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Agenda

• What do we mean by “Sequential Experimentation”?

• Examples of what has been done

• Potential Application Areas

• Case-Study: Quantum Control Experiments

• Case-Study: Biological Experiments

• Case-Study: Instrument Setup Experiments

• Discussion: Conclusions and Open Questions
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SEQUENTIAL EXPERIMENTATION
What do we mean by …

4
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“Typical” Characteristics

• Experiments are time-consuming.

• Experiments are expensive.

• Only few experiments are possible.

• There are exceptions as well!
Quantum Control: Case-Study

• Evolution “in the loop”

• Thousands of experiments possible (“kHz regime”)

5

Further Challenges

• Noise and uncertainty of measurements
• Multiple objectives
• Dynamically changing requirements of   

experimentalists/stakeholders!
• Dynamically changing (resource) constraints
• Cost choices during optimization

 Some experiments may cost more than others
• Unusual constraints on population sizes and other 

hyperparameters

 Biological Experiments: Case-Study

6

EXAMPLE APPLICATIONS

Examples:

- Flow Plate

- Bended Pipe

- Nozzle

- Nutrient Solutions

- Coffee Formulations

- Quantum Control

- Biological Experiments

1
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Early Experiments I: Flow Plate

• A plate with 5 controllable angle brackets

• Measurable air flow drag (by a pitot tube) 
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

8
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Early Experiments I: Flow Plate

Figures from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected plate shapes Number of mutations  and selected plate shapes
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Experiment 1:
• Left / right supporting point at same  

y-coordinate.
• Horizontal flow.
• Minimize drag.

Experiment 2:
• Left supporting point 25% lower than 

right one.
• Horizontal flow.
• Minimize drag.

Start -30 -40 40 -30 40

End 0 4 0 6 -6

Start 0 0 0 0 0

End 16 6 2 0 -18
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Early Experiments II: Bended Pipe

• A flexible pipe with 6 controllable bending devices

• Minimize bend losses of liquid flow 

• Measure drag by pitot tube
Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973
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Early Experiments II: Bended Pipe

• Bend loss of final form reduced by 10%

• Including drag a total reduction of 2%

Figure from: I. Rechenberg, Evolutionsstrategie ´73, frommann-holzboog, Stuttgart 1973

Number of mutations  and selected pipe shapes
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Initial (a) and optimized (b) pipe shape
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Early Experiment III: Nozzle

• What can be done if physics, (bio-) chemistry, … of 
process unkown?

• No model or simulation program available!

• Idea: Optimize with the real object

• “Hardware in the loop”

• Example: Supersonic nozzle, turbulent flow, physical 
model not available.

12
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Experimental Setup: Nozzle

• Production of differently formed conic nozzle parts (pierced 
plates).

• Form of nozzle part is value of decision variable.

choosing conic nozzle parts (by EA)
clamping of conic nozzle parts (manually)
steam under high pressure passed into nozzle 
degree of efficiency is measured!

„simulator 

replacement“

13

Nozzle Experiment (I) 

collection of conical nozzle parts

device for clamping nozzle parts

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (II) 

Hans-Paul Schwefel 
while changing nozzle parts

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (III) 

steam plant / experimental setup
Figures courtesy of Hans-Paul Schwefel

16

831



Nozzle Experiment (IV) 

the nozzle in operation …

… while measuring degree of efficiency
Figures courtesy of Hans-Paul Schwefel
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• Illustrative Example: Optimize Efficiency
– Initial:

– Evolution:

• 32% Improvement in Efficiency !

Nozzle Results (I) 

18

Nozzle Results (II) 

• 250 experiments were made.
• 45 improvements found.
• Discrete ring segments, variable-dimensional optimisation
• Gene duplication and deletion as additional operators.

J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow core jet 
experiments,” in Proceedings of the 11th Symposium on Engineering Aspects of 
Magneto-Hydrodynamics, Caltech, Pasadena, California, USA, 1970.

19

Experiment: Coffee Formulations

• Optimize taste of a target coffee, 5 ingredients

• Subjective evaluation by human experts

• (1,5)-ES accepts deterioriations

• Experts do not !

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000. 20
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Target
coffee

Result
coffee

Coffee Formulations: Results

Optimum taste in 11 generations (55 evaluations) 

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000. 21

Coffee Formulations: Results

• Coffee mixture differs a lot from target coffee !

• Taste is identical !

• Multiple realizations, but cost optimal !

• Approximation of cubic polynomial: 35 evals.

M. Herdy: Beiträge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis, 
Technical University of Berlin, Germany, 2000. 22

EXPERIMENTAL OPTIMIZATION: 
FUNDAMENTALS

23

Experimental Requirements 
(for an Optimizer) 

1. Speed: fast convergence is required

2. Reliability: reproducibility of results within a margin
• Environmental parameters often hidden (temperature, pressure, …) 

3. Robustness: manufacturing feasibility

4. Reference solution (recommended): 

pre-designed reference item, robust and stable, having a 
known objective function value 

24
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Convergence Speed

• Experiments are typically expensive: 

Goal: Drive the system towards finding large improvements 
with as few experiments as possible.

• Practical solutions: “greedy” variants of evolutionary 
algorithms, e.g.,
 Derandomized evolution strategies

 ParEGO

 Often “stochastic gradient search”

 Need to support parallel execution!

See e.g. Bäck, Foussette, Krause: Contemporary Evolution 
Strategies, Springer 2013, for a comparison of evolution 
strategies when very few function evaluations are possible.

25

Reliability of Results

• Mostly algorithm-dependent

• Attained results must be reproducible 

• Scenarios of recording experimental outliers must be 
avoided (elitism is tricky…) 

• Perceived result versus a posteriori result

• Possible solutions:
– Employing comma (non-elitist) strategies

– In ES, the recombination operator assists in treating noise (The 
Genetic Repair (GR) Hypothesis, Beyer) 

– Increasing sampling rate of measurements (“signal averaging”)

26

Environmental Parameters

• As many as possible physical conditions should be 
recorded during the experiment

• Ideally, sensitivity of the system to the environment should 
be assessed

• Basic starting points: recording Signal/Noise, extracting 
power spectrum of the noise, etc.

27

Manufacturing Feasibility

• Mostly system-dependent

• Realization of the prescribed decision parameters of the 
experiment to equivalent systems, e.g., in a manufacturing 
stage

• To this end, sensitivity of the system must be assessed 
(electronics, for instance) 

• Upon obtaining reproducible results, they should be 
verified on equivalent systems

28
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Noise Colors

• White Noise ( -noise) 

• Pink Noise (flicker noise, or -noise) 

• Red (Brownian) Noise ( -noise) 

Tip: Assess the stability of your system by extracting 
the Power Spectral Density of its signal-free state.

1/ f

1/ f 2

1/ f 0

M. Roth, J. Roslund, and H. Rabitz, “Assessing and managing laser system 
stability for quantum control experiments”, Rev. Sci. Instrum. 77, 083107 (2006) 
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POTENTIAL APPLICATION 
AREAS

30

A Classification
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Nozzle

Bended pipe
Flow plate

Coffee

Quantum control

CLADE

Chocolate

Crop-Breeding

Chromatography

Drug discovery

Instrument setup optimization

Material design optimization
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Potential Application Areas

• Cosmetics / Detergent Formulation Optimization

• Catalyst Formulation Optimization (Cost, Effectiveness, …) 

• Subjective Evaluation Applications based on Human Taste 
or other Senses

• Engineering Applications Requiring Real-World 
Experiments for Measurement

• Concrete Formulation Optimization

• Glue Formulation Optimization

• Plant Startup Process

• Chemical Compound Synthesis Processes (e.g., Drugs) 

• Instrument Setup Optimization

32
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QUANTUM CONTROL 
EXPERIMENTS

Case-Study:

33

Altering the Course of Quantum Phenomena

34

Quantum Control Experiments

35

The QCE Arena: The Optical Table

Figure courtesy of Jonathan Roslund

36
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Figure courtesy of Jonathan Roslund

The Optical Table: Shaping the Pulse

37

QCE: Sources of Noise/Uncertainty

38

Single-Objective QCE

• CMA-ES was observed to perform extremely well with 
small population sizes

• Recombination is indeed necessary (GR, Beyer)

• Robust, reproducible, reliable solutions

Roslund, J., Shir, O.M., Bäck, T., Rabitz, H.: 
Accelerated Optimization and Automated Discovery 
with Covariance Matrix Adaptation for Experimental 
Quantum Control. Physical Review A (Atomic, 
Molecular, and Optical Physics) 80(4) (2009) 043415

Figure courtesy of Jonathan Roslund

39

(a) Experimental Pareto frontier for the Total Ionization problem approximated by MO-
CMA-ES, displaying the perceived frontier of a single experiment, the reference frontier
of the intensity based non-shaped pulse, as well as a sampling of the Pareto optimal set. 

(b) Experimental Pareto frontier for the Molecular Plasma Generation problem 
approximated by MO-CMA-ES remedied with occasional re-evaluation, displaying the 
perceived frontier, the reference frontier, and the reproduction of the Pareto optimal set.

Multi-Observable QCE

Shir, O.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary 
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

40
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Radar Optimal Dynamic Discrimination

• Competition: maximizing free electron number vs. minimizing SHG

• Pay-off over unshaped (TL) reference (HV ratio): 24.5%

Shir, O.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary 
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

41

Extended Features: Statistical Learning (FOCAL) 

• QCE and Derandomized ES enjoy a happy marriage

• However, the default CMA-ES does not learn a covariance 
matrix reflective of the inverse Hessian

• FOCAL, for experimental Hessian retrieval

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal 
covariance adaptive learning. Physical Review E 89(6) (2014) 063306

42

FOCAL: Experimental Results

(a) Retrieving the Hessian by FOCAL for rank-deficient atomic Rubidium
(b) 5 most important Hessian eigenvectors; Physical form is corroborated

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal 
covariance adaptive learning. Physical Review E 89(6) (2014) 063306

43

BIOLOGICAL EXPERIMENTS
Case-Study:

44
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Experimental Optimization in Biology, 
Medicine and Food

• Evolution of real DNA on 
microarray chips
– Dealing with a very large population 

size

– Landscape analysis / optimizing 
evolution

• Optimizing the design of an 
analytical instrument
– Handling ephemeral resource 

constraints

• Crop Breeding
– How to use genotypic information 

effectively

45

Challenges in Experimental Optimization

 Noise and uncertainty of measurements

 Multiple objectives

 Dynamically changing requirements of biologists !

 Dynamically changing (resource) constraints

 Cost choices during optimization

 Some experiments may cost more than others

 Unusual constraints on population sizes and other 
hyperparameters

46

Evolution of drugs / enzymes / biomarkers

• Closed-loop 
aptameric directed 
evolution (CLADE) 

• Molecules tested on 
a chip

• Evolution occurs on 
the computer

• Exquisite control of 
the evolution / 
easily incorporate 
rational design 
principles

47

CLADE Details

• Evolve short strands of 
DNA (up to 40 bases) 

• Population size: ~90,000

• ~24 hr and £hundreds per 
cycle

• Evolve DNA to bind target 
proteins specifically and 
tightly

• 5-10 cycles used 

Microarray detail

Binding of target proteins

48
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CLADE – Looking at the aptamer 
fitness landscape

 Measured fitness of 1m 10-
base DNA strands in 
duplicate. Statistics below.

 Number of local optima: 
1809 (single-point 
mutations) 

 Epistasis variance                  
=0.532

 Autocorrelation                     
correl’n length=6

 The information content 
sequence logo for the top 
1000 aptamers
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CLADE – How to exploit/handle 
large population sizes

 Population size=44000

 High selection pressure and 
high mutation rates generally 
favourable

 Results subsequently verified 
on real aptamer landscapes

Tested EAs on NK landscapes

We would like to model and test more EAs on the 
aptamer landscape. We can do that with LSMs... 

50

Landscape State Machine 
Modelling Approach

51

LSM results on CLADE

• LSM predicts optimal 
mutation rate with high 
accuracy for all EA settings

• It is better than (or at least 
as good as) the 1/L 
heuristic on every condition 
tested LSM

Real Landscape

52
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References on CLADE

53

Motivation: automation of science 
experiments

Mass spectrometers optimized by ParEGO were used in the HUSERMET project, a 
large study of human blood serum in health and disease with over 800 patient 
subjects and performed in collaboration with GlaxoSmithKline, AstraZeneca, 
Stockport NHS Trust and others (Bradbury et al, 2014)  

Bradbury, James, Grégory Genta-Jouve, J. William Allwood, Warwick B. Dunn, Royston Goodacre, Joshua D. 
Knowles, Shan He, and Mark R. Viant.. MUSCLE: automated multi-objective evolutionary optimisation of 
targeted LC-MS/MS analysis, Bioinformatics (2014): btu740. 54

LDI Spectroscopy: 
Optimizing “Flyability”

• In LDI, a laser is fired at a 
sample, e.g. blood serum, 
to analyse it

• The sample may be placed 
on a silicon matrix

• Properties of the matrix 
determine how much/which 
compounds in the sample 
will “fly” into the mass-
spectrometer when the 
laser hits them

55

Optimize the Silicon Wafer Matrix

56
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Optimize the Silicon Wafers

57

Ephemeral Resource Constraints (ERCs)
• Variables are not free during optimization – limited by 

current resources (Et is defined by ERCs)

X - feasible search space
Et ⊆X - evaluable search space

Et  can be defined in terms of (constraint) 
schemata, e.g. H = (*1**0)

R. Allmendinger and J. Knowles (2012): On Handling Ephemeral Resource Constraints in Evolutionary 
Search. Evolutionary Computation, 21(3): 497-531.
R. Allmendinger (2012): Tuning Evolutionary Search for Closed-Loop Optimization. PhD thesis. 
Department of Computer Science, University of Manchester, UK. 58

Ephemeral Resource Constraints (ERCs)

R. Allmendinger and J. Knowles (2012): On Handling Ephemeral Resource Constraints in Evolutionary 
Search. Evolutionary Computation, 21(3): 497-531.
R. Allmendinger (2012): Tuning Evolutionary Search for Closed-Loop Optimization. PhD thesis. 
Department of Computer Science, University of Manchester, UK.

• ERCs raise many questions:
• Who/what is in control ?
• How to mesh scheduling with optimization
• How to prevent diversity loss/ drift effects
• How to reduce wastage of materials

• Many examples of ERCs available due to the complex 
nature of resources

59

Ephemeral Resource Constraints (ERCs)
Periodic ERC: Models availability of a specific resource (defined by the 
constraint schema) at regular time intervals, e.g. “In an optimization 
problem requiring skilled engineers to operate instruments, on 
Mondays, only engineer engi is available.”

Commitment relaxation ERC: Commits an optimizer to a specific 
variable value combination for some period of time whenever it uses 
this particular combination, e.g. “In an optimization problem involving 
the selection of instrument settings, the configuration, c, once set, 
cannot be changed during the remainder of the working day.”

60

842



Ephemeral Resource Constraints (ERCs)

Commitment composite 
ERC:
• Decision variables 

define a composite (a 
constraint schema) that 
requires resources to be 
available to evaluate 
solution. 

• Limited storage cells
• Time-lag between 

ordering and receiving 
resources

• Resources have shelf 
life and limited reuses

• Silicon wafer example

H# = (###**)

61

Ephemeral Resource Constraints (ERCs)

• Various approaches can be used for dealing with ERCs, e.g.:
• Static constraint-handling strategies (Allmendinger and 

Knowles, 2012)
• Learn policies (via reinforcement learning) to switch between 

constraint-handling strategies during optimization 
(Allmendinger and Knowles, 2011)

• Optimization combined with online resource purchasing 
strategies (Allmendinger and Knowles, 2010)

• Theoretical studies (e.g. using Markov chains) on ERCs can guide 
choice of EA configurations (Allmendinger and Knowles, 2015)

• More work needed on combining ERCs with other experimental 
challenges e.g. noise, multiple objectives, non-homogeneous 
experimental costs.

R. Allmendinger and J. Knowles (2010): On-Line Purchasing Strategies for an Evolutionary Algorithm Performing Resource-Constrained 
Optimization. Parallel Problem Solving in Nature - PPSN XI , pp 161-170.
R. Allmendinger and J. Knowles (2011): Policy Learning in Resource-Constrained Optimization. Proceedings of the 13th Annual Conference on 
Genetic and Evolutionary Computation (GECCO '11), pp 1971-1978.
R. Allmendinger and J. Knowles (2012): On Handling Ephemeral Resource Constraints in Evolutionary Search. Evolutionary Computation, 21(3): 
497-531.
R. Allmendinger and J. Knowles (2015): Ephemeral Resource Constraints in Optimization. In R. Datta and K. Deb (Eds.) Evolutionary Constrained 
Optimization, Springer, pp 95-134. 62

Further resourcing issues

Change of variables during the optimization
• E.g. Identify most effective drug cocktails from a non-

stationary drug library

• Fair mutation: Perform usual optimization alongside rapid 
exploration of the space of solutions using any of the new 
variables

R. Allmendinger and J. Knowles (2010): Evolutionary Optimization on Problems Subject to Changes of 
Variables. Parallel Problem Solving in Nature - PPSN XI , pp 151-160.
B.G. Small, B.W. McColl, R. Allmendinger, J. Pahle, G. Lopez-Castejon, N.J. Rothwell, J. Knowles, P. Mendes, D. 
Brough, and D.B. Kell (2011): Efficient discovery of anti-inflammatory small molecule combinations using 
evolutionary computing. Nature Chemical Biology, 7: 902-908. 63

Further resourcing issues
Objectives exhibit non-uniform latencies
• Multiobjective optimization problems where at least one of 

the objective functions requires a relatively longer time to be  
evaluated than the cheapest/quickest of the objective 
functions  at any given time, fitness estimates of some 
solutions may only be partial

• E.g. identify most potent drug cocktails that is also most 
economical to manufacture
• Potency of drug cocktails: laborious process involving 

creating the cocktails and then testing them
• Cost of manufacture: relatively quickly to compute by 

looking up the drug amounts and costs and summing 
them up (or running a simulation tool).

R. Allmendinger and J. Knowles (2013): 'Hang On a Minute': Investigations on the Effects of Delayed 
Objective Functions in Multiobjective Optimization. Evolutionary Multi-Criterion Optimization (EMO 2013), 
LNCS 7811, pp 6-20. 
R. Allmendinger, J. Handl, and J. Knowles (2015): Multiobjective Optimization: When Objectives Exhibit 
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 64
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2 objectives, one fast 
and one slow one

Standard approach is to wait 
until all objectives are 
evaluated before updating the 
population

Don’t wait but e.g. return 
available objective values and 
assign pseudovalues to the 
other objectives
 Solutions with complete and 
partial information on objective 
values co-exist in a population
Challenges: Selection + 
Pseudovalue assignment + 
Ranking

R. Allmendinger and J. Knowles (2013): 'Hang On a Minute': Investigations on the Effects of Delayed 
Objective Functions in Multiobjective Optimization. Evolutionary Multi-Criterion Optimization (EMO 2013), 
LNCS 7811, pp 6-20. 
R. Allmendinger, J. Handl, and J. Knowles (2015): Multiobjective Optimization: When Objectives Exhibit 
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 65

R. Allmendinger, J. Handl, and J. Knowles (2015): Multiobjective Optimization: When Objectives Exhibit 
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513.

Optimization performance affected by
• Correlation between objectives
• Length of delay period
• Search space characteristics

Average hypervolume as a function of the correlation level between two objectives 
(fixed delay period). Waiting performs well for short delay periods, and non-waiting 
strategies for positively correlated objectives and longer waiting periods. 

66

R. Allmendinger, J. Handl, and J. Knowles (2015): Multiobjective Optimization: When Objectives Exhibit 
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513.

Median attainment surface for a fixed delay period. Objective f1  is the quicker to 
evaluate objective. Some strategies suffer from bias towards f1.

Optimization performance affected by
• Correlation between objectives
• Length of delay period
• Search space characteristics

67

R. Allmendinger, J. Handl, and J. Knowles (2015): Multiobjective Optimization: When Objectives Exhibit 
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513.

Average 
hypervolume as 
a function of the 
correlation level 
between two 
objectives and 
the delay 
period. Darker 
shading 
indicates better 
performance.

68
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Crop-Breeding Strategies

• Food and energy crops in short 
supply (simplifying very complex 
global socio-political situation) 

• Some traits in crops are quantitative,
e.g. energy yield, low-temperature 
resistance

• Given new sequencing technologies, 
we can see the quantitative trait loci 
(QTLs) – the genotype. Will this 
really help us breed faster for the 
traits we want?

69

EAs that know where they are?

Fitness-only “F” Algorithms

• Standard EA

• FUSS

• Crowding

Genotypic “G” Algorithms

• Genotypic Niching

• Surrogate modeling / LEM

• EDAs

Which of these are really better, F or G? 

Can we tell crop breeders how to 
use sequence information to do 

efficient search? Can we sell them 
the algorithms?

70

Simulation Details

• Crops take months to ~ 1 
year to grow

• But population size can be 
1,000 - 20,000

• Genome size ~10,000

• Non-viables do not grow –
provide no feedback

• Starting population is 
evolved but diverse 

• NKt landscape. The t param 
controls number of traits to 
enhance

• Fitness below 0.65 → 0

• Start from diverse evolved 
population on NK

• Allow only 10 generations!

• Population size as for real 
world

Real Crop Breeding Simulation

71

Crop-Breeding: Some Results

LEM = Michalski R.S., 
"LEARNABLE EVOLUTION 
MODEL: Evolutionary 
Processes Guided by Machine 
Learning," Machine Learning , 
38, pp 9-40, 2000.

72
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Other applications in biology / food / 
medicine
• Chocolate flavour/aroma

– Subjective measurement and time 
lags

• Configuration of GC-MS 
instrument for looking at 
Human serum
– Multiobjective

– Used ParEGO  - surrogate 
modeling approach

• Evolving nano-technologies or 
autonomous robots
– Limited resources

73

INSTRUMENT SETUP 
OPTIMIZATION

Case-Study:

74

Instruments

Precision tools used to create value from raw material or 
automate a certain operation

75

Instrument setup optimization

General goal: Configure operating conditions of instrument 
such that the instruments performs as “efficiently” as possible. 

Produce coffee 
and other food to 
obtain a certain 
desired taste

Ensure filling and cutting is done 
without loosing much material

Fit parts as accurately 
and quickly as possible 
without destroying any 

other parts

76
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Chromatography

• Well-established approach for purifying proteins 
• Relies on using expensive raw materials (resin)
• Time-consuming 
• Requires operating conditions to be optimized
• Various chromatography techniques are available
• Combination of these need to be used in purification 

77

Upstream
Growing of cells 

Downstream
Processing of cell mass from the upstream to 

meet purity and quality requirements

78

79

Optimization of Chromatography 
Operating Conditions (Typically)

Operating 
conditions x

Central Composite 
Circumscribed (CCC) design

Measure protein purity 
and yield via HPLC

Liquid 
handling 

robot

Typically:
• DoE-driven
• Chromatography steps are 

considered independently 
(one step at the time)

Operating 
conditions x

80
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Optimization of Chromatography 
Operating Conditions (Proposed)

Operating 
conditions x

Measure protein purity 
and yield via HPLC

Liquid 
handling 

robot

Proposed:
• Optimize all 

chromatography 
steps at once via 
sequential 
experimentation Noisy objective

function values
f1 , …, fm

Operating 
conditions x

Main challenges:
• Noisy objective 

function values
• Failed experiments
• Resourcing issues

R. Allmendinger, S. Gerontas, N.J. Titchener-Hooker, and S.S. Farid (2014): Tuning Evolutionary Multiobjective Optimization for 
Closed-Loop Estimation of Chromatographic Operating Conditions. Parallel Problem Solving in Nature - PPSN XIII, pp 741-750. 81

Challenges

• Linkage constraints: Operating condition setting at step i can dictate 
lowest possible setting of another operating condition at step i + 1

• Multiple objectives: 
• Yield: max fyield = Y1 x…x Yk, measured at each step i = 1,…,k
• Impurities: min fimpurity = Total amount of impurities remaining

Chromatography step 1 Chromatography step i Chromatography step k

• Resourcing issue: 
Stop experiment if total yield 
fyield = Y1 x…x Yp < 90%
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• Resourcing issue: 
Stop experiment if total yield fyield = Y1 x…x Yp  < 90%
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in Nature - PPSN XIII, pp 741-750.

Challenges
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Optimization for Closed-Loop Estimation of Chromatographic Operating Conditions. Parallel Problem Solving 
in Nature - PPSN XIII, pp 741-750.

Some results for dealing with the 
resourcing issue

Fitness-inheritance 
strategy:
Fill missing yield 
measurements Yp+1 ,…, 
Yk with measurements 
obtained for the most 
similar (in terms of 
operating conditions) and 
fully evaluated multi-step 
chromatography process, 
and also copy fimpurity of 
that process. 
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DISCUSSION

85

Evolutionary Algorithms Used

Evolutionary Algorithms

Evolution Strategies Genetic Algorithms
GP, EP, DE,

PSO, ACO,...

•Nozzle Experiments:
Two-Membered Evolution 
Strategy [Rechenberg; 1973]

•Quantum Control Experiments:
Derandomized Evolution 
Strategies [Hansen et al.; 1994-
2008]

•Biological Experiments: PESA-II 
[Corne et al, 2002], ParEGO 
[Knowles et al. 2006], (μ+λ)-ES, 
and Learnable evolution model 
[Michalski,2000] 
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Some Practical Principles for 
Closed-Loop Optimization

• Keep experimentalists in 
the loop

• Understand the 
experimental platform

• Simulate the platform, and 
compare algorithms

• Do it for real – and get 
feedback

87

Keep experimentalists in the loop

• Explain EAs, manage 
expectations of outcomes.

• Understand the variables 
and objectives. Confirm 3 
times at least.

• Still be prepared to change 
objectives half-way through!

• Enable them to use familiar 
software for viewing results.

Objectives shown above were changed
during optimization
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Understand the experimental platform

• Variables, constraints, 
measurements, noise

• Financial costs, time lags

• Resource constraints

• Batch size of platform 
dictates/constrains 
population size of EA
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Simulations prior to the real thing

• Really helpful to manage 
expectations of stakeholders

• Tune your algorithms for weird 
and wonderful population 
sizes, constraints, budget 
limitations of real experimental 
platform

• If possible, use domain 
experts to design test 
problems that are similar to 
the real problem

90

Conclusions

• Experimental Optimization is hard – but an Evolutionary 
approach is feasible!

• EAs should be given a chance in new application areas

• Fundamental research in EAs is much needed
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Goals and Open Questions

• Given a budget of k experiments – what strategy should be 
taken?

• NFL holds more than ever – there will be no winner 
algorithm handling all experimental scenarios!

• How do statistical approaches perform in comparison?
– Design-of-Experiments 

• Holy Grail: A package of strategies to drive an 
experimental system to a reliable maximum with minimum 
experiments

Box, G. E. P.; Hunter, J. S.; Hunter, W. G.: Statistics for experimenters: design, 
innovation, and discovery; Wiley-Interscience, 2005. 92
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