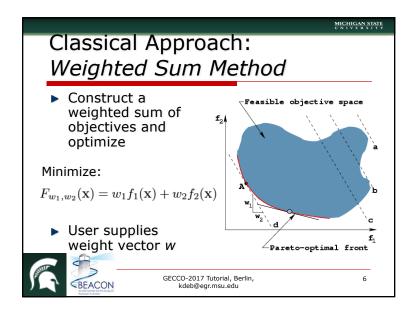
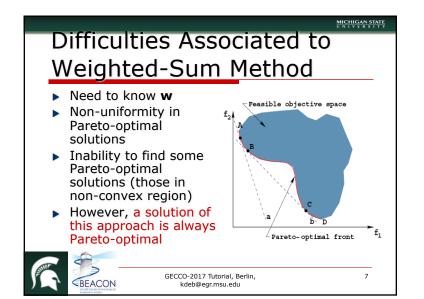
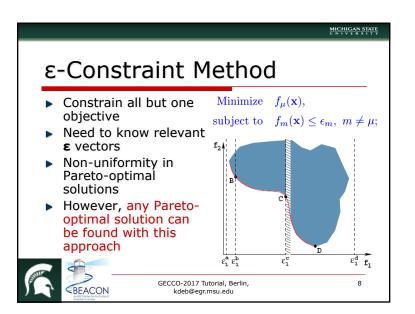
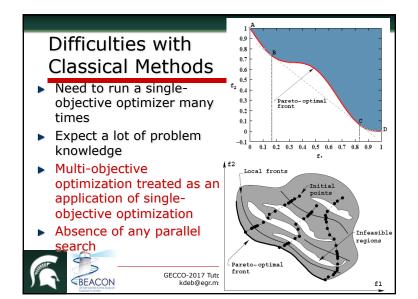
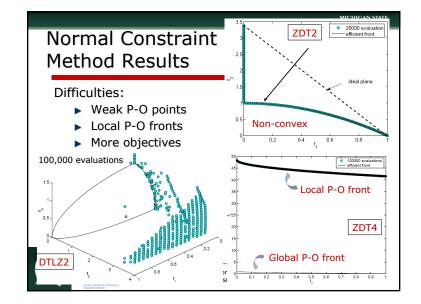

1

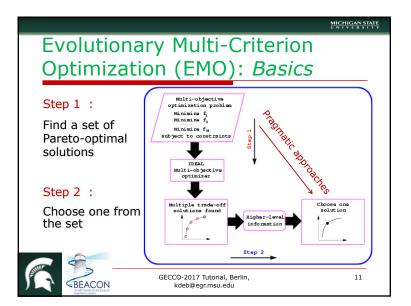




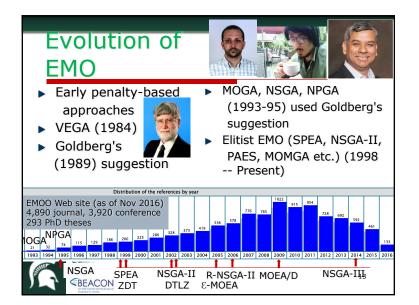


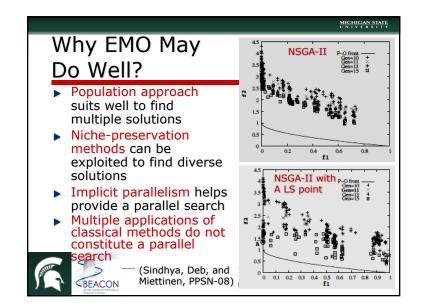


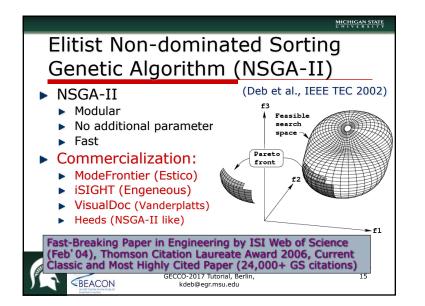


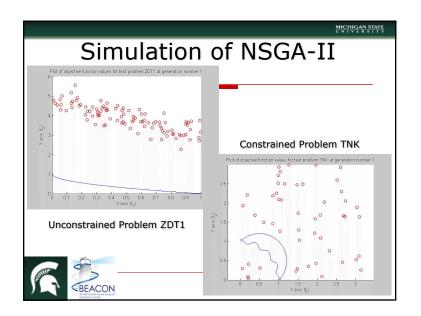


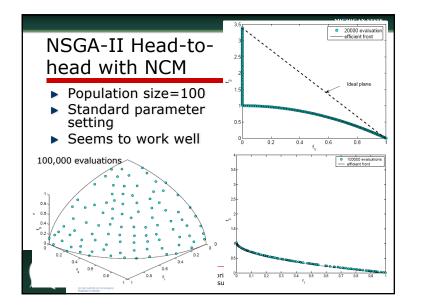


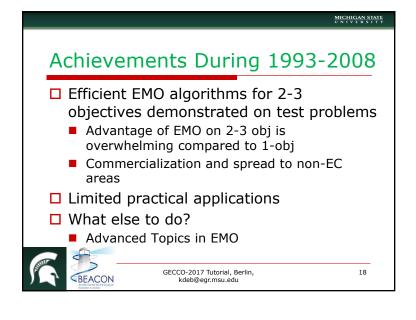


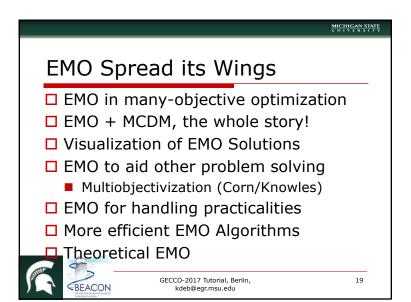


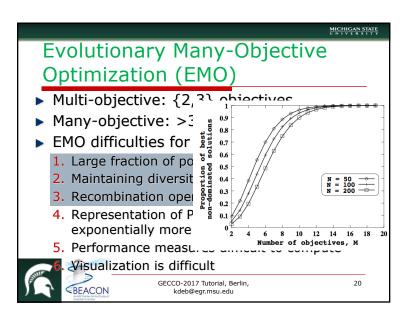


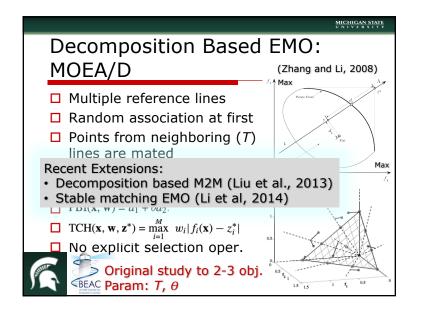


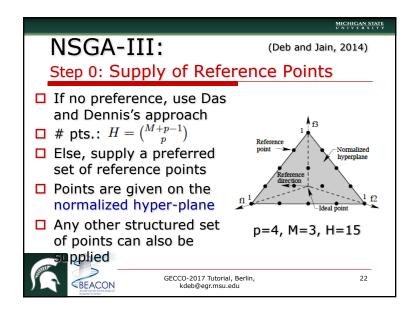


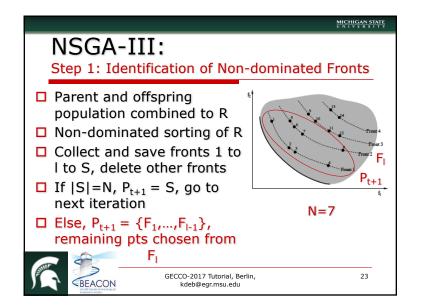


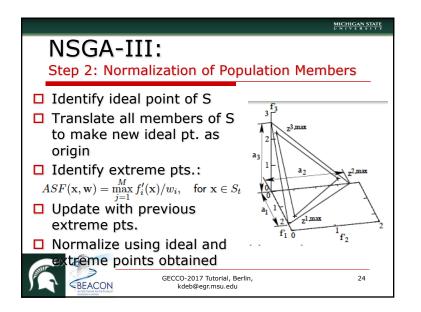


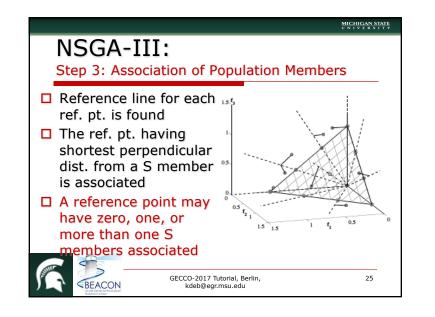


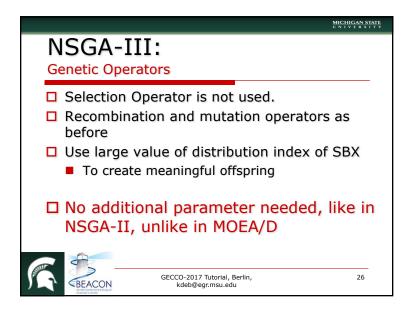


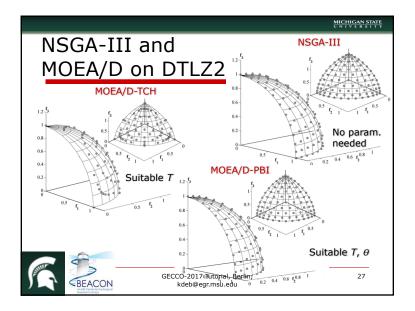


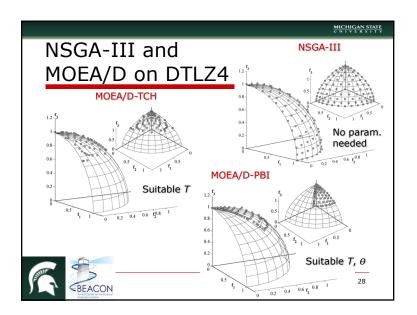


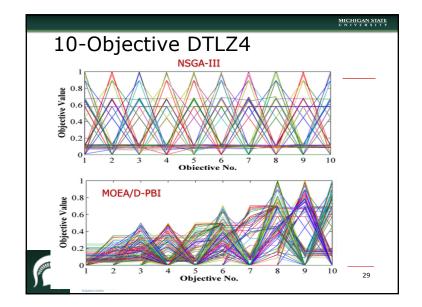


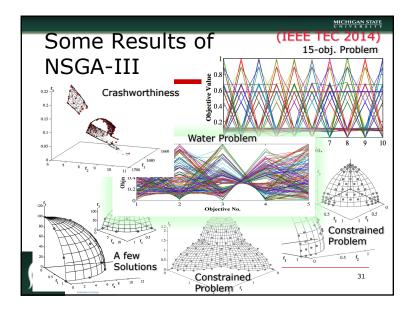


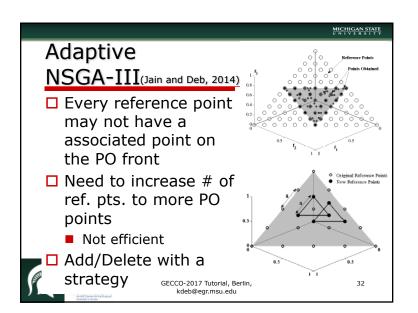


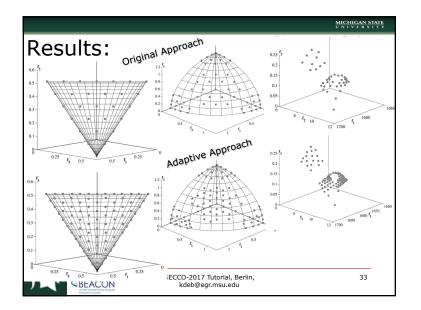


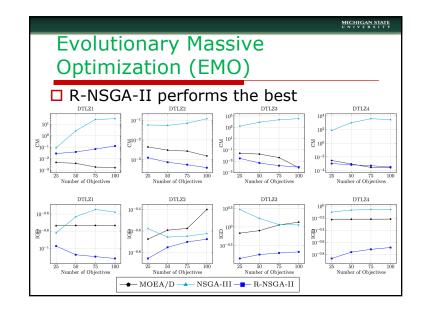


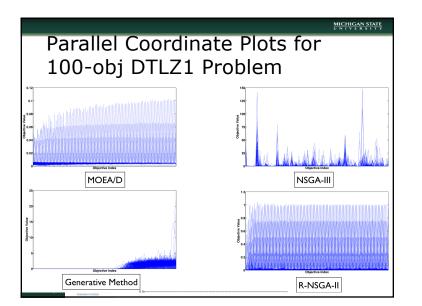


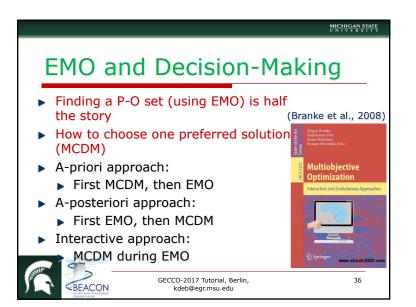


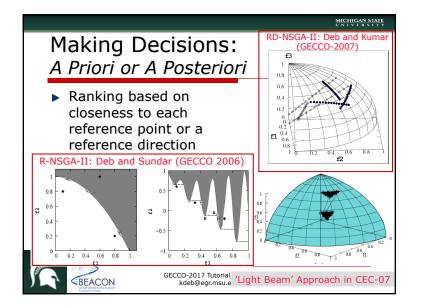


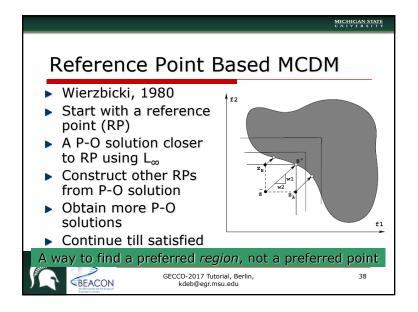


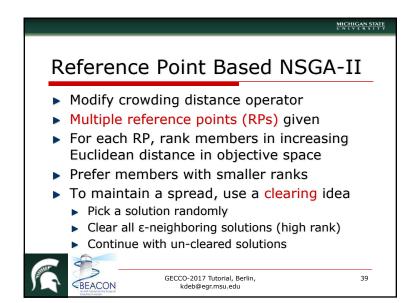


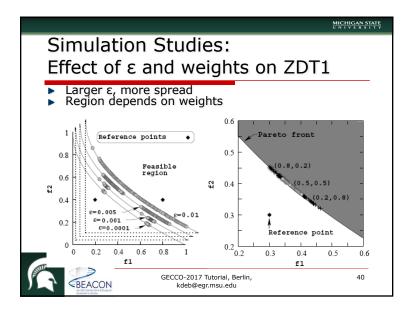

Cla	ssic	al metl	nod wo	rks, but	t is	
exp	bens	sive				
- , , p			Tak			
	Minir	mize _{x} $d_1 + \theta_0$	$d_2 = \mathbf{w}^T \mathbf{f}(\mathbf{x}) + f$	$\theta\left(\ \mathbf{f}(\mathbf{x})-\mathbf{w}'\right)$	$f(\mathbf{x}) \mathbf{w}$	
						-
Ģ		NSGA-III Generative Method				
Prob.	FE	NSG	A-III	Generative	e Method	
Prob.	12	IGD	GD	IGD	GD	-
_	12	IGD 4.880×10 ⁻⁴	GD 4.880×10 ⁻⁴	$IGD = 6.400 \times 10^{-2}$	GD 1.702×10 ¹	-
_	12		$\begin{array}{r} \text{GD} \\ \textbf{4.880}{\times}\textbf{10^{-4}} \\ \textbf{6.526}{\times}\textbf{10^{-4}} \end{array}$	$\begin{array}{r} \text{IGD} \\ 6.400 \times 10^{-2} \\ 8.080 \times 10^{-2} \end{array}$	$\begin{array}{c} \text{GD} \\ 1.702{\times}10^1 \\ 1.808{\times}10^1 \end{array}$	-
DTLZ1	36,400		$\begin{array}{c} \text{GD} \\ 4.880{\times}10^{-4} \\ 6.526{\times}10^{-4} \\ 7.450{\times}10^{-4} \end{array}$	$\begin{array}{r} \text{IGD} \\ \hline 6.400{\times}10^{-2} \\ 8.080{\times}10^{-2} \\ 1.083{\times}10^{-1} \end{array}$	$\begin{array}{c} \text{GD} \\ \hline 1.702{\times}10^1 \\ 1.808{\times}10^1 \\ 1.848{\times}10^1 \end{array}$	-
DTLZ1	36,400	$\begin{array}{r} \text{IGD} \\ \textbf{4.880}{\times}\textbf{10^{-4}} \\ \textbf{1.308}{\times}\textbf{10^{-3}} \\ \textbf{4.880}{\times}\textbf{10^{-3}} \\ \textbf{1.262}{\times}\textbf{10^{-3}} \end{array}$	$\begin{array}{r} \text{GD} \\ \textbf{4.880}{\times}\textbf{10^{-4}} \\ \textbf{6.526}{\times}\textbf{10^{-4}} \\ \textbf{7.450}{\times}\textbf{10^{-4}} \\ \hline \textbf{1.264}{\times}\textbf{10^{-3}} \end{array}$	$\begin{array}{r} \text{IGD} \\ \hline 6.400 \times 10^{-2} \\ 8.080 \times 10^{-2} \\ 1.083 \times 10^{-1} \\ \hline 1.113 \times 10^{-3} \end{array}$	$\begin{array}{c} \text{GD} \\ 1.702 \times 10^1 \\ 1.808 \times 10^1 \\ 1.848 \times 10^1 \\ 9.678 \times 10^{-5} \end{array}$	-
_	12		$\begin{array}{c} \text{GD} \\ 4.880{\times}10^{-4} \\ 6.526{\times}10^{-4} \\ 7.450{\times}10^{-4} \end{array}$	$\begin{array}{r} \text{IGD} \\ \hline 6.400{\times}10^{-2} \\ 8.080{\times}10^{-2} \\ 1.083{\times}10^{-1} \end{array}$	$\begin{array}{c} \text{GD} \\ \hline 1.702{\times}10^1 \\ 1.808{\times}10^1 \\ 1.848{\times}10^1 \end{array}$	-

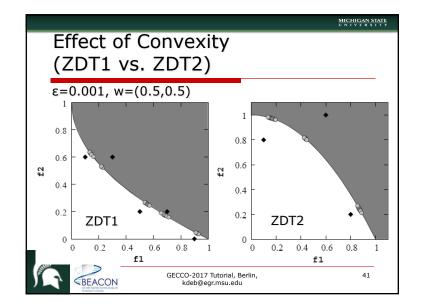


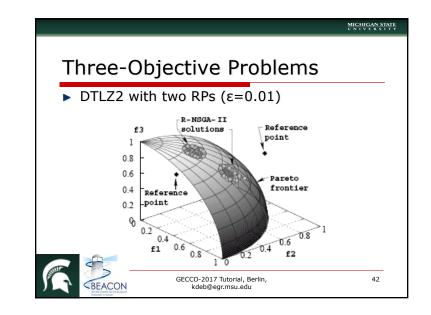


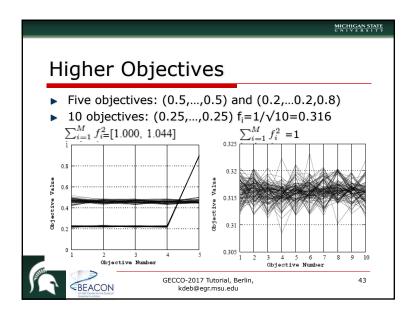


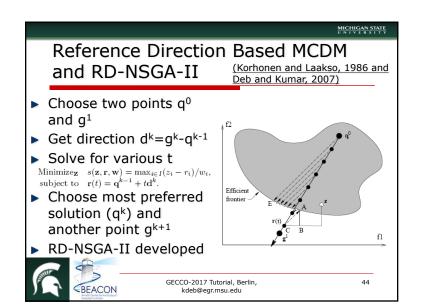


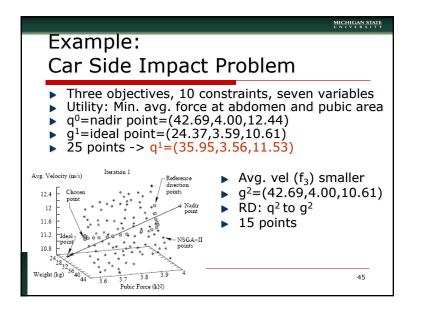


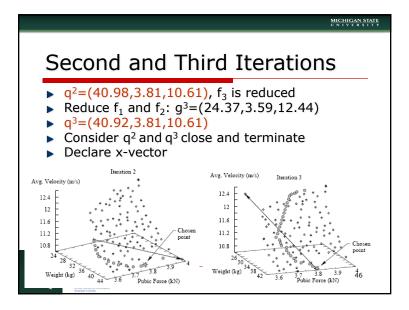


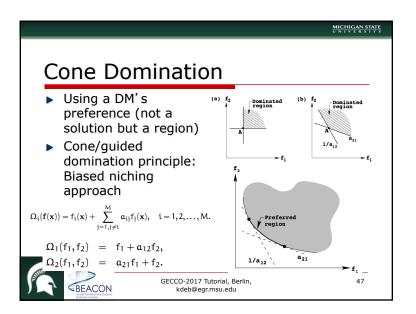


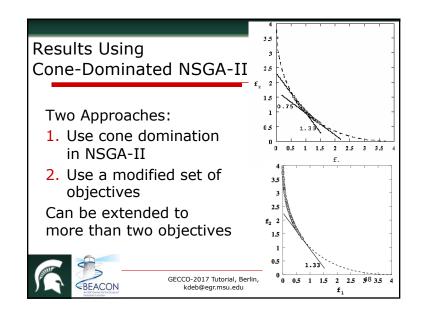


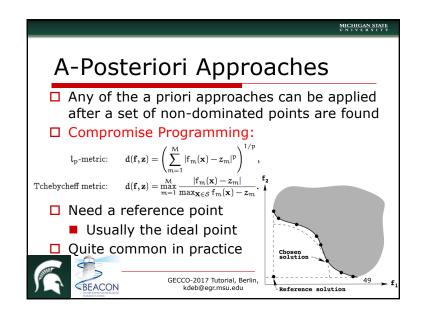


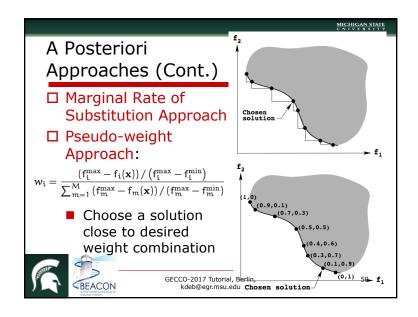


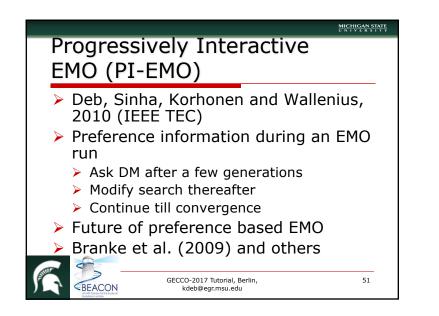


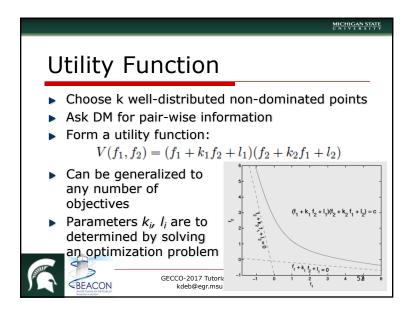


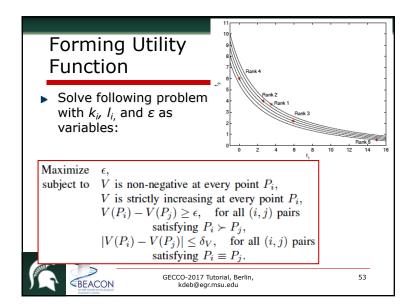


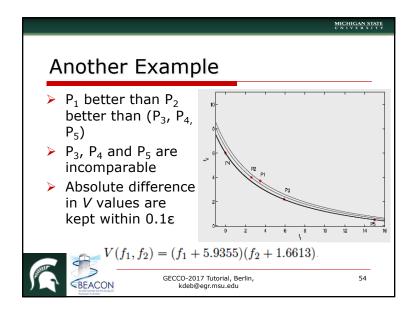


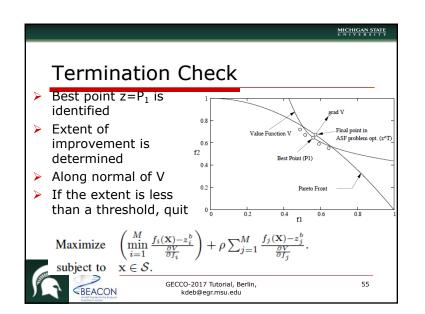


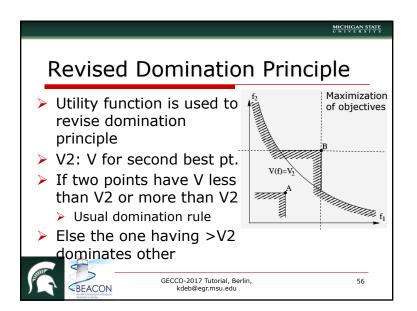


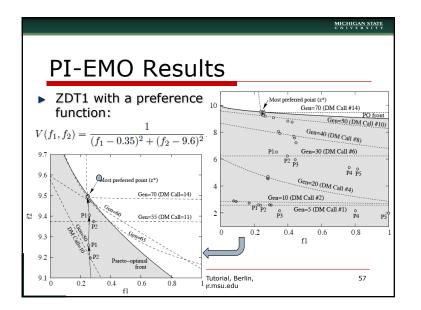


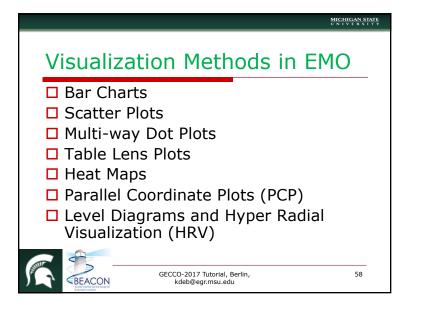


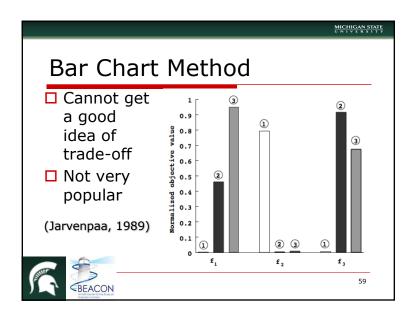


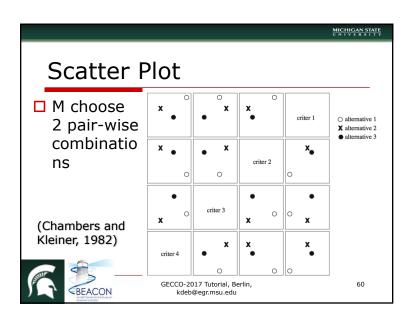


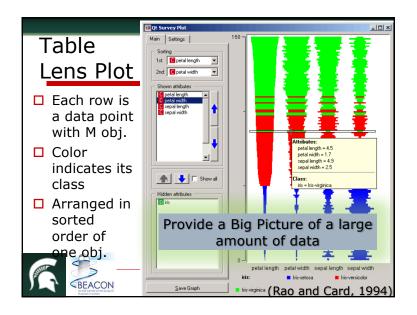


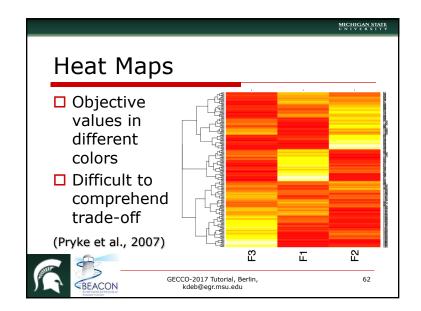


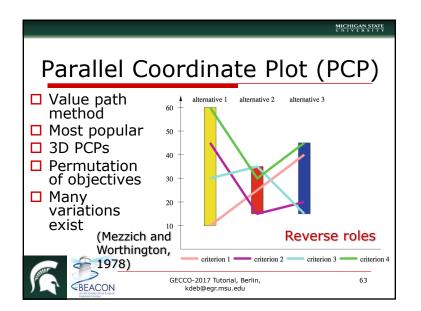


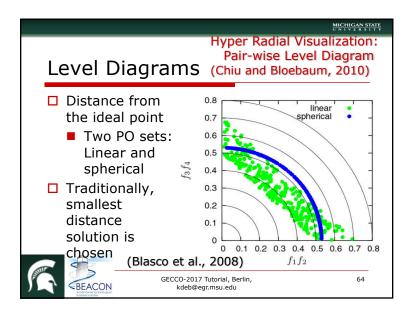


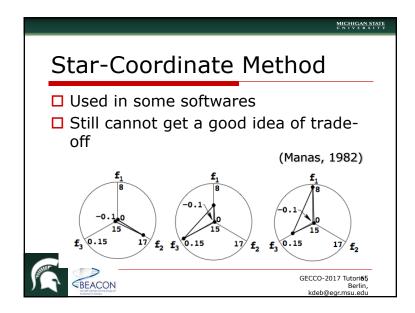


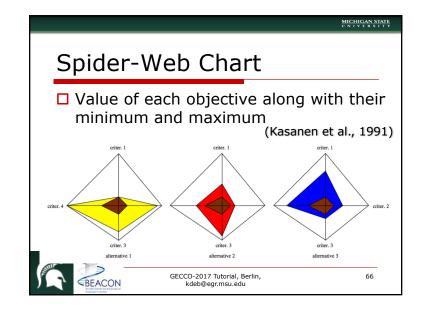


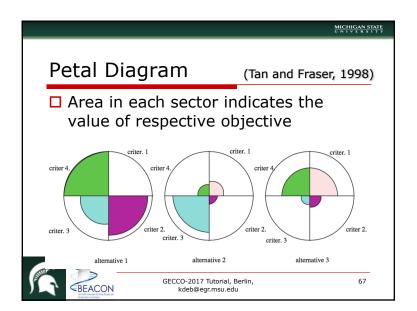


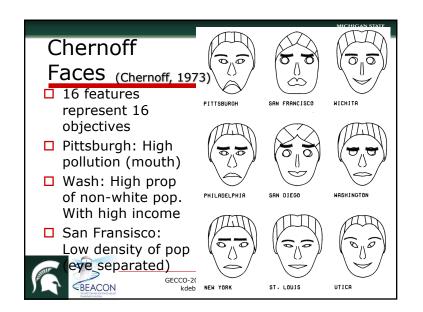


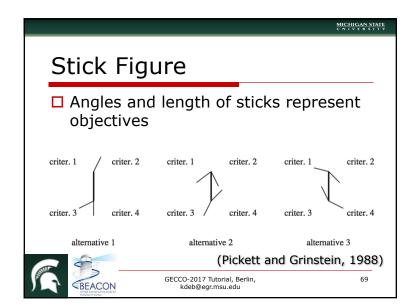


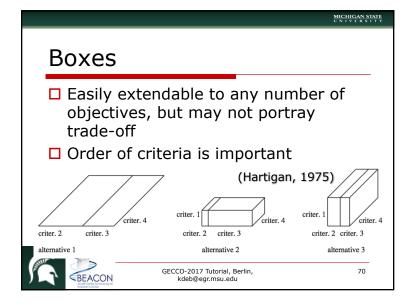


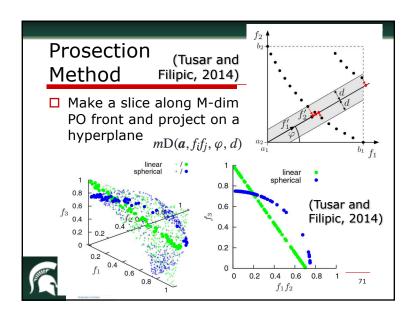


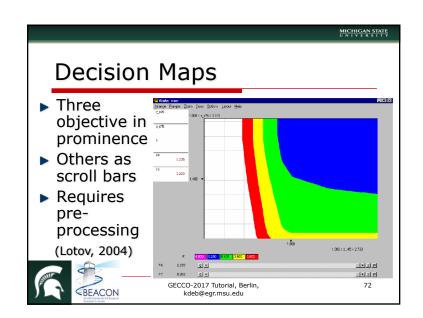


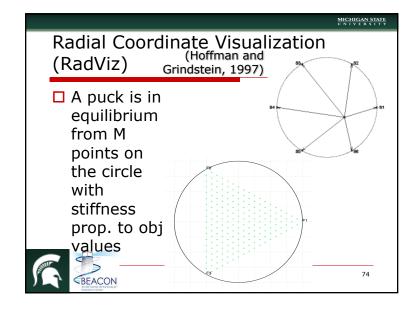


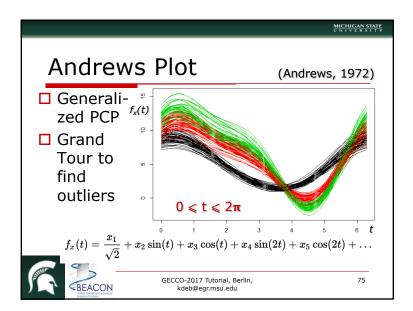




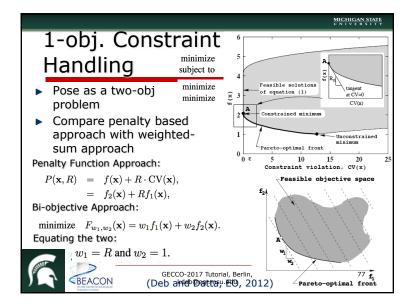


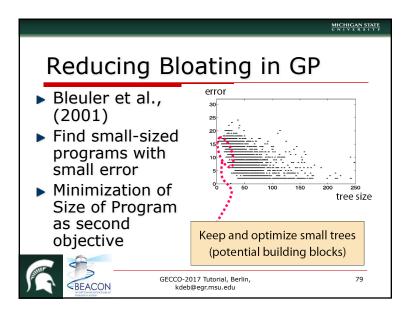


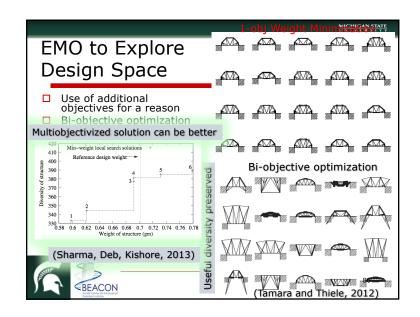


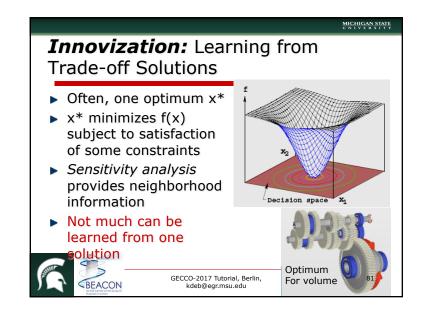


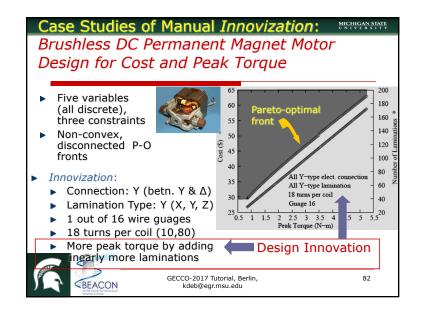


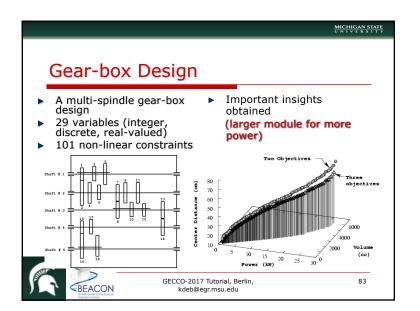


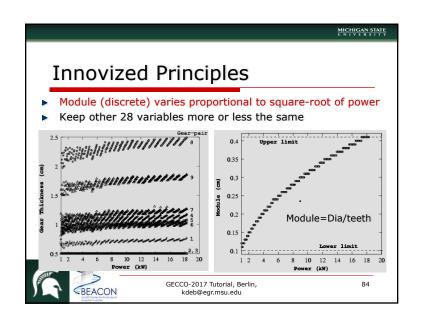


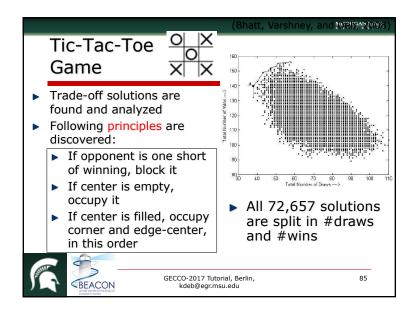


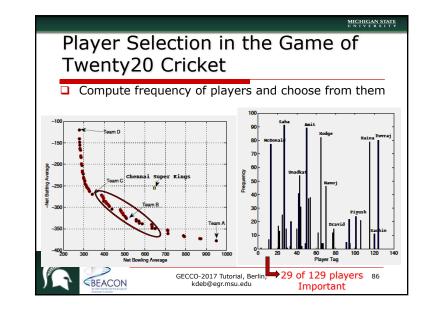


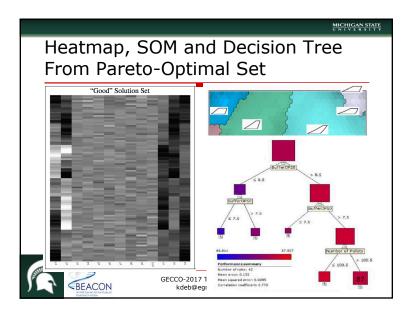


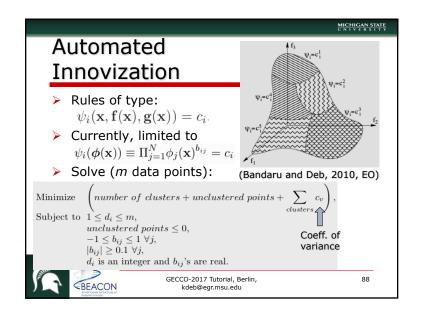

	Ap	oro	acł	า								
												_
	EM0	D to g	jet R									
	Cla	ccical	non-	hord	200	roach	to fir	.d	o col a	-	ion	
		SSICdi	pena	inzeu	appi	roach	to III	iu d l	ocal s	Soluti		
	Tmr	rovo	mont	c of c		r two	ordo	r in c	tanda	and to	oct	
	e nut	Jrove	ment	SOLO	me o	r two	-orde	er in s	lanua		est	
	nro	blem	5									
	pro	Diciti	5									
Prob.	Zavala, A	guirre & Di	harce [52]	Takah	ama & Sak	ai [45]		Brest [6]		Propos	ed Hybrid	Approach
	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst	Best	Median	Wor
g01	Best 80,776	Median 90,343	Worst 96,669	Best 18,594	Median 19,502	Worst 19,917	51,685	Median 55,211	57,151	Best 2,630	Median 3,722	Wor 4,85
g01 g02	Best 80,776 87,419	Median 90,343 93,359	Worst 96,669 99,654	Best 18,594 1,08,303	Median 19,502 114347	Worst 19,917 1,29,255	51,685 1,75,090	Median 55,211 2,26,789	57,151 2,53,197	Best 2,630 26,156	Median 3,722 50,048	Wor 4,85 63,53
g01 g02 g04	Best 80,776 87,419 93,147	Median 90,343 93,359 1,03,308	Worst 96,669 99,654 1,109,15	Best 18,594 1,08,303 12,771	Median 19,502 114347 13,719	Worst 19,917 1,29,255 14,466	51,685 1,75,090 56,730	Median 55,211 2,26,789 62,506	57,151 2,53,197 67,383	Best 2,630 26,156 1,210	Median 3,722 50,048 1,449	Wor 4,85 63,53 2,29
g01 g02 g04 g06	Best 80,776 87,419 93,147 95,944	Median 90,343 93,359 1,03,308 1,09,795	Worst 96,669 99,654 1,109,15 1,30,293	Best 18,594 1,08,303 12,771 5,037	Median 19,502 114347 13,719 5,733	Worst 19,917 1,29,255 14,466 6,243	51,685 1,75,090 56,730 31,410	Median 55,211 2,26,789 62,506 34,586	57,151 2,53,197 67,383 37,033	Best 2,630 26,156 1,210 1,514	Median 3,722 50,048 1,449 4,149	Wor 4,85 63,53 2,29 11,73
g01 g02 g04 g06 g07	Best 80,776 87,419 93,147 95,944 1,14,709	Median 90,343 93,359 1,03,308 1,09,795 1,38,767	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751	Best 18,594 1,08,303 12,771 5,037 60,873	Median 19,502 114347 13,719 5,733 67,946	Worst 19,917 1,29,255 14,466 6,243 75,569	51,685 1,75,090 56,730 31,410 1,84,927	Median 55,211 2,26,789 62,506 34,586 1,97,901	57,151 2,53,197 67,383 37,033 2,21,866	Best 2,630 26,156 1,210 1,514 15,645	Median 3,722 50,048 1,449 4,149 30,409	Wor 4,85 63,53 2,29 11,73 64,73
g01 g02 g04 g06 g07 g08	Best 80,776 87,419 93,147 95,944 1,14,709 2,270	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433	Best 18,594 1,08,303 12,771 5,037 60,873 621	Median 19,502 114347 13,719 5,733 67,946 881	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173	51,685 1,75,090 56,730 31,410 1,84,927 1,905	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044	57,151 2,53,197 67,383 37,033 2,21,866 4,777	Best 2,630 26,156 1,210 1,514 15,645 822	Median 3,722 50,048 1,449 4,149 30,409 1,226	Wor 4,85 63,53 2,29 11,73 64,73 2,00
g01 g02 g04 g06 g07 g08 g09	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234	Median 19,502 114347 13,719 5,733 67,946 881 21,080	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062	Best 2,630 26,156 1,210 1,514 15,645 822 2,732	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850	Wor 4,85 63,53 2,29 11,73 64,73 2,00 5,86
g01 g02 g04 g06 g07 g08 g09 g10	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 49,102	Wor 4,85 63,55 2,29 11,75 64,73 2,00 5,80 1,80,44
g01 g02 g04 g06 g07 g08 g09 g10 g12	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243 482	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735 6,158	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426 9,928	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848 2,901	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807 4,269	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794 5,620	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851 364	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676 6,899	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575 10,424	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905 496	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 49,102 504	Wor 4,85 63,53 2,29 11,73 64,73 2,00 5,86 1,80,44 50
g01 g02 g04 g06 g07 g08 g09 g10 g12 g18	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243 482 97,157	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735 6,158 1,07,690	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426 9,928 1,24,217	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848 2,901 46,856	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807 4,269 57,910	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794 5,620 60,108	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851 364 1,39,131	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676 6,899 1,69,638	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575 10,424 1,91,345	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905 496 4,493	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 4,850 49,102 504 7,267	Wor 4,85 63,52 2,29 11,72 64,73 2,00 5,80 1,80,44 50 10,21
g01 g02 g04 g06 g07 g08 g09 g10 g12	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243 482	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735 6,158	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426 9,928	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848 2,901	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807 4,269	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794 5,620	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851 364	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676 6,899	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575 10,424	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905 496	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 49,102 504	Woi 4,83 63,55 2,22 11,77 64,77 2,00 5,80 1,80,44 50 10,2
g01 g02 g04 g06 g07 g08 g09 g10 g12 g18	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243 482 97,157	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735 6,158 1,07,690	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426 9,928 1,24,217	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848 2,901 46,856	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807 4,269 57,910	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794 5,620 60,108	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851 364 1,39,131	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676 6,899 1,69,638	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575 10,424 1,91,345	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905 496 4,493	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 4,850 49,102 504 7,267	Woi 4,83 63,55 2,22 11,77 64,77 2,00 5,80 1,80,44 50 10,2
g01 g02 g04 g06 g07 g08 g09 g10 g12 g18	Best 80,776 87,419 93,147 95,944 1,14,709 2,270 94,593 1,09,243 482 97,157	Median 90,343 93,359 1,03,308 1,09,795 1,38,767 4,282 1,03,857 1,35,735 6,158 1,07,690	Worst 96,669 99,654 1,109,15 1,30,293 2,08,751 5,433 1,19,718 1,93,426 9,928 1,24,217	Best 18,594 1,08,303 12,771 5,037 60,873 621 19,234 87,848 2,901 46,856	Median 19,502 114347 13,719 5,733 67,946 881 21,080 92,807 4,269 57,910	Worst 19,917 1,29,255 14,466 6,243 75,569 1,173 21,987 1,07,794 5,620 60,108	51,685 1,75,090 56,730 31,410 1,84,927 1,905 79,296 2,03,851 364 1,39,131	Median 55,211 2,26,789 62,506 34,586 1,97,901 4,044 89,372 2,20,676 6,899 1,69,638	57,151 2,53,197 67,383 37,033 2,21,866 4,777 98,062 2,64,575 10,424 1,91,345	Best 2,630 26,156 1,210 1,514 15,645 822 2,732 7,905 496 4,493	Median 3,722 50,048 1,449 4,149 30,409 1,226 4,850 4,850 49,102 504 7,267	Woi 4,8 63,5 2,2 11,7 64,7 2,0 5,8 1,80,4 5

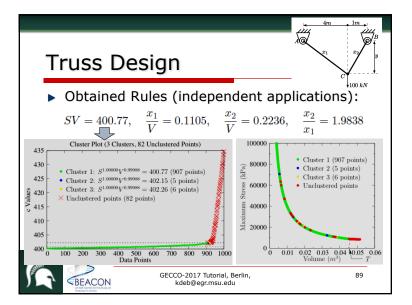


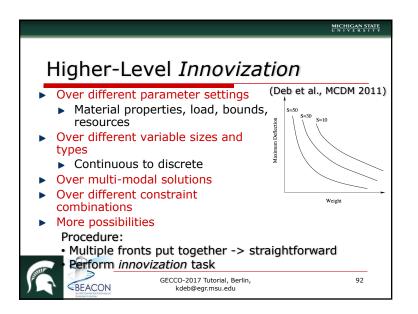


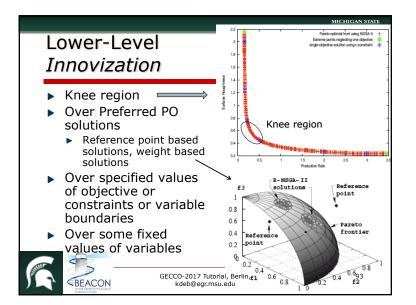


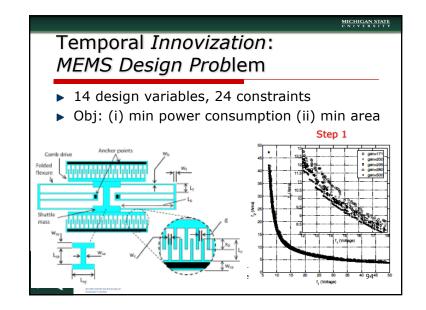


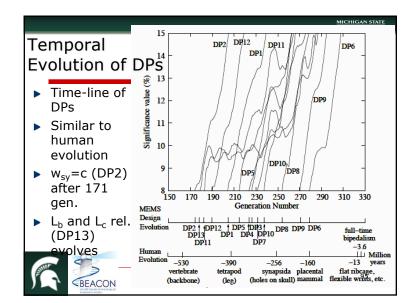


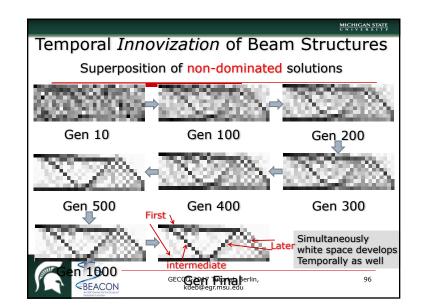


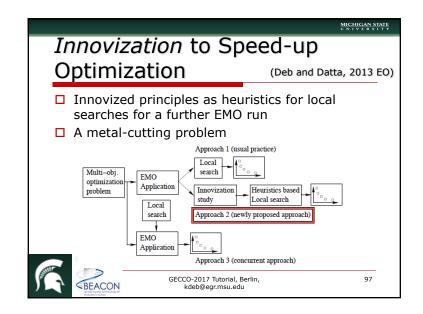


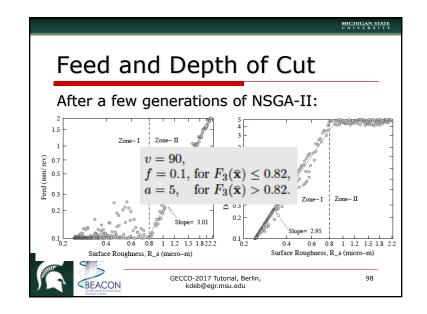

Kalyanmoy Deb (kdeb@egr.msu.edu)

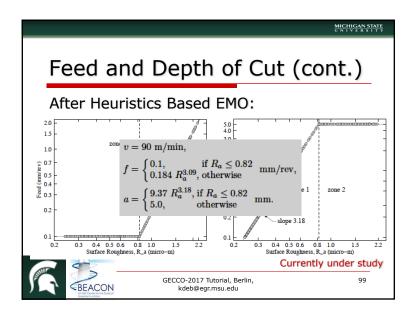


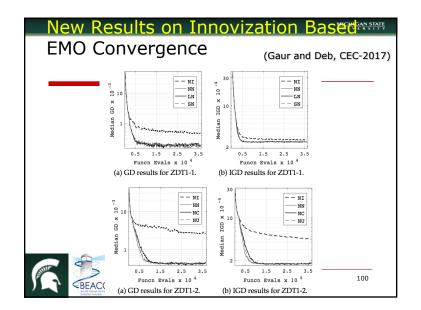

						MIC U N	CHIGAN STATE	
	Multiple Rules Simultaneously (Bandaru and Deb, 2010, Engg. Optimization)							
•	Use of Row-eo		• •	ator to f on to ge		•		
i DR1 DR2 DR3 DR4	$\begin{array}{c} a_{i1}^*b_{i1}^* \\ 1.0000000 \\ 0.0000000 \\ 0.0000000 \\ 0.0000000 \end{array}$	$\begin{array}{c} a_{i2}^*b_{i2}^*\\ 0.0000000\\ 1.0000000\\ 0.0000000\\ 0.0000000\end{array}$	$a_{i3}^*b_{i3}^*$ 0.0000000 0.0000000 1.0000000 0.0000000	$\begin{array}{c} a_{i4}^*b_{i4}^* \\ -1.0006158 \\ 1.0005781 \\ -1.0009661 \\ 0.0000000 \end{array}$	$\begin{array}{c} a_{i5}^*b_{i5}^*\\ 0.0000000\\ 0.0000000\\ 0.0000000\\ 1.0000000\end{array}$	d_i^* 520 508 507 511	$\frac{S_i}{88.2\%} \\ 80.8\% \\ 86.8\% \\ 87.2\%$	
DR1:	x_1	DR2: S	$c_{0.0000000}^{0.0000000000000000000000000$	$\begin{array}{c} rac{1667}{1007} & 0.000000\\ 007 & -0.301366 \end{array}$	$= c_{\text{DR3}},$	DR4: y	as Design $c = c_{\mathrm{DR4}}$	
	17 100 18 100 19 110 20 111 BEACON MIC Carried are backed background and and are	10 1.0000000 010 1.0000000 000 1.0000000	0.0000000 -0.7 0.6702390 0.0		1 0.0000000 8 5 0.0000000 8	869 869 869 860	90	

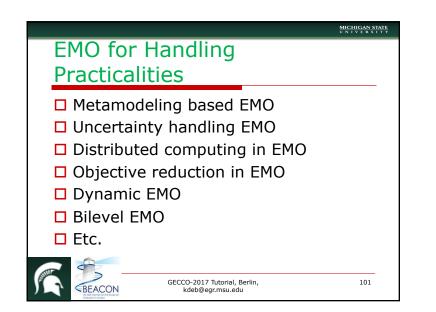

Dimensionally A Programming (e Genetic	L3 EMO
Parse tree representation	W	Velded Beam Design F	Problem
Physically meaningful DPs	Notation	Design Principle (DP) $\psi(\mathbf{x}) = constant$	Significance-
through	DP1 DP2	$\begin{array}{l} (D+t) = constant \\ t = constant \end{array}$	95.20% 95.60%
constraints	DP3 DP4	$D \times b = constant$ $D \times b \times t = constant$	95.00% 95.60%
 Subtree crossover Generic rules 	DP5 DP6	$\sigma \times b = constant$ $\sigma \times b \times t = constant$	94.80% 95.60%
possible	DP7 DP8	$D/\sigma = constant$	95.60% 95.60%
	DP8 017 Tutorial, E @egr.msu.edu		95.00%

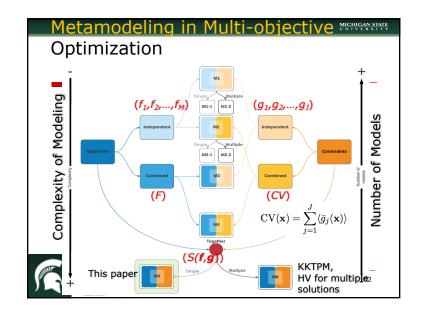


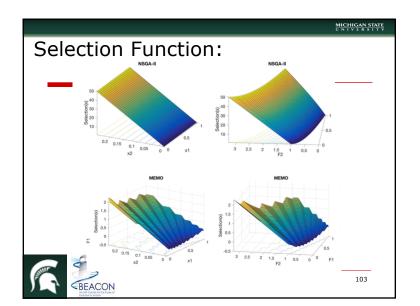


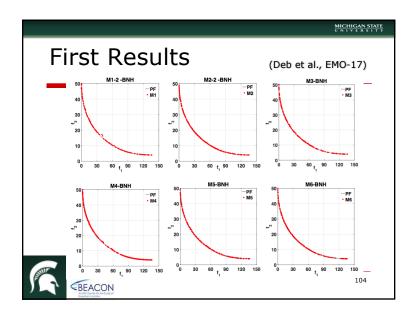


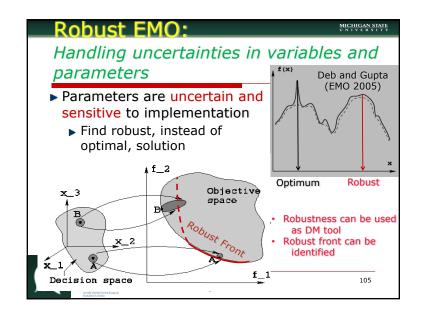


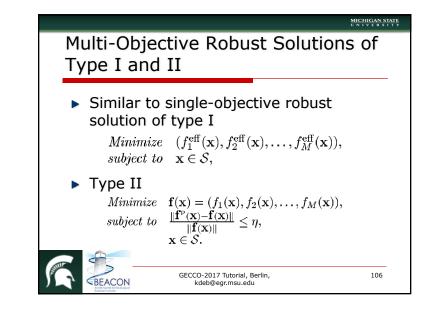


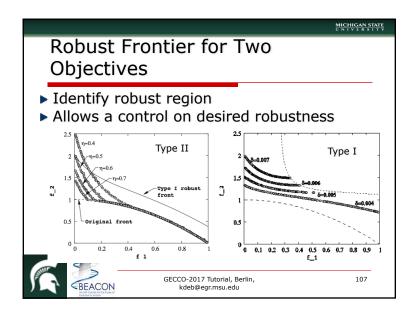


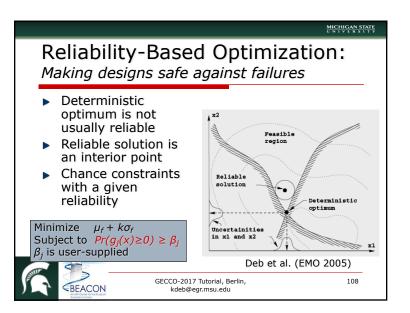


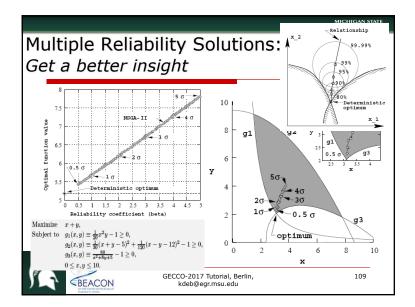


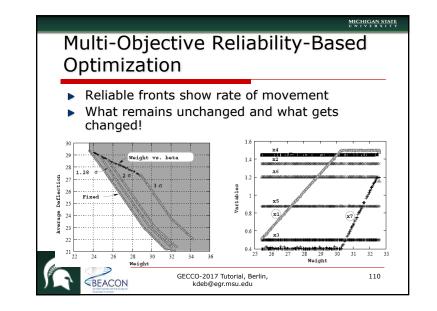

Kalyanmoy Deb (kdeb@egr.msu.edu)

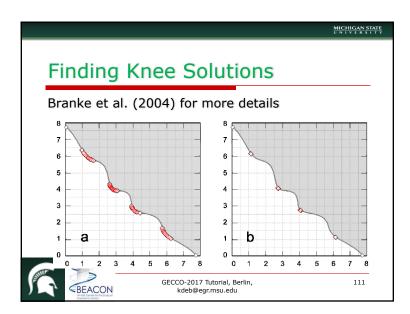


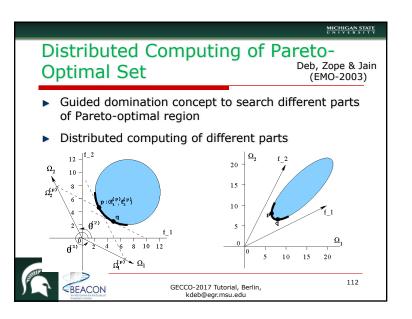


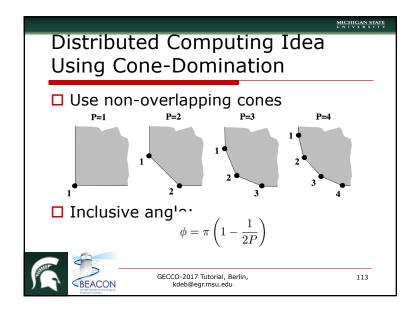


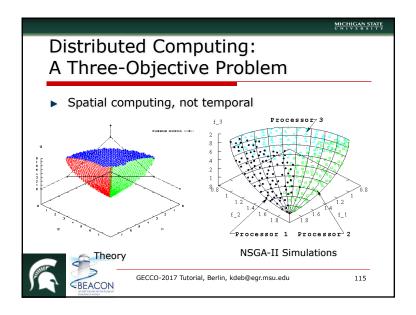


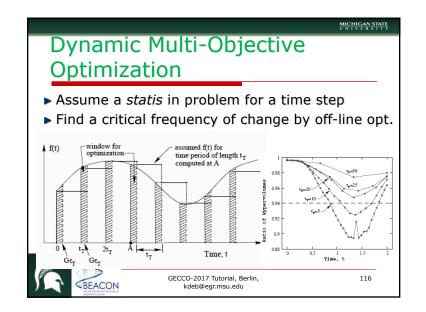


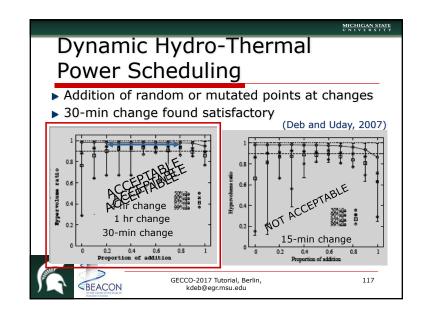


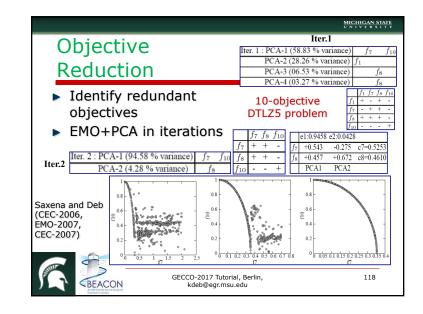


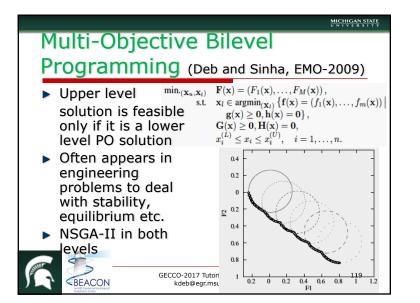


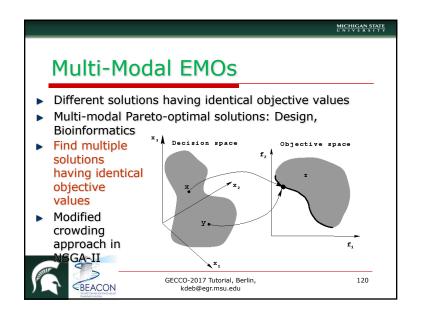


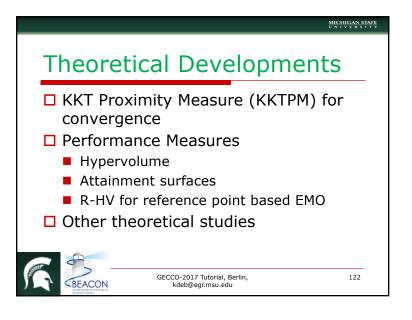


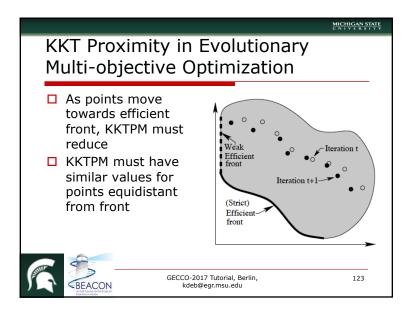


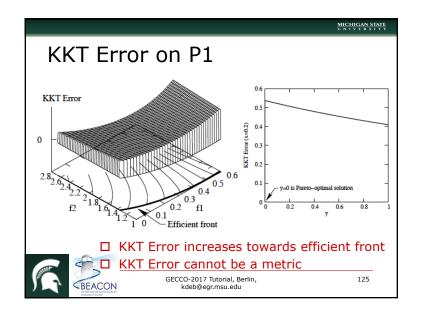


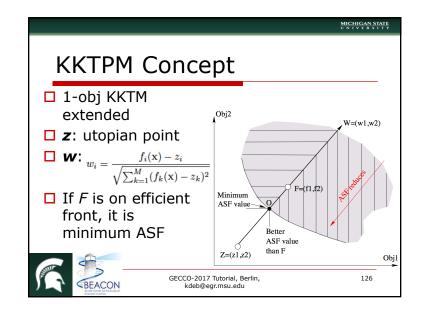


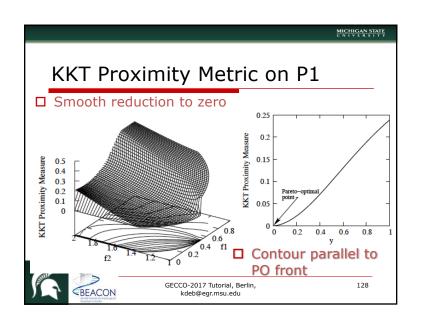


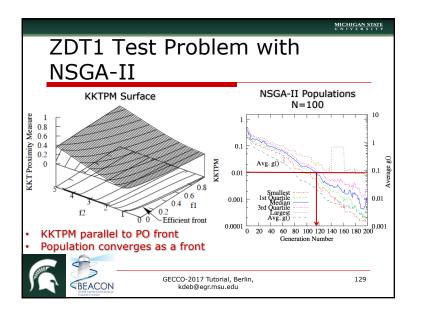


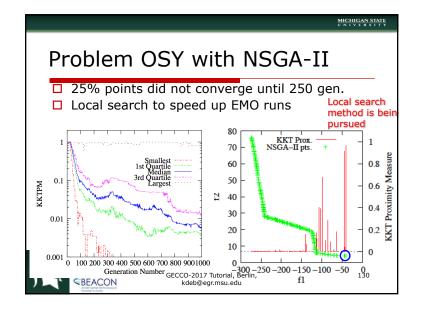


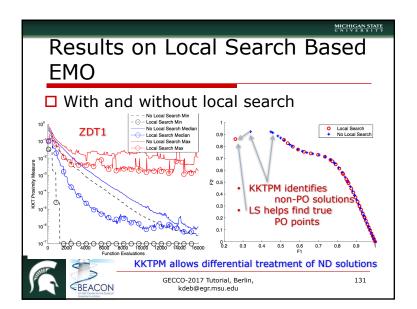


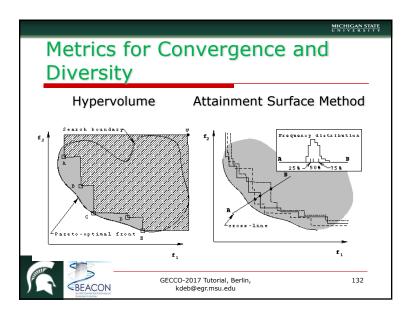


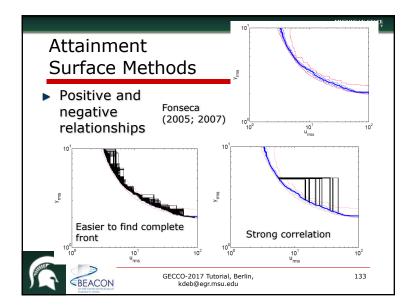


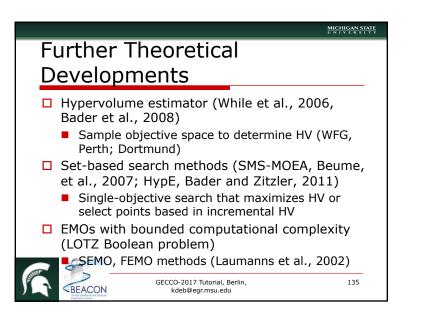

KKT Optimal	lity Conditions for M	0
$\sum_{k=1}^{M} \lambda_k \nabla f_k(\mathbf{x}^k) + \sum_{j=1}^{m} u_j$	$u_j abla g_j(\mathbf{x}^k) = 0,$ Equilibrium con	dition
<i>x</i> ^k is supplied	$\begin{array}{rcl} g_j(\mathbf{x}^k) &\leq & 0, & j=1,2,\ldots,J, \mbox{ Comparison}\\ u_j g_j(\mathbf{x}^k) &= & 0, & j=1,2,\ldots,J, \mbox{ Comparison}\\ u_j &\geq & 0, & j=1,2,\ldots,J, \mbox{ Not}\\ \lambda_k &\geq & 0, & k=1,2,\ldots,M, \mbox{ and } \end{array}$	ompl. slackness on-neg. of mult.
Find λ*,u*	for minimum KKT Erro	r:
	$ \begin{aligned} \ \sum_{k=1}^{M} \lambda_k \nabla f_k(\mathbf{x}^k) + \sum_{j=1}^{m} u_j \nabla g_j \\ p & g_j(\mathbf{x}^k) \leq 0, j = 1, 2, \dots, J, \\ u_j g_j(\mathbf{x}^k) = 0, j = 1, 2, \dots, J, \\ u_j \geq 0, j = 1, 2, \dots, J, \\ \lambda_k \geq 0, k = 1, 2, \dots, M, \text{ and } \lambda_j \end{aligned} $	
BEACON Net de transmission	GECCO-2017 Tutorial, Berlin, kdeb@egr.msu.edu	124






	<u>MICHIGAN STATE</u> UNIVERSITY
KKT Proximity Metric (cont.)
Treat ASF as single-obj. problem Solve Minimize _(ϵ_k, x_{n+1}, u) $\epsilon_k + \sum_{j=1}^{J} (u_j g_j (x_{j+1}))$ and find Subject to $\ \nabla F(\mathbf{y}) + \sum_{j=1}^{J+M} u_j G_j (\mathbf{y}) \ge u_j \ge 0, j = 1, 2$ 1. Relax compl. slackness cond. 2. Add a penalty $-\epsilon_k \le 0$	$ u_j \nabla G_j(\mathbf{y}) ^2 \le \epsilon_k,$ $\ge -\epsilon_k,$
2. Add a penalty $-x_{n+1} \leq 0.$ Define KKTPM:Use Matlab's fmincon() to • 1 linear and 1 quart	
KKT Proximity Measure $(\mathbf{x}^k) = \begin{cases} \epsilon_k^*, \\ 1 + \sum_{j=1}^J \langle g_j(\mathbf{x}^k) \rangle^2, \end{cases}$	if x ^k is feasible, otherwise.
GECCO-2017 Tutorial, Berlin, kdeb@egr.msu.edu	127





MICHIGAN STATE Conclusions ▶ EMO is a fast-growing field of research and application Exciting field within Computational Intelligence Practical applications and challenges were continuously addressed EMO+MCDM, EMO+Math optimization EMO is diversifying into new areas Commercial softwares available ModeFrontier, iSight, VisualDoc Computer codes freely downloadable Jmetal, PISA, MOEAFramework, EMOO websites < GECCO-2017 Tutorial, Berlin, 136 BEACON kdeb@ear.msu.edu