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We are happy to answer questions at any time.

Topics
1. What makes the problem difficult to solve?

2. How does the CMA-ES work?

o Normal Distribution, Rank-Based Recombination
o Step-Size Adaptation (CSA)
e Covariance Matrix Adaptation (Hybrid-CMA)

3. What can/should the users do for the CMA-ES to work
effectively on your problem?

o Restart, Increasing Population Size
¢ Restricted Covariance Matrix

Topics

1. What makes the problem difficult to solve?
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Problem Statement Black Box Optimization and lts Difficulties

Problem Statement
Continuous Domain Search/Optimization
@ Task: minimize an objective function (fitness function, loss
function) in continuous domain
f:XCR"=S R, x—f(x)
@ Black Box scenario (direct search scenario)
X f(x)

—

» gradients are not available or not useful
» problem domain specific knowledge is used only within the black
box, e.g. within an appropriate encoding

@ Search costs: number of function evaluations

Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

i ) ) . ...or to a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

) ) ) . ...orto a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD)
» model calibration
» parameter calibration

curve fitting, airfoils
biological, physical
controller, plants, images

@ Problems
» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

Problem Statement Black Box Optimization and lts Difficulties

Problem Statement

Continuous Domain Search/Optimization

o Goal

» fast convergence to the global optimum

i ) ) . ...orto a robust solution x
» solution x with small function value f(x) with least search cost

there are two conflicting objectives

@ Typical Examples

» shape optimization (e.g. using CFD)
» model calibration
» parameter calibration

curve fitting, airfoils
biological, physical
controller, plants, images

@ Problems

» exhaustive search is infeasible
» naive random search takes too long
» deterministic search is not successful / takes too long

Approach: stochastic search, Evolutionary Algorithms
6
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Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties

We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n <« 10.

Additionally, f can be

Problem Statement Black Box Optimization and lts Difficulties

Objective Function Properties
We assume f : X C R" — R to be non-linear, non-separable and to
have at least moderate dimensionality, say n <« 10.

Additionally, f can be
@ non-convex

multimodal

there are possibly many local optima
non-smooth

derivatives do not exist
discontinuous, plateaus

ill-conditioned
noisy

Goal: cope with any of these function properties
they are related to real-world problems

Problem Statement Black Box Optimization and lts Difficulties

What Makes a Function Difficult to Solve?

Why stochastic search?

@ non-linear, non-quadratic, non-convex
on linear and quadratic functions much better
search policies are available

@ ruggedness
non-smooth, discontinuous, multimodal, and/or
noisy function

@ dimensionality (size of search space)
(considerably) larger than three
@ non-separability
dependencies between the objective variables
@ ill-conditioning

A

gradient.direction Newtan direstion

Ruggedness

non-smooth, discontinuous, multimodal, and/or noisy

Fithess

-4 -3 -2 -1 0 1 2 3 4

cut from a 5-D example, (easily) solvable with evolution strategies

643




Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10" points. 20 points appear now as isolated points in a vast
empty space.
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The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Black Box Optimization and lts Difficulties
Curse of Dimensionality

The term Curse of dimensionality (Richard Bellman) refers to problems
caused by the rapid increase in volume associated with adding extra
dimensions to a (mathematical) space.

Example: Consider placing 20 points equally spaced onto the interval
[0, 1]. Now consider the 10-dimensional space [0, 1]'°. To get similar
coverage in terms of distance between adjacent points requires

209 ~ 10'3 points. 20 points appear now as isolated points in a vast
empty space.

Remark: distance measures break down in higher dimensionalities
(the central limit theorem kicks in)

Consequence: a search policy that is valuable in small dimensions
might be useless in moderate or large dimensional search spaces.
Example: exhaustive search.
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Separable Problems
Definition (Separable Problem)
A function f is separable if

arg min f(x,...
(-xl)"'yxn

,Xn) = (argminf(xl,...),...,argn)lcjnf(...,xn))

= it follows that f can be optimized in a sequence of n independent
1-D optimization processes

Example: Additively 576 %
decomposable functions V69.©
n P © ©

Sty x) = Zfl(x,) 0 O

i=1 - O@

Rastrigin function =) © ©

Problem Statement Non-Separable Problems

Non-Separable Problems
Building a non-separable problem from a separable one (1+2)
Rotating the coordinate system

@ f:x — f(x) separable

@ f :x — f(Rx) non-separable
R rotation matrix

~ 7 ~

’ © 9 © 0)(0 © © ®)
P0OOO6 O, R
’ fm —

© ©
) -0« c: ©
N 0 1 2 3

! Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation distributions in evolution strategies:
The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of Benchmark Functions; A
survey of some theoretical and practical aspects of genetic algorithms.” BioSystems, 39(3):263-278
12

Problem Statement ll-Conditioned Problems

llI-Conditioned Problems

Curvature of level sets

Consider the convex-quadratic function

Fx) = Sa—x)TH(x—x*) = § 5 hi (=37 >+ o hig (=7 (=)
H is Hessian matrix of f and symmetric positive definite

gradient direction —f’(x)*

Newton direction —H~'f’(x)T

lll-conditioning means squeezed level sets (high curvature).
Condition number equals nine here. Condition numbers up to 10"
are not unusual in real world problems.

If H ~ I (small condition number of H) first order information (e.g. the
gradient) is sufficient. Otherwise second order information (estimation
of H™') is necessary.

)

Problem Statement ll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem Possible Approaches
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Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem Possible Approaches

exploiting the problem structure

Dimensionality
separability, locality/neighborhood, encoding

second order approach

lll-conditioning
changes the neighborhood metric

Problem Statement lll-Conditioned Problems

What Makes a Function Difficult to Solve?

...and what can be done

The Problem Possible Approaches

exploiting the problem structure

Dimensionality
separability, locality/neighborhood, encoding

second order approach
changes the neighborhood metric

[ll-conditioning
non-local policy, large sampling width (step-size)

as large as possible while preserving a

reasonable convergence speed

Ruggedness

population-based method, stochastic, non-elitistic

recombination operator . .
serves as repair mechanism

restarts

Problem Statement lll-Conditioned Problems

Questions?

Topics

2. How does the CMA-ES work?

e Normal Distribution, Rank-Based Recombination
o Step-Size Adaptation (CSA)
e Covariance Matrix Adaptation (Hybrid-CMA)
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Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|0) — x;,

..o,X) ERY
@ Evaluate x,

...xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))
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Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|0) — x;,

..,X) ERY
@ Evaluate x;,

...xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Evolution Strategies (ES) A Search Template

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A\ € N
While not terminate

@ Sample distribution P (x|6) — x;,

...,Xx) €ERY
@ Evaluate x;,

...xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

20
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Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|0) — x;,

..o,X) ERY
@ Evaluate xy,.

..,xyonf

© Update parameters 6 < Fy(0,x1,...,x\,f(x1),...,f(x)))

21

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A\ € N
While not terminate

@ Sample distribution P (x|6) — x;,

..o,X) ERY
@ Evaluate x;,

...,xyonf

© Update parameters 0 < Fy(0,x1,...,xx,f(x1),...,f(xx))

22

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A € N
While not terminate

@ Sample distribution P (x|0) — x;,

..,X) ERY
@ Evaluate x;,

...xyonf

© Update parameters 6 < Fy(0,x1,...,x\,f(x1),...,f(x)\))

Everything depends on the definition of P and Fy

deterministic algorithms are covered as well

23

Stochastic Search

A black box search template to minimize f : R” — R

Initialize distribution parameters 6, set population size A\ € N
While not terminate

@ Sample distribution P (x|0) — x;,

..,X) ERY
@ Evaluate x;,

...xyonf

© Update parameters 0 < Fp(0,x1,...,x\,f(x1),...,f(x)))

Everything depends on the definition of P and Fy

deterministic algorithms are covered as well

In many Evolutionary Algorithms the distribution P is implicitly defined

via operators on a population, in particular, selection, recombination
and mutation

Natural template for (incremental) Estimation of Distribution Alaorithms
24
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The CMA-ES

Input: m € R", 0 € Ry, A
Initialize: C=T1,andp. =0, p, =0,
Set: cc @ 4/n, co = 4/n, c; =2/n* cp = py/n? e +ep < 1,d, =1+ Virs

and w;—i...x such that y, = s~ ~ 0.3
i=1"1
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,...,) sampling

m Y I wixiy =m+ oy, wherey, =3t wiyia update mean

pe + (I —c)pe + 1I{Hp,,”<l.5\/ﬁ} V1= (1= ce)/Itwyw
Po (1 - Ca)pa + v 1- (1 - Ca)zx/ﬂw C_%yw

C«+ (1 —C — C,u)C + Clpcch + cu lel:l Wiyi:Ay}:)\

)

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

cumulation for C
cumulation for o

update C

2]

g <40 X €xXp (% (W — Update Of o

25

Evolution Strategies

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of , where x;,m € R*, s € R, C ¢ R™" |!

where

@ the mean vector m € R" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

26

Evolution Strategies

New search points are sampled normally distributed

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of , where x;,m € R*, s e R, C ¢ R™" |\

where

@ the mean vector m € R”" represents the favorite solution
@ the so-called step-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and o.

26

Why Normal Distributions?

@ widely observed in nature, for example as phenotypic traits

@ only stable distribution with finite variance
stable means that the sum of normal variates is again
normal:

N A)+N@y,B) ~N(x+y, A+B)

helpful in design and analysis of algorithms
related to the central limit theorem
© most convenient way to generate isotropic search points

the isotropic distribution does not favor any direction, rotational
invariant

© maximum entropy distribution with finite variance
the least possible assumptions on f in the distribution shape

27
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Evolution Strategies (ES) The Normal Distribution

Normal Distribution

Standard Normal Distribution

0.4

o
W

probability density of the 1-D standard
normal distribution

probability density
o
N

o

=4 2 0 2 4

2-D Normal Distribution

probability density of
a 2-D normal
distribution

L gt bk g2 g oe

-5 -5

28

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

29

Evolution Strategies (ES) The Normal Distribution

The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m, C) is uniquely determined by its mean
value m € R" and its symmetric positive definite n x n covariance matrix C.

The mean value m

2-D Normal Distribution

@ determines the displacement (translation)
@ value with the largest density (modal value)

@ the distribution is symmetric about the distribution
mean

The covariance matrix C
@ determines the shape

@ geometrical interpretation: any covariance matrix can be uniquely identified with
the iso-density ellipsoid {x € R"| (x —m)"C™'(x —m) = 1}

29

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C'(x —m) =1}

N(0,C) ~ AN(0,T) for any A s.t. C = AAT
~ BDAN(0,1) C = BD?BT (Eigen decomposition of C)
~N1(0,1)d1by + - - - + N, (0,1)dy, by,

d;: square root of the eigenvalue of C

b;: eigenvector of C, corresponding to d;

dy - by

dy - by

30
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Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C'(x —m) =1}
Lines of Equal Density

‘ ’
/
\
N

N (m,0T) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

31
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...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x —m)"C'(x —m) =1}
Lines of Equal Density

N (m, o) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

N (m,D?) ~m+DN(0,I)
n degrees of freedom

components are

independent, scaled

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.
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Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
{xeR"|(x—m)"C"'(x —m) =1}
Lines of Equal Density

N (m, o) ~ m + oN(0,1)
one degree of freedom o
components are
independent standard
normally distributed

N (m,D?) ~m+DN(0,I)
n degrees of freedom

components are

independent, scaled

N(m,C)~m + C%N(O, I)

(n* + n) /2 degrees of freedom

components are
correlated

where T is the identity matrix (isotropic case) and D is a diagonal matrix (reasonable
for separable problems) and A x N (0,1) ~ A (0, AA™) holds for all A.

31

Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

08 Norm of normally distributed vector 2D Normal Distribution
1D 04
03 i
2D 5D 0.2 ﬁz%::{{&
A
) 17D 65D 0.1 (it
o 0
= 5 :
" 0
~ 5 5
- Norm of ormaly dstbuted vector
E 107,
z
B 107}
f=4 )
v "
o Q/
5
0,

0 2 7 3 s 10 : .
|N(0,T) || — N(W, 1/2) with modal value v/n — 1
yet: maximum entropy distribution
also consider a difference between two vectors:

INV(0,1) = N(0,T) || ~ [NV(0,T) + N(0,1) | ~ v2[INV(0,T) |

32
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Evolution Strategies (ES) The Normal Distribution

Effect of Dimensionality

Norm of normally distributed vector 2-D Normal Distribution

10°

17D

0.4

0.3

-

1079

10° J
02 }I['x;:‘“\\
o 0.1 T
n
3 0
B i ‘
wn ) s
~ 5 5
- Norm T mormally S Bwed ecor
o u
£
f =
3
©
107

0 2 4 6 8 10 B * °
|N(0,T) || — N(M, 1/2) with modal value v/n — 1
yet: maximum entropy distribution
also consider a difference between two vectors:

INV(0,1) = N(0,1) || ~ [NV(0,T) + N(0,1) | ~ v2[INV(0,T) |
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Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x—m)"C'(x —m) =1}
Lines of Equal Density

What is the implication for the distribution in this picture (considering large
dimension)?

34

Evolution Strategies (ES) The Normal Distribution

...any covariance matrix can be uniquely identified with the iso-density ellipsoid
xeR"|(x —m)"C" ! (x —m) =1}
Lines of Equal Density

What is the implication for the distribution in this picture (considering large
dimension)?

68%, 95%, 99.7% of samples drop into (x — m)"C Yz —m) S n— 1=+

VIA

22 32
:I:?7 :l:?

34

Evolution Strategies (ES) The Normal Distribution

Evolution Strategies

Terminology

Let u: # of parents, \: # of offspring

Plus (elitist) and comma (non-elitist) selection

(u+ M)-ES: selection in {parents} U {offspring}
(1, A)-ES: selection in {offspring}

(1+1)-ES
Sample one offspring from parent m

x=m+oN(0,C)

If x better than m select

25/81

Anne Auger & Nikolaus Hansen CMA—ES

July, 2014
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The (/1 \)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + oy;
N——

=i
Let x;.) the i-th ranked solution point, such that f(x;.,) < -+ < f(xx.)).

The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
36

The (/1 \)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + o y;
N——
=i

Let x;.) the i-th ranked solution point, such that f(x.,) < -+ < f(xx.)).
The new mean reads

i
m < Zwixw\ =
i=1

where

1 ~ A
wy > 2wy, >0, Zﬁllwizla W::“W’VZ

The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
36

The (/1 \)-ES

Non-elitist selection and intermediate (weighted) recombination
Given the i-th solution pointx; = m + o N;(0,C) =m + oy;
=i

Let x;.) the i-th ranked solution point, such that f(x;.,) < -+ < f(xx.)).
The new mean reads

# 4
m < Zwixi:)\ =m+ Uzwiyi:/\
i=1 i=1

N——
=Yw

where

~
~

1 .
wi > >w, >0, Y wi=1, ST T P

(Y

The best 1 points are selected from the new solutions (non-elitistic)
and weighted intermediate recombination is applied.
36

Evolution Strategies (ES) Invariance

Invariance Under Monotonically Increasing Functions
Rank-based algorithms

Update of all parameters uses only the ranks

Flaa) < fn) < e < flan)

ER R ER——

8(f(x:n)) < g(f(xan)) < ... < g(f(xan)) Vg
g is strictly monotonically increasing

g preserves ranks

EW'ﬁlt ey 1989. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best,
ICGA

3

37
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Evolution Strategies (ES) Invariance

Basic Invariance in Search Space

@ translation invariance
is true for most optimization algorithms

Identical behavior on f and f,

f xe=flx),
fa: x—=f(x—a),

No difference can be observed w.r.t. the argument of f

38

Evolution Strategies (ES) Bl ili=1a%

Summary

10?

— ES

10° 4

10-2]

min(f(x))

105 4

4000 6000 8000 10000

func. evals.

0 2000

On 20D Sphere Function: f(x) = SN, [x)?

i

@ ES without adaptation can’t approach the optimum =- adaptation required

39

ST HLESTEICGIEEN (S Summary.

Summary

10?

— ES

——— CSA-ES
10° 4

10-2 4

min(f(x))

105 4

4000 6000 8000 10000

func. evals.

0 2000

On 20D Sphere Function: f(x) = 7, [x]?

i

@ ES without adaptation can’t approach the optimum =- adaptation required

39

Step-Size Control

Evolution Strategies

Recalling

New search points are sampled normally distributed Ce

fori=1,...,\

where x;,m € R", c € R, C € R™" |!

x; ~m~+ o N;(0,C)

as perturbations of m,
where

@ the mean vector m € R” represents the favorite solution
and m <+ Y i wixia
@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

The remaining question is how to update + and C.

40




Why Step-Size Control?

Why Step-Size Control?

(5/5w,10)-ES, 11 runs _ ‘ ‘ ‘
100 — I0ORN — with optimal step-size 1
random search
step-size too small -
107
) constaht step-size (1+1)-ES =
=2 3 =
< 10 (red & green) n
S 1072 2
S n A flx) = in
= N 1t step-size too large— — — - - — - 1 f(x) — sz * i=1
2107 = é for n = 10 and
. ~ 0 _ n
in [-2.2,0.8]" = x" €[-0.2,0.8]
optimal step-size for n =10
(scale invariant)
1 0_9 I I I 10'5 L L L L L
0 200 400 600 800 1000 1200
0 05 . 1 . 1 5 2 function evaluations
function evaluations x 10* with optimal step-size =
41 42
Why Step-Size Control Step-Size Control Why Step-Size Control
Why Step-Size Control? Why Step-Size Control?
(5/5w,10)-ES, 2 times 11 runs ‘ ‘ (5/5w,10)-ES ‘ ‘ ‘
10° RN [ —  with optimal step-size 10° ke — with optimal step-size |
— with step-size control — with step-size control
— respective step-size
1wt 1ot ‘ ‘ ‘
2 2
&~ &~
1072 " 2 107 " 2
I fE)=>"x ! fE)=>"x
P i=1 P i=1
? 103 ? 103
| forn =10 and | forn =10 and
£ e [-02,08" | | = 0 € [-0.2,0.8]"
-4 -4
10 b 10 b
10°5 200 400 600 800 1000 1200 10°5 200 400 600 800 1000 1200

function evaluations

with optimal versus adaptive step-size o with too small initial &

43

function evaluations

comparing number of f-evals to reach |jm|| = 10~>:

44

1100—100
LI00-100 1 5
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Step-Size Control Why Step-Size Control

Why Step-Size Control?
(5/5w,10)-ES _

10° k — with optimal step-size |}
— with step-size control
— respective step-size
. 10—1 ‘ ‘ ‘ d
Na¥
=
102 k7 NN\ AN I A n )
Il flx)= in
I i=1
= 10'3 L..... E A . - . g . - , 4 . . . . . -
é in [—0.2,0.8]"
= forn =10
107 o N N W
-5 I I I I I I
1075 200 400 600 800 1000 1200 1400 1600
function evaluations
comparing optimal versus default damping parameter d,: 119 ~ 1.5

45

iy Sp e Eeil
Why Step-Size Control? 1

opt — Yopt ~ Hw

» - constant o] 02
100 B random search
8 0.15
(0] =
2107 g
z 5 0.1
5 g
© ©
c . E L
S50 £ 0.05
L)
optimal slepﬂiz& adaptive 0
9 (scale invariant) 4 0 step-size o: ‘ ‘ ‘
10 500 1000 1500 107 10 g0 A
function evaluations normalized step sjzé O

*

Uopt

evolution window refers to the step-size interval (——) where reasonable performance
is observed
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Methods for Step-Size Control

@ 1/5-th success rule??, often applied with “+*-selection

increase step-size if more than 20% of the new solutions are successful,
decrease otherwise

@ o-self-adaptation®, applied with “,’-selection

mutation is applied to the step-size and the better, according to the
objective function value, is selected

simplified “global” self-adaptation

@ path length control? (Cumulative Step-size Adaptation, CSA)®
self-adaptation derandomized and non-localized

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution, Frommann-Holzboog

bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC
Cschwefel 1981 , Numerical Optimization of Computer Models, Wiley

dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies, Evol. Comput.
9(2)
€0stermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN 1V
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Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation
Xi =
m <

m+oy;
m—+ oyy

Measure the length of the evolution path

the pathway of the mean vector m in the generation sequence

% | A

decrease o increase o

loosely speaking steps are
@ perpendicular under random selection (in expectation)
@ perpendicular in the desired situation (to be most efficient)
48
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Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, ~4/n,d, = 1.
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Path Length Control (CSA)

The Equations

Initialize m € R", o € R, evolution path p, = 0,
setc, ~4/n,d, = 1.

m < m+oy, wherey,=>"" wy\ update mean

(1 - Ca)pﬁ +4/1 - (1 - CO’)Z vV Hw Yw
N—_— — ~—~—

accounts for 1—c, accounts for w;

Co lp- || >) ,
o +— ox exp|— | = -1 update step-size
P (dg <E||N<o,1> || P P

>1 <= ||p-|| is greater than its expectation

Ps <

49

Step-Size Control Path Length Control (CSA)

(5/5,10)-CSA-ES, default parameters

— with optimal step-size
— with step-size control 4
— respective step-size

100 L

10*

[Jrm — x|

; ; ; ; ; ; N
0 500 1000 1500 2000 2500 3000 3500 4000
function evaluations

50

in [—0.2,0.8)"
forn = 30

Step-Size Control BEE{I1];137

Step-Size Control: Summary

Why Step-Size Control?
@ to achieve linear convergence

Cumulative Step-Size Adaptation pied
o efficient and robust for A <N
@ inefficient (1) A > N, (2) function with ineffective axes

Alternative Step-Size Adaptation Mechanisms
@ Two-Point Step-Size Adaptation
@ Median Success Rule, Population Success Rule

the effective adaptation of the overall population diversity seems yet to
pose open questions, in particular with recombination or without entire
control over the realized distribution.?

4Hansen et al. How to Assess Step-Size Adaptation Mechanisms in Randomised
Search. PPSN 2014
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Step-Size Control BRE{I1] 137

Step-Size Control: Summary

Y

10¢ 4 —— CSA-ES, a=1 (sphere) N /), -
—— CSA-ES, a=3 B
) —— CSA-ES, a=10 g
104 —— CSA-ES, a=30 : _
E 1072 RN ~
10-4 NN N
10-¢ \
105 . j , j , . , A A\
0 2300 5000 7500 10000 12500 15000 17500 20000 T o e

func. evals.

On 20D TwoAxes Function: f(x) = S/ 2[Rx]? + &

@ convergence speed of CSA-ES becomes lower as the function becomes ill conditioned
(a* becomes greater) = covariance matrix adaptation required

v />41[Rx]7, R: orthogonal

52

Step-Size Control BEE{I1] 137

Step-Size Control: Summary

Y
10¢ 4 —— CMA-ES, a=1 (sphere)
—— CMA-ES, a=3
X —— CMA-ES, a=10
10%4 —— CMAES, a=30
10°
E 1072
RN
i AN
10 A
10-° . \
00 \
10-# §
0 2300 5000 7300 10000 12300 15000 17500 20000 o o s ow e e
func. evals.
. . N/2 2 .
On 20D TwoAxes Function: f(x) = S/} [Rx]? + o* v />41[Rx]7, R: orthogonal )
@ convergence speed of CSA-ES becomes lower as the function becomes ill conditioned
(a* becomes greater) = covariance matrix adaptation required
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Covariance Matrix Adaptation (CMA)

Evolution Strategies
Recalling
New search points are sampled normally distributed TR

x; ~m~+ o N;(0,C) fori=1,...,\

as perturbations of m,
where

where x;,m € R", 0 € Ry, C € R"*"

@ the mean vector m € R” represents the favorite solution
@ the so-called siep-size o € R4 controls the step length

@ the covariance matrix C € R**" determines the shape of
the distribution ellipsoid

The remaining question is how to update C.

53

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m+ oyy, yw:Z?:l WiYiX,

initial distribution, C =1

54

Yi NM(O)C)
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m — m+ oy,, yi ~ N;(0,C)

BB

initial distribution, C =1

Yw = 27:1 WiYiX,

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m—+ oy,

o
—
[

yw, movement of the population mean m (disregarding o)

Yw = 27:1 WiYiX,

Yi NM(O)C)

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m — m+ oy,, yi ~ N;(0,C)

O

mixture of distribution C and step y,,,
C+—08xC+02xy,yr

Yw = 27:1 WiYiX,

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

m <— m—+ oy,

Yw = 27:1 WiYiX,

(>

new distribution (disregarding o)

Yi NM(O)C)
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation
Rank-One Update

Mo mA Yy, Yw = widin,  Yi~ Ni(0,C) Mo mA Yy, Yw = widin,  Yi ~ Ni(0,C)
° ‘ °
° e ®
new distribution (disregarding o) movement of the population mean m
59 60
Covariance Matrix Rank-One Update Covariance Matrix Rank-One Update

Covariance Matrix Adaptation Covariance Matrix Adaptation
Rank-One Update Rank-One Update

m < m+ayW7 yw— l lwlyl)\a le./V‘,(O,C) m < m+0yW7 yW: l lwlyl)\a le./V‘,(O,C)

@

mixture of distribution C and step y,,,
C+08xC+02xyy!

(G5

new distribution,

C+08xC+0.2xy,y!

the ruling principle: the adaptation increases the likelihood of
successful steps, y,,, to appear again

another viewpoint: the adaptation follows a natural gradient

approximation of the expected fithess
62
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

Covariance Matrix Adaptation

Rank-One Update

Initialize m € R", and C =1, set o = 1, learning rate c.o, ~ 2/n*
While not terminate

X, = m+(7yi7 Yi ~ M(Oac)v
m
m + m+oy, Wherey, = Zwiym
i=1
1
C <+ (1 = ceov)C + ceovtbw yWyVTV where u,, = u > 1
~—~—~ =1 Wi

rank-one

The rank-one update has been found independently in several domains® 7 & °

6Kjellstrf&m&Talxén 1981. Stochastic Optimization in System Design, IEEE TCS

Hansen&Ostermeier 1996. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix
adaptation, ICEC

8Ljung 1999. System Identification: Theory for the User

9Haario et al 2001. An adaptive Metropolis algorithm, JSTOR
63

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-One Update

C <« (1 - Ccov)C + Ccovllw_)’wy;lt‘r
covariance matrix adaptation
@ learns all pairwise dependencies between variables
off-diagonal entries in the covariance matrix reflect the dependencies
@ conducts a principle component analysis (PCA) of steps y,,,

sequentially in time and space
eigenvectors of the covariance matrix C are the principle
components / the principle axes of the mutation ellipsoid

@ learns a new rotated problem representation L \/

components are mdependent only)
in the new represeritation. ..

@ learns a new (Mahalanobis) metric
variable metric method
@ approximates the inverse Hessian on quadratic functions
transformation into the sphere function
e for u = 1: conducts a natural gradient ascent on the distribution A/
entirely independent of the given coordinate system
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps y, is used

8
peocy  (I—c) yY

exponentially
fading weights
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation
The Evolution Path

Evolution Path

Conceptually, the evolution path is the search path the strategy takes over a number of
generation steps. It can be expressed as a sum of consecutive steps of the mean m.

An exponentially weighted sum of
steps y, is used

8
peocy  (I—c) yY

exponentially
fading weights

The recursive construction of the evolution path (cumulation):

P

(1 - Cc)pc + v 1-— (l - Cc)z\//Tw Yw
~—— N~

decay factor

normalization factor m=mold
2

input =

« < 1. History information is accumulated in the evolution path.

where 1, = ﬁ, Ce

66
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Cumulation—the Evolution Path

Covariance Matrix Adaptation (CMA)

“Cumulation” is a widely used technique and also know as

@ exponential smoothing in time series, forecasting

@ exponentially weighted mooving average

@ [terate averaging in stochastic approximation

@ momentum in the back-propagation algorithm for ANNs
o ...

“Cumulation” conducts a low-pass filtering, but there is more to it. ..

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

. _ T
Cumulation €4 (1= Gt Coorinruy
Utilizing the Evolution Path T T ) .

We used y..y,, for updating C. Because y,y, = —yw(—y) the sign of y,, is lost.

(&=

Cumulation—the Evolution Path

67
Covariance Matrix Adaptation (CMA)

Cumulation

Utilizing the Evolution Path T T ) .
We used y.y,, for updating C. Because y,y, = —yw(—y) the sign of y,, is lost.

C«+ (1 — Ccov)c + Ccovlllwywya

A
V)

Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Cumulation C 4 (1 = Coor)C + Ceoutmpuyl

Utilizing the Evolution Path T T ) .
We used y..y,, for updating C. Because y,y, = —yw(—yw) the sign of y,, is lost.

The sign information (signifying correlation between steps) is (re-)introduced by using
the evolution path.

pe = (1=ce)pe + /1= (1= ce)/tiwyw
——

decay factor

(1 — CCOV)C + Ccov pcpt‘T
—~—

normalization factor
C «

rank-one

where p,, = Ceov K ¢ < 1 such that 1/c. is the “backward time horizon”.

1
Xowi??
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Covariance Matrix Adaptation (CMA) Cumulation—the Evolution Path

Using an evolution path for the rank-one update of the covariance
matrix reduces the number of function evaluations to adapt to a
straight ridge from about O(n?) to O(n).(2)

aHansen & Auger 2013. Principled design of continuous stochastic search: From theory to practice.

Number of f-evaluations divided by dimension on the cigar function f(x) = x2 + 105 >°7_, x?
4

10
/ Ce = 1 (no CUmUlation)
10° e
. bce=1/yn
b ce=1/n
10°
10' 10°
dimension

The overall model complexity is n? but important parts of the model
can be learned in time of order n

J

71

Rank-.. Update

Xi
m

m+ oy,
m—+ oyy

~

<

Ni(0,C),
Z,"—Lzlwiyt)\

Yi
Jw =
The rank-p update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.

OJastrebskl and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
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Rank-.. Update

Xi
m

~

<

m+ oy,
m—+ oyy

Ni(0,C),
Z,"—Lzlwiyt)\

Yi
Yw

The rank-p update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.
The weighted empirical covariance matrix

m
Cu =) WiyiaVin
i=1

computes a weighted mean of the outer products of the best 11 steps and has

rank min(u, n) with probability one.

with 1« = X\ weights can be negative '°

OJastrebskl and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
72

Rank-.. Update

Xi
m

m+ oy,
m—+ oyyw

~

<

Yi
Yw

Ni(0,C),
Z,"—Lzlwiyt)\

The rank-p update extends the update rule for large population sizes A using
1 > 1 vectors to update C at each generation step.
The weighted empirical covariance matrix

m
Cu =) WwiyiaVin
i=1

computes a weighted mean of the outer products of the best 11 steps and has
rank min(u, n) with probability one.

with 1« = X weights can be negative '°

The rank-p update then reads

C+ (1-ceov) CtenCp
where cqoy ~ /LW/I’ZZ and c.oy < 1.

OJastrebskl and Arnold (2006). Improving evolution strategies through active covariance matrix adaptation. CEC.
72
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

xi = m+oy, yi~N(0,/C) Cp Mpew = m+ i 2oViia

T
ﬁz}’i:xyi:k
(I-1)xC+1xCy

new distribution

sampling of A = 150  calculating C where

solutions where =50,
C=Iando =1 wl:...zwu:i,
and c.oy = 1
73

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

rank-p CMA
conducts a
PCA of
steps

EMNAgIobaI
conducts a
PCA of
points

,,,,,,,,,,,,,,,,,,,,,,,,

Tnew = Mold + ﬁ 2¥ioa

B mea ke W MO S G o) s —inen)T
sampling of A = 150
solutions (dots)

mpew IS the minimizer for the variances when calculating C

calculating C from p = 50

. new distribution
solutions

" Hansen, N. (2006). The CMA Evolution Strategy: A Comparing Review. In J.A. Lozano, P. Larranga, I. Inza and E.
Bengoetxea (Eds.). Towards a new evolutionary computation. Advances in estimation of-distribution algorithms. pp. 75-102
74

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

12Hansen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
75

Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-n Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n?) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a
large population size is used

say A >3n+ 10
The rank-one update

@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

12Hansen, Miiller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
76
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

The rank-p update

@ increases the possible learning rate in large populations
roughly from 2/n” to 1., /n*
@ can reduce the number of necessary generations roughly from
O(n*) to O(n) (12)
given p, x A < n
Therefore the rank-u update is the primary mechanism whenever a

large population size is used
say A >3n+ 10

The rank-one update
@ uses the evolution path and reduces the number of necessary
function evaluations to learn straight ridges from O(n?) to O(n) .

Rank-one update and rank-u update can be combined

12Hansen, Mdller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized Evolution Strategy with
Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1), pp. 1-18
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

Hybrld update

besL f- va]ue mean coordmates

Rank-one update

best f- value mean coordmates
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Covariance Matrix Adaptation (CMA) Covariance Matrix Rank-u Update

Rank-one update Hybrld update

best f- value mean coordmates besL f- va]ue mean coordmates
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CMA-ES Summary

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Input: m € R", o € Ry, A (problem dependent)

Initialize: C=1,andp. =0, p, =0,

Set: ce = 4/n, c, = 4/n, c; ~ 2/n2 cu R p/n? cr ey < 1 dy = 14 /B
and w;—;.., such that u,, = Z“ = ~0. 3\

While not terminate

Yi ~ M(O,C),

m = 3 Wiy =m 4oy, Where y, =31 wiyi
= (U= epe + g <rsym vV = (U= el
P = (L= o) po + /T = (1= o2\ €2y
Co(I—c1=cu)C+ crpepe’ + cudlin, WidinVin
O—<_O'XCXP(ZTZ (%_1»

Not covered on this slide: termination, restarts, useful output, boundaries and
encoding

Xi=m+oy, fori=1,...,A sampling
update mean
cumulation for C
cumulation for o
update C

update of o

80
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CMA-ES Summary

Summary of Equations
The Covariance Matrix Adaptation Evolution Strategy

Input: m € R", o € Ry, A (problem dependent)
Initialize: C=T1,andp. =0, p, =0,
Set: cc @ 4/n, co = 4/n, c; =2/n* ¢\~ py/n? e +ey < 1,dy 1+ (/B
and wii...x such that p, = s~ ~ 0.3
i=1"1
While not terminate
xi=m+oy, yi ~ Ni(0,C), fori=1,...,)
m < Yt wixpy =m+ oy, wherey, =>" wyix
pe (I —co)pe + 1I{Hpﬂ‘|<1.5\/ﬁ} V1— (1- CC)z\/:uwyw
Po— (1 —co)ps++/1 = (1 = cg)z,/,uwc—%yw

C <+ (1 —C — CH)C + Clpcch + Cpu Zf;l Wiyi:ky’il;)\

sampling
update mean
cumulation for C
cumulation for o

update C

2]

0 4 0 X exp (2—: (W—l)) update of o

Not covered on this slide: termination, restarts, useful output, boundaries and

encoding
80

Topics

3. What can/should the users do for the CMA-ES to work
effectively on your problem?

o Restart, Increasing Population Size
¢ Restricted Covariance Matrix

81

A LEWCETE LIV GRGENTELTENC [k Strategy Parameters and Initialization

Default Parameter Values
CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

@ related to selection and recombination
@ \: offspring number, new solutions sampled, population size
@ u: parent number, solutions involved in updates of
@ w;: recombination weights
@ related to C-update
@ c.: decay rate for the evolution path, cumulation factor
@ ¢y: learning rate for rank-one update of C
@ ¢, learning rate for rank-p update of C
@ related to o-update

@ c.: decay rate of the evolution path
@ d,: damping for o-change
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A LEWCETE LIV GRGENTELTENC [k Strategy Parameters and Initialization

Default Parameter Values
CMA-ES + (B)IPOP Restart Strategy = Quasi-Parameter Free Optimizer

The following parameters were identified in carefully chosen experimental set ups.

@ related to selection and recombination
@ \: offspring number, new solutions sampled, population size
@ u: parent number, solutions involved in updates of
@ w;: recombination weights
@ related to C-update
@ c.: decay rate for the evolution path, cumulation factor
@ ¢y: learning rate for rank-one update of C
@ ¢, learning rate for rank-p update of C
@ related to o-update

@ c.: decay rate of the evolution path
@ d,: damping for o-change

The default values depends only on dimension N. They do in the first place
not depend on the objective function.

82
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\LECE AL GRGERTEET AN LAl Strategy Parameters and Initialization

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

@ related to the initial search distribution
o m(0): initial mean vector
o o (or \/Cfg)): initial (coordinate-wise) standard deviation

@ related to stopping conditions

e max. func. evals.

max. iterations

function value tolerance
min. axis length

o
)
)
e stagnation
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\LEWCE ALV GRGERTEET AN LAl Strategy Parameters and Initialization

Parameters to be set depending on the problem

Initialization and termination conditions

The following should be set or implemented depending on the problem.

@ related to the initial search distribution
o m(0): initial mean vector

o o (or \/Cfg)): initial (coordinate-wise) standard deviation

@ related to stopping conditions

e max. func. evals.

max. iterations

function value tolerance
min. axis length

o
)
)
e stagnation

Given an initial search interval [a;, b;] fori = 1, ..., n, a reasonable choice will be

° mi(o) = (a; +b;)/2 or mi<0> ~ Ula; + €, b;

—q

0 —a e 0 .
° \/Cf’i) = Z’to‘Z fori= 1,...,nandCfJ) =0fori##j
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Strategy Parameters and Initialization
Python CMA-ES Implementation

https://github.com/CMA-ES/pycma

pycma

A Python implementation of CMA-ES and a few related numerical optimization tools.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a stochastic numerical optimization algorithm for
difficult (non-convex, ill-conditioned, multi-modal, rugged, noisy) optimization problems in continuous search
spaces.

The API Documentation is available here.

Installation

Download and unzip the code (see green button above) or git clone https://github.com/CMA-ES/pycma.git .

« Either, copy (or move) the cma source code folder into a folder visible to Python, namely a folder which is in the
Python path (e.g. the current folder). Then, import cma works without any further installation.

* Or, install the cma package by typing within the folder, where the cma source code folder is visible,
python -m pip install -e cma

Typing pip instead of python -m pip may be sufficient, prefixing with sudo may be necessary. Moving the
cma folder away from this location would invalidate the installation.
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\LECE ALV GRGERTEET LN LAl Strategy Parameters and Initialization

Python CMA-ES Demo

https://github.com/CMA-ES/pycma

Optimizing 15D Tablet Function

import cma

opts = cma.CMAOptions()

opts[ 'tolfun’'] = le-4

opts[ 'ftarget'] = le-4 # f-target value

opts[ 'maxfevals'] = leé6 # max #FEs

# opts['popsize'] = '10 * N' # population size

es = cma.CMAEvolutionStrategy(x0=15 * [1],
sigma0=1,
inopts=opts

# f-tolerance

# Initial mean vector
# Initial step-size
# Options

) .optimize(cma.ff.tablet) # Objective

(6_w,12)-aCMA-ES (mu_w=3.7,w_1=40%) in dimension 15

Iterat #Fevals function value axis ratio sigma
1 12 1.537676704740862e+02 1.0e+00 1.03e+00

2 24 1.408854302050177e+02 1.1e+00 1.03e+00

3 36 3.712560411998829e+03 1.2e+00 1.02e+00

100 1200 1.506902133117476e+02 1.7e+01 5.06e-01
200 2400 1.893840652870748e+01 1.9e+02 2.99e-01
300 3600 3.434648669054741e-01 7.1e+02 1.30e-01
384 4608 9.403602672438789e-05 1.1e+03 4.69e-03
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(seed=137090, Mon Apr
min&max std t[m:s]

le+00 1le+00 0:00.0
le+00 1le+00 0:00.0
le+00 1le+00 0:00.0
6e-02 7e-01 0:00.1
3e-03 4e-01 0:00.3
3e-04 1le-01 0:00.4
4e-06 3e-03 0:00.5

24 14:58:52 2017)

From a practical perspective:

given an unknown optimisation
problem, the first thing | tend to do is try
to improve a given (initial) solution using
a small initial sigma. Then | (can)
increase sigma successively (by a factor
of 10 or more, depending on what |
have seen in the initial evolution of
sigma previously) and see whether | find
the same or better (or worse) solutions.




Python CMA-ES Demo Multimodality

https://github.com/CMA-ES/pycma

Optimizing 15D Tablet Function

es.plot(
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Multimodality Multimodality

Two approaches for multimodal functions: Try again with Two approaches for multimodal functions: Try again with
e a larger population size
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Multimodality

Two approaches for multimodal functions: Try again with

e a larger population size
e a smaller initial step-size (and random initial mean vector)

Multimodality

Two approaches for multimodal functions: Try again with

e a larger population size
e a smaller initial step-size (and random initial mean vector)

A restart with a large population size helps if the objective function

has a well global structure
o functions such as Schaffer, Rastrigin, BBOB function 15~19
e loosely, unimodal global structure + deterministic noise

§

Hansen and Kern. Evaluating the CMA Evolution Strategy on Multimodal Test Functions, PPSN 2004.
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Fig. 1. Success rate to reach fstop = 107'° versus population size for (a) Rastrigin
function (b) Griewank function for dimensionsn =2 (——Q—-"),n =5 (——x——"),
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Multimodality Multimodality

Two approaches for multimodal functions: Try again with

e a larger population size
e a smaller initial step-size (and random initial mean vector)

A restart with a small initial step-size helps if the objective function

has a weak global structure
e functions such as Schwefel, Bi-Sphere, BBOB function 20~24
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a large population size has a negative effect
90

669




Restart Strategy

It makes the CMA-ES parameter free

IPOP: Restart with increasing the population size

- start with the default population size

- double the population size after each trial (parameter sweep)
- may be considered as gold standard for automated restarts

BIPOP: IPOP regime + Local search regime

-+ IPOP regime: restart with increasing population size

- Local search regime: restart with a smaller step-size and
a smaller population size than the IPOP regime
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Topics

3. What can/should the users do for the CMA-ES to work
efficiently on your problem?

o Restart, Increasing Population Size
¢ Restricted Covariance Matrix

92

V| LEVNERTE IV RGERTECTENC YA Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities
» to store and update C € RV*¥
» to compute the eigen decomposition of C

93

V| LEVNERTE IV RGERTECTENC ¥ A Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities
» to store and update C € RV*¥
» to compute the eigen decomposition of C
@ O(1/N?) Learning Rates for C-Update
> ocy R /W/N2
> = 2/N2
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Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities
» to store and update C € RV*¥
» to compute the eigen decomposition of C
@ O(1/N?) Learning Rates for C-Update
ooy R /W/N2
> = 2/N2

Exploit prior knowledge on the problem structure such as separability
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V| LEVNETE IV RGERTECTENC YA Restricted Covariance Matrix

Motivation of the Restricted Covariance Matrix

Bottlenecks of the CMA-ES on high dimensional problems
@ O(N?) Time and Space Complexities
» to store and update C € RV*¥
» to compute the eigen decomposition of C
@ O(1/N?) Learning Rates for C-Update
ooy R /W/N2
> = 2/N2

Exploit prior knowledge on the problem structure such as separability

= decrease the degrees of freedom of the covariance matrix for
e less time and space complexities
e a higher learning rates that potentially accelerate the adaptation

V| LEVNERTE IV RGERTECTENC YA Restricted Covariance Matrix

Variants with Restricted Covariance Matrix

CMA-ES Variants with Restricted Covariance Matrices
(*] Sep—CMA [Ros and Hansen, 2008]
» C =D. D: Diagonal

@ VD-CMA [Akimoto et al., 2014]
» C =D+ wT)D. D: Diagonal, v € R".
") LM_CMA [Loshchilov, 2014]

» C=1+Y" vl v, e RV,
") VkD_CMA [Akimoto and Hansen, 2016]
> C=D(I+ Y vwl)D. v; € RV

[Ros and Hansen, 2008] Ros, R. and Hansen, N. (2008). A simple modification in CMA-ES achieving linear time and space complexity. In
Parallel Problem Solving from Nature - PPSN X, pages 296-305. Springer.

[Akimoto et al., 2014] Akimoto, Y., Auger, A., and Hansen, N. (2014). Comparison-based natural gradient optimization in high dimension. In
Proceedings of Genetic and Evolutionary Computation Conference, pages 373-380, Vancouver, BC, Canada.

[Loshchilov, 2014] Loshchilov, I. (2014). A computationally efficient limited memory cma-es for large scale optimization. In Proceedings of
Genetic and Evolutionary Computation Conference, pages 397-404.

[Akimoto and Hansen, 2016] Akimoto, Y. and Hansen, N. (2016). Projection-based restricted covariance matrix adaptation for high dimension.
In Genetic and Evolutionary Computation Conference, GECCO 2016, Denver, Colorado, USA, July 20-24, 2016, page (accepted). ACM.
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Restricted Covariance Matrix
Separable CMA (Sep-CMA)

N (m, o) ~ m + oN(0,1)
one degree of freedom o

N (m,D?) ~ m +DN(0,I)

N (m,C) ~ m + C2N (0, 1)
n degrees of freedom

(n® + n)/2 degrees of freedom

95

671

L




Restricted Covariance Matrix Restricted Covariance Matrix
Separable CMA (Sep-CMA) Separable CMA (Sep-CMA)

N (m, o) ~ m + oN(0,1) N (m,D?) ~m +DN(0,1) N(m,C)~m+C%N(0,I) N (m, o) ~ m + oN(0,1) N (m,D?) ~ m +DN(0,I) N(m,C)~m+C%N(0,I)

one degree of freedom o n degrees of freedom (4,2 1 ;) /2 degrees of freedom one degree of freedom o n degrees of freedom (42 1 ;) /2 degrees of freedom
H H
CMA ) = O 4 ¢ (Ih-PcT - C(')) +cp Z wi ((x; —mO)(x; —mT — C(’)) CMA  ¢UHD = ¢ 4 ¢ (Ih-PcT - C(')) +cp Z wi ((x; —m®) (i —m)T — C(’))
i=1 i=1
" "
SEP [ ek = [€DNkw + 1 (I )E = 1€k ) + e Y- wi (I =m0 = (€O SEP [ ek = (€N + 1 (Ipe)E = 1€k ) + e Do wi (I =m0 = (€O
i=1 i=1
> (N + 2)/3 times greater than CMA
95 95

Restricted Covariance Matrix Restricted Covariance Matrix
Demo: On 100D Separable Ellipsoid Function Demo: On 100D Separable Ellipsoid Function

|f§,m,mgd,.,..,,s.\, f—min(f), o, axi®batat Variables (curr best, 100-D, popsize~17 |foest, med, worst|, f—min(f), o, axi®gtat Variables (curr best, 100-D, popsize~17
10

|f§,m,mgd,.,..,,s.\, f—min(f), o, axi®batat Variables (curr best, 100-D, popsize~17 |foest, med, worst|, f—min(f), o, axi®gtat Variables (curr best, 100-D, popsize~17
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sk
10° - 10-°

O PRAPIPAXE3PERERAB 2588andard DeREBdASR BELIRAP LT Winates
10?2

O PRRAPIPAXE3°PERERAB 2588andard DeREBdASR B IRAP LT Winates
100 102 100
10! 1
10t 10t ©
o o
10 10° 10 10°
10t 10t
1072 107! 1072 101
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 [ 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 4 [
function evaluations function evaluations function evaluations function evaluations function evaluations function evaluations

function evaluations function evaluations

Separable-CMA CMA Separable-CMA CMA

e CMA needed 10 times more FEs + more CPU time
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A\ LECETEL VR ERTECET ARGyl Restricted Covariance Matrix

Demo: On 100D Separable Ellipsoid Function

|f§m,mgd,mm\, f—min(f), o, axi®batat Variables (curr best, 100-D, popsize~17 |foest, med, worst|, f—min(f), o, axi®gtat Variables (curr best, 100-D, popsize~17
10
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104
10!
1072

10-%

min(A=0 8044101

1072

0 5000 10000 15000 20000 25000 0

0 5000 10000 15000 20000 25000
function evaluations

function evaluations

function evaluations function evaluations

Separable-CMA CMA

o CMA needed 10 times more FEs + more CPU time
e However, Sep-CMA won't be able to solve rotated ellipsoid function

as efficiently as it solves separable ellipsoid
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Summary and Final Remarks

Summary and Final Remarks
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Summary and Final Remarks

The Continuous Search Problem

Difficulties of a non-linear optimization problem are
@ dimensionality and non-separabitity

demands to exploit problem structure, e.g. neighborhood
cave: design of benchmark functions

@ ill-conditioning
demands to acquire a second order model

@ ruggedness
demands a non-local (stochastic? population based?) approach
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Summary and Final Remarks

Main Characteristics of (CMA) Evolution Strategies

@ Multivariate normal distribution to generate new search points
follows the maximum entropy principle

@ Rank-based selection
implies invariance, same performance on g(f(x)) for any increasing g
more invariance properties are featured

© Step-size control facilitates fast (log-linear) convergence and

possibly linear scaling with the dimension
in CMA-ES based on an evolution path (a non-local trajectory)

© Covariance matrix adaptation (CMA) increases the likelihood of

previously successful steps and can improve performance by
orders of magnitude
the update follows the natural gradient

C o« H™' <= adapts a variable metric
<= new (rotated) problem representation
= [ :x + g(x"Hx) reduces to x + x"x
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Summary and Final Remarks

Limitations
of CMA Evolution Strategies

@ internal CPU-time: 10~8xn? seconds per function evaluation on a 2GHz

PC, tweaks are available
1000000 f-evaluations in 100-D take 100 seconds internal CPU-time

variants with restricted covariance matrix such as Sep-CMA
@ better methods are presumably available in case of

» partly separable problems

» specific problems, for example with cheap gradients
specific methods

» small dimension (» < 10) for example Nelder-Mead

» small running times (number of f-evaluations < 100n)
model-based methods
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Thank you

Source code for CMA-ES in C, C++, Java, Matlab, Octave, Python,
R, Scilab is available (or linked to) at
http://cma.gforge.inria.fr/cm r .html
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