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Tutorial	overview

• Overview	of	fitness	landscape	analysis:
– Motivation	for	characterising problems
– What	is	a	fitness	landscape?
– Features	of	fitness	landscapes
– Fitness	landscape	analysis	techniques

• Recent	contributions	with	a	focus	on	correlation	with	
algorithm	performance,	selection	and	tuning.
– Vehicle	routing	problem
– Failure	prediction	for	PSO
– Local	optima	networks

• Interactive	demo	of	metrics	in	python	using	Jupyter.
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Trading	rules	to	
maximise	profit

Route	to	minimise	
delay

Optimisation	
Problems

Design	to	maximise	
acoustics

Design	to	
minimise	drag

Optimisation	
Algorithms

WHICH	ALGORITHM	IS	THE	
MOST	APPROPRIATE?

Classical	algorithms
or

Metaheuristics	
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Metaheuristic	‘magic’

…	unpredictable	results
4
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Too	many	algorithms

• Too	many	optimisation algorithms:
– new	algorithms	introduced	all	the	time	inspired	by	natural	or	social	

phenomenon.
– Some	recent	examples:	social	spider	algorithm,	water	wave	optimization	

algorithms,	bat	algorithm,	election	inspired	optimization	algorithm,	football	
game	algorithm,	firefly	algorithm,	honey	bee	mating	algorithm.

– Are	they	really	“new”?	
– NFL	Theorems:	a	‘super-algorithm’	cannot	exist.

• Not	enough	understanding	of	the	algorithms:
– Takes	decades	of	empirical	and	theoretical	research	to	understand	established	

metaheuristics	to	a	limited	extent.
– Every	new	approach	comes	with	a	blank	record	of	knowledge	around	

algorithm	behaviour (?	algorithm	setup	?	parameter	choices	?	convergence	?	
suitable	/	unsuitable	problems	?)
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General	algorithm	selection	problem	
(Rice,	1976)

Trial-and-error	
approach	to	
finding	the	

best	algorithm	

Research	areas:
• Feature	

extraction	
(characterising
problems)

• Analysis	and	
design	of	
problems

• Understanding	
algorithm	
behaviour

• Performance	
prediction

• Algorithm	
selection
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Wright’s	fitness	landscape

• Surface	of	selective	values	
(Wright,	1932).

• No	axes,	units	or	labels.
• Commentary	56	years	later:	

– “useless	for	mathematical	
purposes”

– Aim:	provide	an	intuitive	
picture	of	evolutionary	
processes	taking	place	in	
higher	dimensional	space.

1889	- 1988

7

Fitness	landscapes	today
• We	now	have	(useful)	formalised	mathematical	models.
• Essential	elements:	search	space,	fitness	function,	notion	of	

neighbourhood	or	accessibility.
• Intuitively,	a	fitness	landscape	is	a	visualisation	of	the	

terrain	capturing	how	fitness	changes	between	
neighbouring	solutions.

• Idea	of	“valleys”,	“peaks”,	“ridges”,	“plateaus”,	etc.
• One	fitness	function,	many	fitness	landscapes	(even	for	real-

valued	spaces).
• Example:	 Step	benchmark	function	(same	function,	two	

different	landscapes).
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Fitness	landscape	characterisation

• To	understand	optimisation problems	through	analysis	of	
search	space	in	terms	of	the	objective	function	landscape.

• When	problems	are	simple,	classical	techniques	could	be	
more	suitable.

• When	are	metaheuristics	needed?
– When	objective	functions	do	not	have	the	structure	

required	by	classical	techniques	(e.g.	uni-modality,	
differentiability).

– When	problem	complexity	is	too	large	(classical	techniques	
not	feasible).

– When	there	is	no	objective	function	in	mathematical	form.
– Objective	function	exhibits	noise	or	uncertainty.
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Features	of	fitness	landscapes
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Features	of	fitness	landscapes

• Modality (number	of	optima)	is	frequently	
referred	to	as	affecting	difficulty,	but	too	
simplistic.	

• Example	landscapes	both	with	three	optima.
• Top	landscape:	global	basin	is	wider	and	deeper	

than	local	basins.	
• Bottom	landscape:	global	basin	narrow	and	local	

basins	deep.
• Consider	simple	PSO	with	2	particles:	top	

landscape	not	deceptive,	bottom	landscape	is	
deceptive.

• Distribution	&	relative	sizes	of	basins	of	
attraction	more	important	than	modality.
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Features	of	fitness	landscapes
• Ruggedness:

– Quantifies	changes	in	neighbouring	fitness	
values	(micro	or	macro	scale).

• Global	landscape	structure	(funnels)
– Funnel:	global	basin	shape	of	clustered	local	

optima.
• Gradients:

– Steepness	of	gradients	measures	the	
magnitude	of	neighbouring	fitness	changes.

• Neutrality:	
– Lack	of	neighbouring	information	to	direct	

search.

12
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Some	other	fitness	landscape	lingo

• Epistasis
– Comes	from	genetics:	degree	of	dependency	between	genes	for	expression.
– More	general	term:	Variable	interdependency	/	non-separability.

• Basins	of	attraction
– The	set	of	solutions	that	lead	to	the	same	local	optimum	via	a	hill	climber	/	

descender.
– Boundary	of	a	basin	of	attraction:	those	solutions	in	the	basin	that	have	at	

least	one	neighbour in	a	different	basin.
– Fitness	barrier:	minimum	fitness	value	required	to	reach	another	optimum.
– Central	massif	/	Big	valley	structure	(single	funnel)

• Evolvability
– The	capacity	to	produce	offspring	that	are	fitter	than	their	parents	

(`searchability’	may	be	a	more	general	term).
– Only	has	meaning	with	reference	to	a	particular	search	process.
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An	introduction	to	some	fitness	
landscape	analysis	techniques
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Autocorrelation	

• Oldest	and	most	widely	used	fitness	landscape	metric	by	Weinberger	
(1990)	for	measuring	ruggedness.

• How	it	works:
– Perform	a	random	walk	through	the	fitness	landscape	to	obtain	a	sequence	of	

fitness	values.
– From	this	sequence	calculate	the	correlation	with	the	same	sequence	of	

fitness	values	a	small	distance	away.
– Result	1:	Plot	of	autocorrelation	r(s) against	step	size	s.
– Result	2:	Correlation	length	(the	distance	beyond	which	the	majority	of	points	

become	uncorrelated:	a	smaller	value	indicates	a	more	rugged	landscape).
• Problems:	

– Assumes	that	the	landscape	is	statistically	isotropic.
– Length	metric	assumes	that	the	autocorrelation	function	is	a	decaying	

exponential.
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Autocorrelation:	example	applications

Investigating	the	landscapes	of	RNA	
folding	using	different	alphabets	
(Fontana	et	al.,	1993).	

The	role	of	representation	on	the	
multidimensional	knapsack	problem	
(Tavares	et	al.,	2006)

16
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Fitness	distance	correlation

• Widely	used	technique	introduced	
by	Jones	and	Forrest	(1995).

• How	it	works:
– Random	sample	of	points.	Measure	

distance	of	each	point	to	optimum	to	
generate	a	set	of	fitness	distance	
pairs.

– Result	1:	Scatterplot	of	fitness	
distance	pairs.

– Result	2:	correlation	value.
• Problems:

– Requires	knowledge	of	global	optima.
– Not	very	useful	for	algorithm	

performance	prediction.

Characterisation	of	CEC	2005	
benchmark	suite	(Müller	and	
Sbalzarini,	2011).	
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Entropic	measures	of	ruggedness

• Introduced	by	Vassilev et	al.	
(2003).

• How	it	works:
– Based	on	a	random	walk,	a	

sequence	of	three-point	objects	
are	generated.

– Ruggedness	is	estimated	using	a	
measure	of	entropy	with	respect	
to	the	probability	distribution	of	
the	rugged	elements	within	the	
sequence.

– Result:	a	measure	in	range	[0,1].
(Malan	and	Engelbrecht,	2009)
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Entropic	measures	of	ruggedness

• Vassilev’s (2003)	first	
entropic	measure	
adapted	for	
continuous	spaces	
(Malan	and	
Engelbrecht,	2009).

• First	entropic	
measures	of	micro	
and	macro	
ruggedness	(FEM0.01
and	FEM0.1).

• Values	in	range	[0,1],	
where	0	is	least	
rugged	and	1	is	the	
most	rugged.

Function Dim FEM0.01 FEM0.1

Zakharov 2D 0.291 0.332

10D 0.284 0.306

30D 0.237 0.288

Alpine 2D 0.539 0.855

10D 0.605 0.861

30D 0.601 0.862

Weierstrass 2D 0.789 0.792

10D 0.773 0.797

30D 0.738 0.788
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Fitness	Cloud

• Fitness	cloud	(Verel et	al.	2003)	and	negative	slope	coefficient	(Vanneschi
et	al.	2004):	evolvability with	reference	to	a	particular	search	operator.

• How	it	works:	
– Obtain	a	sample	of	solutions	from	the	search	space	(the	parents).
– Choose	a	good	neighbour	of	each	solution	in	the	sample	(the	offspring).
– Fitness	cloud:	scatter	plot	of	fitness	values	of	parents	against	offspring.
– Negative	slope	coefficient	(nsc):	Partition	the	fitness	cloud	into	bins,	nsc is	the	

sum	of	negative	slopes	of	line	segments	between	centroids	of	adjacent	bins.

20
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Dispersion	metric

• Funnel:	global	basin	shape	
(local	optima	form	a	basin).

• Dispersion	metric	(Lunacek &	
Whitley	2006)	predicts	the	
presence	of	funnels.

• How	it	works:
– Dispersion	of	all	points	in	a	

sample	subtracted	from	the	
dispersion	of	a	subset	of	the	
best	points.

– Adapted	to	work	with	
normalised	distances.

– A	positive	DM	value	is	indicative	
of	multiple	funnels.

Function Dim DM

Rastrigin 2D -0.224

10D -0.245

Schwefel
2.26

2D 0.035

10D 0.021
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Exploratory	landscape	analysis	(ELA)

• ELA	(Mersmann et	al.	2011):	many	simple,	low-level	features	based	on	a	
fairly	small	sample	of	points	from	the	search	space	of	continuous	
problems.

• Six	low-level	feature	
classes	(convexity,	y-
distribution,	etc.)	with	
50	sub-features.

• Implemented	in	an	R-
package	called	flacco
(Kerschke &	Trautmann
2016).

• Also	see	later	tutorial	
on	“Exploratory	
Landscape	Analysis”.

22

Local	optima	networks	(LON)

• LON	(Ochoa	et	al.	2008):		technique	for	compressing	the	
essential	landscape	features	for	combinational	optimisation	
problems	in	a	graph.

• How	it	works:
– Run	a	best-improvement	local	search	to	find	local	optima.
– Vertices	of	the	LON	are	local	optima	and	edges	between	optima	indicate	that	

basins	are	adjacent	/	chances	of	escaping	the	optima	(Verel et	al.	2012).
– Statistics	are	used	to	characterise the	LON.

Local	optima	networks	of	NK-Landscape	with	different	edge	definitions	
(Verel et	al.	2012)
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Predictive	diagnostic	optimisation

• Diagnostic	optimisation:	combines	
fitness	landscape	diagnostics	with	
optimisation.

• Predictive	diagnostic	optimisation	
(PDO)	for	discrete	problems	
(Moser	and	Gheorghita,	2012).

• How	it	works:
– Start	with	a	random	solution	and	

perform	steepest	descent	(SD).
– Calculate	ratio	of	improvement	

achieved	by	first	step	to	improvement	
achieved	after	the	full	SD	(called	a	
predictor).

– The	number	of	different	predictors	is	
an	indicator	of	the	distribution	of	the	
basin	shapes	of	the	landscape.

24
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Length	scale

• Length	scale:	characterisation	of	continuous	problems	(Morgan	and	
Gallagher,	2012).

• How	it	works:
– A	random	Levy	walk	is	used	to	sample	points	in	the	search	space.
– The	length	scale	between	points	is	calculated	as	the	change	in	fitness	value	with	respect	

to	distance	in	decision	space.	
– Length	scale	distribution	is	defined	as	the	probability	density	function	of	the	length	scale	

and	information	entropy	is	used	to	summarise	the	probability	density	function.

25

Recent	contributions

• Focus	on	correlation	with	
– algorithm	performance
– algorithm	selection
– algorithm	tuning
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FLC	for	VRP

• Analysed	in	five	studies:

– Czech	2008
– Kubiak	2009
– Runka,	Ombuki-Berman	and	Ventresca 2009
– Pitzer,	Vonolfen,	Beham,	Affenzeller,	Bolshakov,	and	
Merkuryeva 2012

– Ventresca,	Ombuki-Berman	and	Runka 2013
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Vehicle	routing	problem

Time	Windows

Capacitated

Repeated	Trips

Loading	Constraints

Legal	Work	Hours

Heterogeneous	Fleet

Some	instances	from:	w.cba.neu.edu/~msolomon/problems.htm 28

441



Simulated	annealing	for	VRPTW	

• Czech	2008
Create	solution	
with	minimal	

tours

Si
m
ul
at
ed
	A
nn

ea
lin
g

Minimise	total	travel	
distance

Create	solution	
with	minimal	

tours

Create	solution	
with	minimal	

toursPh
as
e	
1

Ph
as
e	
2

Choose	
best

Solomon’s	
instances	with
100	customers
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Solutions	found	by	SA

• Czech	2008
• Approach:	Probabilities	of	discovering	solutions

Solomon’s
R112

30

Probabilities	of	finding	quality

• Czech	2008

Error	=!"#$%!&$!&$

Instance Error
R211 3.3
R112 2.4
R110 1.6
R108 1.2
R107 0.9
R111 0.9
R109 0.8
R106 0.6
R103 0.6
R104 0.5
R102 0.4
R105 0.2
R101 0.2

P1 =	prob that	1	solution	with	min	tours	is	found
P2 =	prob that	min	tours	and	1%	of	shortest	is	found
P3 =	prob that	best-known	is	found 31

Distance	analysis

• Kubiak	2009

Benchmark	instances:http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/

Instances	with
71	– 385	
customers

Locally	optimise	2000	
solutions

Create	2000	random	
solutions

Distances:
- edge-based
- tour-based
- tour-edge-based
- tour-edit
- tour-add-remove

av
er
ag
e	
di
st
an

ce

32
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Fitness-distance	analysis

• Kubiak	2009
Distances:
1.	edge-based
2.	tour-based
3.	tour-edge-based
4.	tour-edit
5.	tour-add-remove

1

2

3

4

5
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Waste	collection	VRPTW

• Runka,	Ombuki-Berman	and	Ventresca 2009

Crossover:	
PMX
UOX
CX

Mutation:	
Swap

Inversion
Insertion

Displacement

IC
PIC
DBI

Autocorrelation

“instances	with
102	– 2100	stops”

34

Waste	collection	VRPTW,	results

• Runka,	Ombuki-Berman	and	Ventresca 2009
• “swap	and	insertion	operators	yield	smoother	landscapes”

– “does	not	mean	they	are	superior”
• “relatively	rugged	landscapes	of	the	inversion	and	displacement	

operators	indicate	a	higher	likelihood	of	skipping	over	an	optimum,	
but	should	allow	for	slower	convergence.”

• “Crossovers	are	destructive”

• Suggestion	to	combine	or	alternate	between	operators

35

FLA	and	problem-specific	measures	

• Pitzer,	Vonolfen,	Beham,	Affenzeller,	Bolshakov,	and	
Merkuryeva 2012

FLA	distances

Pr
ob

le
m
-s
pe
cif
ic	
di
st
an
ce
s
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Information	content

0.8 0.5 0.7 0.71 0.7 0.3 0.4 0.5

-1 1 0 0 -1 1 1

Random	
walk

fi – fi-1 <	ε fi – fi-1 >	ε |fi – fi-1|≤	ε

Calculate	the	probability	of	two	different
contiguous	items	:

…n

P-1,1=
|%),)|
$

, Ppq=
|+,,|
$

P-1,0=
|%),-|
$

𝐼𝐶 ε = −2𝑃+,𝑙𝑜𝑔7
�

+9,
𝑃+,

37

Partial	information	content

-1 1 0 0 -1 1 1

n	=	7

remove	repetitions	and	zeros -1 1 -1 1

μ =	4

𝑀 ε =
μ
𝑛

Modality:
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Density-basin	information

-1 1 0 0 -1 1 1

Calculate	the	probability	of	two	identical
contiguous	items	:

P1,1=
|),)|
$
, Ppp=

|+,+|
$

P0,0=
|-,-|
$

DBI ε = −∑ 𝑃++𝑙𝑜𝑔=�
++ 𝑃++
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Information	content	and	GA

• Ventresca,	Ombuki-Berman	and	Runka 2013

IC
PIC
DBI

66	instances
CVRP	+	VRPTW

Crossover:	
PMX
UOX
CX

Mutation:	
Swap

Inversion
Insertion

Displacement

40
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Information	content	and	GA,	results

• Ventresca,	Ombuki-Berman	and	Runka 2013
• Results:

• Clustering	by	indicators	creates	almost	disjoint	clusters	of	operators
• There	is	significant	overlap	between	performance	clusters	and	

indicator-based	clusters.
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Failure	prediction	for	PSO

• Malan	and	Engelbrecht 2014
– gbest PSO
– cognitive	PSO
– social	PSO
– local	best	PSO
– asynch global	best	PSO
– bare	bones	PSO
– modified	bare	bones	PSO

xt-1

xt

yt

yt-1

gbest

pbest

pbestpbest
zt-1 zt
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Landscape	metrics

• Malan	and	Engelbrecht 2014
– Ruggedness	(information	content)

• after	Vassilev,	Fogarty	and	Miller	2003

– Dispersion	metric	for	funnel	detection	
• by	Lunacek and	Whitley	2006

– Gradient	measures:	average	and	standard	deviation
• Malan	and	Engelbrecht 2013

– Fitness	Distance	Correlation
• Jones	and	Forrest	1995

– Fitness	Cloud	Index
• after	Verel,	Collard	and	Clergue 2003

43

Predicting	algorithm	failure	

• Malan	and	Engelbrecht 2014

24	functions:	Ackley,	
Rastrigin,	Weierstrass,	
Rana,	Rosenbrock,	

Beale…
2,	5,	10,	15	and	30	D

Success	rate:	#?@AA"??B@C	E@$?#E@$?
Successful	run:	Result	within	a	
tolerance	of	known	optimum

7	PSO	
variations	for	
10000	FE

Decision
tree

induction

44
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Failure	prediction	model

• Malan	and	Engelbrecht 2014

gbest PSO	failure	prediction lbest PSO	failure	prediction

dimension

gradient
stdev

45

Results

• Malan	and	Engelbrecht 2014

asynchronous	gbest PSO	failure	prediction

• Easy	to	identify	what	makes	
a	problem	hard	for	each	
variation	of	PSO

• The	most	distinguishing	
metrics	tend	to	be	different	
for	the	variations.	

• All	metrics	are	needed	(and	
possibly	more)	to	identify	
the	causes	that	stop	the	
algorithm	from	succeeding.

46

LON	and	ILS,	NK	landscapes

• Daolio,	Verel,	Ochoa	and	Tomassini 2012
– LON-related	variables:

• #	local	optima
• average	path	length	to	GO
• average	path	length	between	optima
• NN	fitness	correlations	
• #	self-loops	(basin	size)
• clustering	coefficient
• average	out-degree	of	lo
• average	weight	disparity	of	outgoing	edges
• NN	degree	correlation

Performance:

)%?@AA"??	E#F"
?@AA"??	E#F" ∗ max𝐹𝐸

+𝐹𝐸(#𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	𝑟𝑢𝑛𝑠)

N	=	18
K	=	2,	4,	6,	8,	10,	
12,	14,	16,	17

47

LON	metric	correlations

• Daolio,	Verel,	Ochoa	and	Tomassini 2012

Pearson Measure
0.5 #	local	optima
0.52 average	path	length	to	global optimum
0.09 average	path	length	between	optima
-0.4 NN	fitness	correlations	
-0.4 #	self-loops	(basin	size)
-0.27 clustering	coefficient
0.45 average	out-degree	of	lo
-0.3 average	weight	disparity	of	outgoing	edges
-0.24 NN	degree	correlation

48
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LON	metric	correlation	plots

• Daolio,	Verel,	Ochoa	and	Tomassini 2012

average	path	length	to	global	optimum average	out-degree	of	lo

number	of	local	optima 49

LON	and	regression	analysis

• Daolio,	Verel,	Ochoa	and	Tomassini 2012
– Linear	regression	model	

• average	path	length	to	GO
• average	out-degree	of	lo
• average	weight	disparity	of	outgoing	edges
• NN	degree	correlation

in	combination	explain	84%	of	the	variance	in	the	success	
rate.

50

LON	and	ILS,	PFSP

• Daolio,	Verel,	Ochoa	and	Tomassini 2013

neutral	subgraph	
– not	an	LO

neutral	subgraph	
– LOn	=	10

m =	5,	6,	7,	8,	9,	10
Watson	et	al.	2002

51

#	Local	optima

• Daolio,	Verel,	Ochoa	and	Tomassini 2013

Operators:	
Swap	(x2)

Insertion	(x1)
52
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LON	and	ILS,	PFSP,	results

• Daolio,	Verel,	Ochoa	and	Tomassini 2013

Performance:	)%?@AA"??	E#F"?@AA"??	E#F" ∗ max𝐹𝐸 + 𝐹𝐸(#𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	𝑟𝑢𝑛𝑠)

1-ins 2-ins 1-exch 2-exch Measure
0.46 0.54 0.54 0.41 #	local	optima
0.63 0.69 0.62 0.53 average	path	length	to	global optimum
0.40 0.45 0.54 0.35 average	path	length	between	optima
0.20 0.32 -0.00 0.22 NN	fitness	correlations	
-0.31 -0.48 -0.24 -0.27 #	self-loops	(basin	size)
-0.22 -0.21 -0.51 -0.26 clustering	coefficient
0.48 0.55 0.45 0.41 average	out-degree	of	lo
-0.41 -0.46 -0.47 -0.43 average	weight	disparity	of	outgoing	edges
0.08 -0.17 0.14 -0.11 NN	degree	correlation
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LON	and	PageRank	Centrality

• Herrmann	and	Rothlauf 2015

𝜋W =2𝜋&
1
𝑞&

�

&

𝜋& =	rank	of	page	i

𝑞& =	#	links	on	page	i

(Franceschet 2011)

also:	
NN	fitness	correlation
FDC	to	global	optimum
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LON	and	PageRank,	experiments

• Herrmann	and	Rothlauf 2015

ILS
SA

NK	landscapes
n	=	12,	k	=	
(2….10)

TSP	
n	=	8

Success	rate:

#?@AA"??B@C	E@$?
#E@$?

Mean	#	FE	needed	to	
find	optimum.
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LON	and	PageRank,	results

• Herrmann	and	Rothlauf 2015
NK ILS SA

success #	FE success #	FE
NN	fitness correlation 0.48 0.14 0.59 0.37
FDC 0.37 0.10 0.54 0.31
PageRank 0.91 0.31 0.92 0.54

TSP ILS SA
success #	FE success #	FE

NN	fitness correlation 0.006 0.003 0.001 0.001
FDC 0.11 0.043 0.273 0.001
PageRank 0.757 0.605 0.646 0.338
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