX
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C  (1� c

cov
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cov

µ
w

y
w

yT

w|{z}
rank-one

where µ
w

=
1Pµ

i=1

w

i

2

� 1

The rank-one update has been found independently in several domains6 7 8 9

6Kjellström&Taxén 1981. Stochastic Optimization in System Design, IEEE TCS
7Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix

adaptation, ICEC
8Ljung 1999. System Identification: Theory for the User
9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 46 / 8163

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

C (1� c

cov

)C + c

cov

µ
w

y
w

yT

w

covariance matrix adaptation
learns all pairwise dependencies between variables

off-diagonal entries in the covariance matrix reflect the dependencies

conducts a principle component analysis (PCA) of steps y
w

,
sequentially in time and space

eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

learns a new rotated problem representation
components are independent (only)

in the new representation

learns a new (Mahalanobis) metric
variable metric method

approximates the inverse Hessian on quadratic functions
transformation into the sphere function

for µ = 1: conducts a natural gradient ascent on the distribution N
entirely independent of the given coordinate system

. . . cumulation, rank-µ
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path
Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps y

w

is used

pc /
gX

i=0

(1� cc)
g�i

| {z }
exponentially
fading weights

y(i)
w

The recursive construction of the evolution path (cumulation):

pc  (1� cc)| {z }
decay factor

pc +
p

1� (1� cc)2

p
µ

w| {z }
normalization factor

y
w|{z}

input =
m�mold

�

where µ
w

= 1P
w

i

2

, cc ⌧ 1. History information is accumulated in the evolution path.
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

“Cumulation” is a widely used technique and also know as

exponential smoothing in time series, forecasting
exponentially weighted mooving average
iterate averaging in stochastic approximation
momentum in the back-propagation algorithm for ANNs
. . .

“Cumulation” conducts a low-pass filtering, but there is more to it. . .

. . . why?
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
Utilizing the Evolution Path
We used y

w

yT

w

for updating C. Because y
w

yT

w

= �y
w

(�y
w

)T the sign of y
w

is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using
the evolution path.

pc  (1� cc)| {z }
decay factor

pc +
p

1� (1� cc)2

p
µ

w| {z }
normalization factor

y
w

C  (1� c

cov

)C + c

cov

pc pc
T

| {z }
rank-one

where µ
w

= 1P
w

i

2

, c

cov

⌧ cc ⌧ 1 such that 1/cc is the “backward time horizon”.
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from about O(n2) to O(n).(a)

aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

Number of f -evaluations divided by dimension on the cigar function f (x) = x

2

1

+ 10

6

P
n

i=2

x

2

i

101 102
102

103

104

dimension

cc = 1 (no cumulation)

cc = 1/
p

n

cc = 1/n

The overall model complexity is n

2 but important parts of the model
can be learned in time of order n

. . . rank µ update
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

Rank-µ Update
x

i

= m + � y
i

, y
i

⇠ N
i

(0,C) ,
m  m + �y

w

y
w

=
Pµ

i=1

w

i

y
i:�

The rank-µ update extends the update rule for large population sizes � using
µ > 1 vectors to update C at each generation step.
The weighted empirical covariance matrix

Cµ =
µX

i=1

w

i

y
i:�yT

i:�

computes a weighted mean of the outer products of the best µ steps and has
rank min(µ, n) with probability one.

with µ = � weights can be negative 10

The rank-µ update then reads

C (1� c

cov

) C + c

cov

Cµ

where c

cov

⇡ µ
w

/n

2 and c

cov

 1.
10Jastrebski and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

x
i

= m + � y
i

, y
i

⇠ N (0, C)

sampling of � = 150

solutions where
C = I and � = 1

Cµ = 1

µ

P
y

i:�yT

i:�
C  (1� 1)⇥ C + 1⇥ Cµ

calculating C where
µ = 50,

w

1

= · · · = wµ = 1

µ ,
and c

cov

= 1

mnew  m + 1

µ

P
y

i:�

new distribution
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

Rank-µ CMA versus Estimation of Multivariate Normal Algorithm EMNAglobal
11

x
i

= mold + y
i

, y
i

⇠ N (0, C)

x
i

= mold + y
i

, y
i

⇠ N (0, C)

sampling of � = 150

solutions (dots)

C 1

µ

P
(x

i:��mold)(x

i:��mold)
T

C 1

µ

P
(x

i:��mnew)(x

i:��mnew)
T

calculating C from µ = 50

solutions

mnew = mold + 1

µ

P
y

i:�

mnew = mold + 1

µ

P
y

i:�

new distribution

rank-µ CMA
conducts a
PCA of
steps

EMNAglobal

conducts a
PCA of
points

mnew is the minimizer for the variances when calculating C

11 Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E.
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of distribution algorithms. pp. 75-102
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-µ Update

The rank-µ update

increases the possible learning rate in large populations
roughly from 2/n

2 to µ
w

/n

2

can reduce the number of necessary generations roughly from
O(n2) to O(n) (12)

given µ
w

/ � / n

Therefore the rank-µ update is the primary mechanism whenever a
large population size is used

say � � 3 n + 10

The rank-one update
uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n2) to O(n) .

Rank-one update and rank-µ update can be combined

. . . all equations
12Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with

Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Rank-one update

Rank-µ update

Hybrid update
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CMA-ES Summary

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy
Input: m 2 Rn, � 2 R+, �
Initialize: C = I, and pc = 0, p� = 0,
Set: cc ⇡ 4/n, c� ⇡ 4/n, c

1

⇡ 2/n

2, cµ ⇡ µ
w

/n
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pµ

w

n

,
and w

i=1...� such that µ
w

= 1Pµ
i=1

w

i

2

⇡ 0.3 �

While not terminate
x

i

= m + � y
i

, y
i

⇠ N
i

(0, C) , for i = 1, . . . , � sampling

m Pµ
i=1

w

i

x
i:� = m + �y

w

where y
w

=
Pµ

i=1

w

i

y
i:� update mean

pc  (1� cc) pc + 1I{kp�k<1.5
p

n}
p

1� (1� cc)2

p
µ

w

y
w

cumulation for C

p�  (1� c�) p� +
p

1� (1� c�)2

p
µ

w

C� 1

2 y
w

cumulation for �

C (1� c

1

� cµ) C + c

1

pc pc
T + cµ

Pµ
i=1

w

i

y
i:�yT

i:� update C
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update of �

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding
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Topics

81

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

• Normal Distribution, Rank-Based Recombination
• Step-Size Adaptation (CSA)
• Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work 
effectively on your problem?

• Restart, Increasing Population Size
• Restricted Covariance Matrix

What can/should the users do? Strategy Parameters and Initialization

Default Parameter Values

82

CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

related to selection and recombination

�: offspring number, new solutions sampled, population size

µ: parent number, solutions involved in updates of

wi: recombination weights

related to C-update

cc: decay rate for the evolution path, cumulation factor

c1: learning rate for rank-one update of C
cµ: learning rate for rank-µ update of C

related to �-update

c� : decay rate of the evolution path

d� : damping for �-change

The following parameters were identified in carefully chosen experimental set ups.  
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CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

related to selection and recombination

�: offspring number, new solutions sampled, population size

µ: parent number, solutions involved in updates of

wi: recombination weights

related to C-update

cc: decay rate for the evolution path, cumulation factor

c1: learning rate for rank-one update of C
cµ: learning rate for rank-µ update of C

related to �-update

c� : decay rate of the evolution path

d� : damping for �-change

The following parameters were identified in carefully chosen experimental set ups.  

The default values depends only on dimension N. They do in the first place 
not depend on the objective function.
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Initialization and termination conditions

The following should be set or implemented depending on the problem.

related to the initial search distribution

m(0)
: initial mean vector

�(0)
(or

q
C(0)

i,i ): initial (coordinate-wise) standard deviation

related to stopping conditions

max. func. evals.

max. iterations

function value tolerance

min. axis length

stagnation
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Initialization and termination conditions

The following should be set or implemented depending on the problem.

Given an initial search interval [ai, bi] for i = 1, . . . , n, a reasonable choice will be

m(0)
i = (ai + bi)/2 or m(0)

i ⇠ U [ai + ✏, bi � ✏]
q

C(0)
i,i = bi�ai

2 to 4 for i = 1, . . . , n and C(0)
i,j = 0 for i 6= j

related to the initial search distribution

m(0)
: initial mean vector

�(0)
(or

q
C(0)

i,i ): initial (coordinate-wise) standard deviation

related to stopping conditions

max. func. evals.

max. iterations

function value tolerance

min. axis length

stagnation

What can/should the users do? Strategy Parameters and Initialization

Python CMA-ES Implementation

84

https://github.com/CMA-ES/pycma

What can/should the users do? Strategy Parameters and Initialization

Python CMA-ES Demo

85

https://github.com/CMA-ES/pycma

Optimizing 15D Tablet Function

From a practical perspective: 

given an unknown optimisation 
problem, the first thing I tend to do is try 
to improve a given (initial) solution using 
a small initial sigma. Then I (can) 
increase sigma successively (by a factor 
of 10 or more, depending on what I 
have seen in the initial evolution of 
sigma previously) and see whether I find 
the same or better (or worse) solutions. 
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https://github.com/CMA-ES/pycma

Optimizing 15D Tablet Function

What can/should the users do? Multimodality

Multimodality
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Two approaches for multimodal functions: Try again with
• a larger population size
• a smaller initial step-size (and random initial mean vector)
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Two approaches for multimodal functions: Try again with
• a larger population size
• a smaller initial step-size (and random initial mean vector)

A restart with a large population size helps if the objective function 
has a well global structure
• functions such as Schaffer, Rastrigin, BBOB function 15~19
• loosely, unimodal global structure + deterministic noise

What can/should the users do? Multimodality

Multimodality

89

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.
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Multimodality
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Two approaches for multimodal functions: Try again with
• a larger population size
• a smaller initial step-size (and random initial mean vector)

A restart with a small initial step-size helps if the objective function 
has a weak global structure
• functions such as Schwefel, Bi-Sphere, BBOB function 20~24

a large population size has a negative effect
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Restart Strategy

91

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size
• start with the default population size
• double the population size after each trial (parameter sweep)
• may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime
• IPOP regime: restart with increasing population size
• Local search regime: restart with a smaller step-size and  

a smaller population size than the IPOP regime 

Topics

92

1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

• Normal Distribution, Rank-Based Recombination
• Step-Size Adaptation (CSA)
• Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work 
efficiently on your problem?

• Restart, Increasing Population Size
• Restricted Covariance Matrix

What can/should the users do? Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

93

Bottlenecks of the CMA-ES on high dimensional problems

1 O(N2) Time and Space Complexities

I
to store and update C 2 RN⇥N

I
to compute the eigen decomposition of C

2 O(1/N2) Learning Rates for C-Update

I cµ ⇡ µw/N2

I c1 ⇡ 2/N2

⇛ decrease the degrees of freedom of the covariance matrix for
• less time and space complexities
• a higher learning rates that potentially accelerate the adaptation

Exploit prior knowledge on the problem structure such as separability
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Bottlenecks of the CMA-ES on high dimensional problems

1 O(N2) Time and Space Complexities

I
to store and update C 2 RN⇥N

I
to compute the eigen decomposition of C

2 O(1/N2) Learning Rates for C-Update

I cµ ⇡ µw/N2

I c1 ⇡ 2/N2

⇛ decrease the degrees of freedom of the covariance matrix for
• less time and space complexities
• a higher learning rates that potentially accelerate the adaptation

Exploit prior knowledge on the problem structure such as separability
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Bottlenecks of the CMA-ES on high dimensional problems

1 O(N2) Time and Space Complexities

I
to store and update C 2 RN⇥N

I
to compute the eigen decomposition of C

2 O(1/N2) Learning Rates for C-Update

I cµ ⇡ µw/N2

I c1 ⇡ 2/N2

⇛ decrease the degrees of freedom of the covariance matrix for
• less time and space complexities
• a higher learning rates that potentially accelerate the adaptation

Exploit prior knowledge on the problem structure such as separability
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Variants with Restricted Covariance Matrix
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CMA-ES Variants with Restricted Covariance Matrices

Sep-CMA

I C = D. D: Diagonal

VD-CMA

I C = D(I + vvT)D. D: Diagonal, v 2 RN
.

LM-CMA

I C = I +
Pk

i=1 vivT
i . vi 2 RN

.

VkD-CMA

I C = D(I +
Pk

i=1 vivT
i )D. vi 2 RN

.

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and space complexity. In  
    Parallel Problem Solving from Nature - PPSN X, pages 296–305. Springer.
[Akimoto et al., 2014] Akimoto, Y., Auger, A., and Hansen, N. (2014). Comparison-based natural gradient optimization in high dimension. In 
    Proceedings of Genetic and Evolutionary Computation Conference, pages 373–380, Vancouver, BC, Canada.
[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proceedings of 
    Genetic and Evolutionary Computation Conference, pages 397–404.
[Akimoto and Hansen, 2016] Akimoto, Y. and Hansen, N. (2016). Projection-based restricted covariance matrix adaptation for high dimension.
    In Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, Colorado, USA, July 20-24, 2016, page (accepted). ACM.

[Ros and Hansen, 2008] 

[Akimoto et al., 2014]

[Loshchilov, 2014]

[Akimoto and Hansen, 2016]
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Separable CMA (Sep-CMA)
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CMA C

(t+1)
cma = C

(t) + c1

⇣
p

c

p

c

T � C

(t)
⌘
+ cµ

µX

i=1

wi

⇣
(xi � m

(t))(xi � m

(t))T � C

(t)
⌘

SEP [C
(t+1)
sep ]k,k = [C(t)]k,k + c1

⇣
[p

c

]2k � [C(t)]k,k
⌘
+ cµ

µX

i=1

wi

⇣
[xi � m

(t)]2k � [C(t)]k,k
⌘
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CMA C

(t+1)
cma = C

(t) + c1

⇣
p

c

p

c

T � C

(t)
⌘
+ cµ

µX

i=1

wi

⇣
(xi � m

(t))(xi � m

(t))T � C

(t)
⌘

SEP [C
(t+1)
sep ]k,k = [C(t)]k,k + c1

⇣
[p

c

]2k � [C(t)]k,k
⌘
+ cµ

µX

i=1

wi

⇣
[xi � m

(t)]2k � [C(t)]k,k
⌘

(N + 2)/3 times greater than CMA
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Separable-CMA CMA
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Separable-CMA CMA

• CMA needed 10 times more FEs + more CPU time
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Demo: On 100D Separable Ellipsoid Function
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Separable-CMA CMA

• CMA needed 10 times more FEs + more CPU time
• However, Sep-CMA won't be able to solve rotated ellipsoid function  

as efficiently as it solves separable ellipsoid

Summary and Final Remarks
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Summary and Final Remarks

Summary and Final Remarks

The Continuous Search Problem

Difficulties of a non-linear optimization problem are

dimensionality and non-separabitity
demands to exploit problem structure, e.g. neighborhood

cave: design of benchmark functions

ill-conditioning
demands to acquire a second order model

ruggedness
demands a non-local (stochastic? population based?) approach

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 78 / 8198

Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies
1 Multivariate normal distribution to generate new search points

follows the maximum entropy principle

2 Rank-based selection
implies invariance, same performance on g(f (x)) for any increasing g

more invariance properties are featured

3 Step-size control facilitates fast (log-linear) convergence and
possibly linear scaling with the dimension

in CMA-ES based on an evolution path (a non-local trajectory)

4 Covariance matrix adaptation (CMA) increases the likelihood of
previously successful steps and can improve performance by
orders of magnitude

the update follows the natural gradient
C / H�1 () adapts a variable metric

() new (rotated) problem representation
=) f : x 7! g(xTHx) reduces to x 7! xTx

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 79 / 8199
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Limitations
of CMA Evolution Strategies

internal CPU-time: 10

�8

n

2 seconds per function evaluation on a 2GHz
PC, tweaks are available

1 000 000 f -evaluations in 100-D take 100 seconds internal CPU-time

better methods are presumably available in case of

I partly separable problems
I specific problems, for example with cheap gradients

specific methods

I small dimension (n ⌧ 10)
for example Nelder-Mead

I small running times (number of f -evaluations < 100n)
model-based methods

Anne Auger & Nikolaus Hansen CMA-ES July, 2014 80 / 81100

variants with restricted covariance matrix such as Sep-CMA

101

Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python, 
R, Scilab is available (or linked to) at 

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
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