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Tutorial overview

e Overview of fitness landscape analysis:
— Motivation for characterising problems
— What is a fitness landscape?
— Features of fitness landscapes
— Fitness landscape analysis techniques
* Recent contributions with a focus on correlation with
algorithm performance, selection and tuning.
— Vehicle routing problem
— Failure prediction for PSO
— Local optima networks

* Interactive demo of metrics in python using Jupyter.

... unpredictable results




Too many algorithms

* Too many optimisation algorithms:
— new algorithms introduced all the time inspired by natural or social
phenomenon.

— Some recent examples: social spider algorithm, water wave optimization
algorithms, bat algorithm, election inspired optimization algorithm, football
game algorithm, firefly algorithm, honey bee mating algorithm.

— Are they really “new”?
— NFL Theorems: a ‘super-algorithm’ cannot exist.

* Not enough understanding of the algorithms:
— Takes decades of empirical and theoretical research to understand established
metaheuristics to a limited extent.
— Every new approach comes with a blank record of knowledge around
algorithm behaviour (? algorithm setup ? parameter choices ? convergence ?
suitable / unsuitable problems ?)

Wright’s fitness landscape

* Surface of selective values
(Wright, 1932).
1889 - 1988 * No axes, units or labels.

* Commentary 56 years later:

— “useless for mathematical
purposes”

— Aim: provide an intuitive
picture of evolutionary
processes taking place in
higher dimensional space.

exentution of the e d of gene combi
Dotted lnes teacece: contouss

rivineas. 7
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General algorithm selection problem

(Rice, 1976)

Research areas:
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performane algorithm
behaviour
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Fitness landscapes today

* We now have (useful) formalised mathematical models.
* Essential elements: search space, fitness function, notion of
neighbourhood or accessibility.

e Intuitively, a fitness landscape is a visualisation of the
terrain capturing how fitness changes between I
R
neighbouring solutions. =

"«

* Idea of “valleys”,

" ou

peaks”, “ridges”, “plateaus”, etc.
* One fitness function, many fitness landscapes (even for real-
valued spaces).

* Example: Step benchmark function (same function, two

different landscapes).
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(1) Larger domain (b) Smaller domain




Fitness landscape characterisation

To understand optimisation problems through analysis of

search space in terms of the objective function landscape.
When problems are simple, classical techniques could be

more suitable.

When are metaheuristics needed?

— When objective functions do not have the structure
required by classical techniques (e.g. uni-modality,
differentiability).

— When problem complexity is too large (classical techniques
not feasible).

— When there is no objective function in mathematical form.

— Objective function exhibits noise or uncertainty.

Features of fitness landscapes

Modality (number of optima) is frequently 18
referred to as affecting difficulty, but too

simplistic.

Example landscapes both with three optima.

Top landscape: global basin is wider and deeper
than local basins.

Bottom landscape: global basin narrow and local o

basins deep.

Consider simple PSO with 2 particles: top
landscape not deceptive, bottom landscape is
deceptive.

Distribution & relative sizes of basins of
attraction more important than modality.
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Features of fitness landscapes

fitness

fitness

Ruggedness:
— Quantifies changes in neighbouring fitness
values (micro or macro scale).
Global landscape structure (funnels)
— Funnel: global basin shape of clustered local
optima.
Gradients: I
— Steepness of gradients measures the J\’ﬂ
magnitude of neighbouring fitness changes. vm’“\ ‘q‘ W‘\‘U i
Neutrality: . U‘ ‘J“J |
— Lack of neighbouring information to direct
search. i

f“\ ﬂ\ f I

fW /U il
I




Some other fitness landscape lingo

Epistasis
— Comes from genetics: degree of dependency between genes for expression.
— More general term: Variable interdependency / non-separability.
Basins of attraction
— The set of solutions that lead to the same local optimum via a hill climber /
descender.

— Boundary of a basin of attraction: those solutions in the basin that have at
least one neighbour in a different basin.

— Fitness barrier: minimum fitness value required to reach another optimum.
— Central massif / Big valley structure (single funnel)
Evolvability

— The capacity to produce offspring that are fitter than their parents
(‘searchability” may be a more general term).
— Only has meaning with reference to a particular search process.

Autocorrelation

An introduction to some fitness

landscape analysis techniques

Oldest and most widely used fitness landscape metric by Weinberger
(1990) for measuring ruggedness.
How it works:
— Perform a random walk through the fitness landscape to obtain a sequence of
fitness values.

— From this sequence calculate the correlation with the same sequence of
fitness values a small distance away.

— Result 1: Plot of autocorrelation p(s) against step size s.
— Result 2: Correlation length (the distance beyond which the majority of points
become uncorrelated: a smaller value indicates a more rugged landscape).

Problems:
— Assumes that the landscape is statistically isotropic.

— Length metric assumes that the autocorrelation function is a decaying
exponential.
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Investigating the landscapes of RNA
folding using different alphabets
(Fontana et al., 1993).

10

Comelation

00 600
Hamming distance

The role of representation on the
multidimensional knapsack problem
(Tavares et al., 2006)




Fitness distance correlation Entropic measures of ruggedness
* Widely used technique introduced | Characterisation of CEC 2005 . A
by Jones and Forrest (1995). benchmark suite (Miiller and Introduced by Vassilev et al. S R
: . Sbalzarini, 2011). (2003). neutral 0o
* How it works: . c - s o
I . . rugge
— Random sample of points. Measure fjs('”'"?) How it works: z -
distance of each point to optimum to ] — Based on a random walk, a ™~ mgged 0T
generate a set of fitness distance sequence of three-point objects S rugged 10
pairs. are generated. o
. e smooth 11
= Result 1: Scatterplot of fitness T 1 — Ruggedness is estimated using a o -
distance pairs. ) o0 measure of entropy with respect rugged Lal
— Result 2: correlation value. v to the probability distribution of S~ rugged To
* Problems: the rugged elements within the -~ cugged -
— Requires knowledge of global optima. sequence. ’\\ mooth T
— Not very useful for algorithm A — Result: a measure in range [0,1]. | P et
performance prediction. o o w0 9 B (Malan and Engelbrecht, 2009)
AE(Xmin,
17 18

ilev’ i * Fitness cloud (Verel et al. 2003) and negative slope coefficient (Vanneschi
. .. . .
Vassi ev's (2003) first Function Dim | FEMgg; | FEMgy et al. 2004): evolvability with reference to a particular search operator.

entropic measure How i y

. ow it works:

adapted for Zakharov 0 [0201 |0.332 ' )

continuous spaces 100 0282 10308 — Obtain a sample of solutions from the search space (the parents).

(Malan and - - — Choose a good neighbour of each solution in the sample (the offspring).

30D | 0.237 0.288 . ) . .

Er\gflbrSCht‘, 2009). — Fitness cloud: scatter plot of fitness values of parents against offspring.
 First entropic i

measures gf micro Alpine 2010539 | 085 — Negative slope coefficient (nsc): Partition the fitness cloud into bins, nsc is the

and macro 10D | 0.605 | 0.861 sum of negative slopes of line segments between centroids of adjacent bins.

ruggedness (FEMg o; 30D | 0.601 | 0.862 100 e

and FEM,,). Weierstrass | 2D |0.789 |0.792 £ o g
* Values in range [0,1], 1000773 | 0797 2 2

where 0 is least iy 2

rugged and 1 is the 30Dj0.738 0788 S H

most rugged. g g

i i -
19 Fitness Fitness 20
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Dispersion metric Exploratory landscape analysis (ELA)

* ELA (Mersmann et al. 2011): many simple, low-level features based on a
fairly small sample of points from the search space of continuous
classes (convexity, y-

problems.

*  Six low-level feature 4@
distribution, etc.) with

50 sub-features. %"

* Implemented in an R- A

package called flacco \l‘(

¢ Funnel: global basin shape | w i
(local optima form a basin). | #|f, ]! T
 Dispersion metric (Lunacek & ““‘\j‘\f‘\f‘\“‘\“”‘“ w‘.““““‘”\‘“‘d“‘f“r‘\‘
Whitley 2006) predicts the o o
presence of funnels.

Global structure

* How it works:
— Dispersion of all points in a
sample subtracted from the

dlSpeI’SI‘OH of a subset of the Function | Dim | DM
best points. (Kerschke & Trautmann .
— Adapted to work with Rastrigin 2D | -0.224 v
normalised distances. 10D | -0.245 2016).
— A positive DM value is indicative * Also see later tutorial
of multiple f | Schwefel 2D | 0.035 “
ple funnels. 526 on “Exploratory optima contrast
10D | 0.021 Landscape Analysis”.

Local optima networks (LON) Predictive diagnostic optimisation

* LON (Ochoa et al. 2008): technique for compressing the « Diagnostic optimisation: combines
essential landscape features for combinational optimisation fitness landscape diagnostics with . j;rijmm«m«
problems in a graph. optimisation. 1500 B —————
* How it works: * Predictive diagnostic optimisation 10000
— Run a best-improvement local search to find local optima. (PDO) for discrete problems o
) ) L (Moser and Gheorghita, 2012). . :
— Vertices of the LON are local optima and edges between optima indicate that 123ass o0 BESs

* How it works:

— Start with a random solution and
perform steepest descent (SD).

Local optima networks of NK-Landscape with different edge definitions — Calculate ratio of improvement .
(Verel et al. 2012) o ° > achieved by first step to improvement T
’ 3 ' A achieved after the full SD (called a
predictor).
@ [ & 2 @ — The number of different predictors is ?

2 9

basins are adjacent / chances of escaping the optima (Verel et al. 2012).
— Statistics are used to characterise the LON.

e

an indicator of the distribution of the
basin shapes of the landscape.
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Length scale

¢ Length scale: characterisation of continuous problems (Morgan and
Gallagher, 2012).
¢ How it works:
— Arandom Levy walk is used to sample points in the search space.
— The length scale between points is calculated as the change in fitness value with respect
to distance in decision space.
— Length scale distribution is defined as the probability density function of the length scale
and information entropy is used to summarise the probability density function.

FLC for VRP

* Analysed in five studies:

— Czech 2008
— Kubiak 2009
— Runka, Ombuki-Berman and Ventresca 2009

— Pitzer, Vonolfen, Beham, Affenzeller, Bolshakov, and
Merkuryeva 2012

— Ventresca, Ombuki-Berman and Runka 2013
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Recent contributions

* Focus on correlation with
— algorithm performance
— algorithm selection
— algorithm tuning

Vehicle routing problem

Time Windows
Repeated Trips

Legal Work Hours

Capacitated

Loading Constraints

i

Some instances from: w.cba.neu.edu/~msolomon/problems.htm

Heterogeneous Fleet




Simulated annealing for VRPTW

Solutions found by SA

e Czech 2008

-~ Create solution Create solution Create solution
() .. Py . . . ..
@ with minimal with minimal with minimal
w & tours tours tours
<
©
Q
[ =
c
<
el
73
2
R}
>
£
=
Solomon’s
~ instances with
g Minimise total travel 100 customers
2 distance
a

* Czech 2008
* Approach: Probabilities of discovering solutions
1% 2% 3% 4%

| : o o I .
50— : : .o - :o : .
AN A S ST
40+ K e gl s L H et (° . Solomon’s
. Ko, 1208 .
P B i e R112
a LET T
eI A
1 . I I
L4 r 1 I I
10— i i i i
1 1 I I
1 1 I I
0= |
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y

* Czech 2008

Instance Error

1 l Error _mean-min
26 . R211 33 i
08— . R112 2.4
¢ H R110 16
0.6 o R108 12
P g4q— 5 RC105( 8 e R107 0.9
RC101 @ . . R111 0.9
0.2+ ® RC106 g R109 0.8
R112 .
0— @Rin4 R106 0.6
| [ [ I [ [ R103 06
0 0.2 0.4 0.6 0.8 1 R104 0.5
Py R102 04
R105 0.2
R101 0.2

P, = prob that 1 solution with min tours is found
P, = prob that min tours and 1% of shortest is found
P; = prob that best-known is found
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* Kubiak 2009

Distances:
- edge-based
Create 2000 random - tour-based
solutions - tOUr'Edge-based
- tour-edit

- tour-add-remove

Instances with
71-385
customers

:

Locally optimise 2000

solutions

average distance

de dpc dapn deu dear

Benchmark instances:http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-insta ncegsz/




Fitness-distance analysis

Waste collection VRPTW

* Kubiak 2009

Distances:

1. edge-based

2. tour-based

3. tour-edge-based
4. tour-edit

5. tour-add-remove

Waste collection VRPTW, results

¢ Runka, Ombuki-Berman and Ventresca 2009

“instances with
102 — 2100 stops”

Autocorrelation

Mutation:
Swap
Inversion
Insertion
Displacement

Crossover:
PMX
uox

CcX

FLA and problem-specific measures

* Runka, Ombuki-Berman and Ventresca 2009
* “swap and insertion operators yield smoother landscapes”
— “does not mean they are superior”
*  “relatively rugged landscapes of the inversion and displacement
operators indicate a higher likelihood of skipping over an optimum,
but should allow for slower convergence.”

*  “Crossovers are destructive”

* Suggestion to combine or alternate between operators
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* Pitzer, Vonolfen, Beham, Affenzeller, Bolshakov, and
Merkuryeva 2012

E

Problem-specific distances

FLA distances




Information content Partial information content

Rand T
i | 05 | 07 | 071 | 07 | 03 | 04 | n—"#n—,‘
n=7

EErErEEEreE
a1

n=4
Calculate the probability of two different
contiguous items : 1C(e) =— Z Ppqloge Pog [
Modality: ==
= odality M(g) -
_ =11 _ |-10] _ Ipal
Pis= n ! P1o= n ‘ qu_T
37 38

Density-basin information Information content and GA

¢ \entresca, Ombuki-Berman and Runka 2013

I R N A 66 nstances

CVRP + VRPTW

Calculate the probability of two identical
P v DBI(e) = — Xpp Poplogs Bpp

contiguous items : Mutation:
Crossover:
PMX Swap
111 10,0] |p.p| UOX Inversion
P =1 Pyy= — p_==2H .
11 n ' 0,0 n pp n X Insertion

Displacement
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Information content and GA, results

* Ventresca, Ombuki-Berman and Runka 2013
* Results:

¢ Clustering by indicators creates almost disjoint clusters of operators
* There is significant overlap between performance clusters and

indicator-based clusters.
i VID DA

2.5

)

2 23

l
N

IS
Component 1 (60.8%)
o
o

b

Sh
&
s

—00°

Component 1 (79.6%)
|

2 A 0 2 4
i 2 3 4 5
Component 2 (19.3%) Component 2 (39.1%) a1

Landscape metrics

Failure prediction for PSO

* Malan and Engelbrecht 2014

— gbest PSO
— cognitive PSO °
— social PSO 2 z ’
pbest t1

— local best PSO pbest
— asynch global best PSO o Qbest ‘
— bare bones PSO X1 £

pbest Vi

— modified bare bones PSO

Xt
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Predicting algorithm failure

* Malan and Engelbrecht 2014

— Ruggedness (information content)
« after Vassilev, Fogarty and Miller 2003

— Dispersion metric for funnel detection
* by Lunacek and Whitley 2006

— Gradient measures: average and standard deviation
* Malan and Engelbrecht 2013

— Fitness Distance Correlation
* Jones and Forrest 1995

— Fitness Cloud Index
« after Verel, Collard and Clergue 2003

43
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* Malan and Engelbrecht 2014

- 24 functions: Ackley,
Decision Rastrigin, Weierstrass,

tree .7 I.)SO Rana, Rosenbrock,
variations for Beale...

induction 10000 FE 2,5,10, 15 and 30 D

Successful run: Result within a
tolerance of known optimum

44




Failure prediction model Results

* Malan and Engelbrecht 2014 * Malan and Engelbrecht 2014
* Easy to identify what makes
a problem hard for each
o <749 variation of PSO
— ¢ The most distinguishing
125 10,1830 (2;) metrics tend to be different
g+ e for the variations.
G . .
37) - gradient « All metrics are needed (and
<1490 > stdev ) ) Nz possibly more) to identify
y ) e = the causes that stop the
(255_‘,2) (1;3) <06 >0ql6 D) (’7') algorithm from succeeding.
- o ]/Z(?v)li 507
(10) (8/3) S13502 > 13502
Y
best PSO fail dicti Ibest PSO fail dicti o v
es ailure prediction
gbest ailure prediction P asynchronous gbest PSO failure prediction
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LON and ILS, NK landscapes LON metric correlations

* Daolio, Verel, Ochoa and Tomassini 2012 * Daolio, Verel, Ochoa and Tomassini 2012

~ LON-related variables: Pearson [ Measwre ________________|

 #local optima Performance: 0.5 #local optima
average path length to GO

ssrate - 0.52 average path length to global optimum
* average path length between optima P rate MK 0.09
* NN fitness corre!atl?ns +FE (#successful runs) 0.4 NN fitness correlations
* # self-loops (basin size) 0.4 # self-loops (basin size)
* clustering coefficient 027
* average out'—degrfee Of'|° ' Y@ 0.45 average out-degree of lo
* average weight dlsr.)arlty of outgoing edges K=2,4,6 8, 10, 03
* NN degree correlation 12,14, 16,17 20.24
48
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LON metric correlation plots

LON and regression analysis

* Daolio, Verel, Ochoa and Tomassini 2012
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LON and ILS, PFSP

* Daolio, Verel, Ochoa and Tomassini 2012

— Linear regression model
* average path length to GO
* average out-degree of lo
* average weight disparity of outgoing edges
* NN degree correlation
in combination explain 84% of the variance in the success
rate.

# Local optima

* Daolio, Verel, Ochoa and Tomassini 2013

neutral subgraph
n=10 —L0
m=5,6,7,8,9, 10

Watson et al. 2002
neutral subgraph

—notan LO
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* Daolio, Verel, Ochoa and Tomassini 2013

B Operator B2 = operator D2
900" : Sechsnge ] B3 exchange
g 8 insertion £ P
£ . . | 4
o 3
—200 o
s . : &
B0 . : J : Gaso-
s 1B o H | 2 . L L& 9
TR T A R A R TR A A e lele o o AL,
5 6 7 & 6 W 5 6 7 & & 1 s 0§ 7 & 5 4 £ o8 73 : o1
Number of Machines Number of Machines

Operators:

Swap (x2)
Insertion (x1)




LON and ILS, PFSP, results

LON and PageRank Centrality

* Daolio, Verel, Ochoa and Tomassini 2013

[ ins | 21ns | t-exch | 2-exch [ Measure ____________|

0.46 0.54 0.54 0.41 #local optima

0.63 0.69 0.62 0.53 average path length to global optimum
0.40 0.45 0.54 0.35 average path length between optima

0.20 032 -0.00 0.22 NN fitness correlations

-031 -0.48 -0.24 -0.27 # self-loops (basin size)

-0.22  -0.21 -0.51 -0.26 clustering coefficient

0.48 0.55 0.45 0.41 average out-degree of lo

-041 -046 -047 -0.43 average weight disparity of outgoing edges
0.08 -0.17 0.14 -0.11 NN degree correlation

LON and PageRank, experiments

e Herrmann and Rothlauf 2015

NK landscapes
n=12, k=
(2..“10) #successful runs

Success rate:

#runs

Mean # FE needed to
find optimum.
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Herrmann and Rothlauf 2015

Z 1
=) mi—
! T ai

m; = rank of page i
q; = #links on page i

(Franceschet 2011)

also:
NN fitness correlation
FDC to global optimum

LON and PageRank, results

Herrmann and Rothlauf 2015

v | s | s |

success #FE success #FE
NN fitness correlation 0.48 0.14 0.59 0.37
FDC 0.37 0.10 0.54 0.31
PageRank 091 0.31 0.92 0.54

=X T S

success #FE success #FE
NN fitness correlation 0.006 0.003 0.001 0.001
FDC 0.11 0.043 0.273 0.001
PageRank 0.757 0.605 0.646 0.338
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