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What do we mean by ...

SEQUENTIAL EXPERIMENTATION
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“Typical” Characteristics

+  Experiments are time-consuming.
+ Experiments are expensive.
+  Only few experiments are possible.

* There are exceptions as well!
Quantum Control: Case-Study
* Evolution “in the loop”
* Thousands of experiments possible (“kHz regime”)

Examples:

- Flow Plate

- Bended Pipe

- Nozzle

- Nutrient Solutions

- Coffee Formulations
- Quantum Control

\/- Biological Experiments

" S0961

S0002

EXAMPLE APPLICATIONS
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Further Challenges

* Noise and uncertainty of measurements

* Multiple objectives

» Dynamically changing requirements of
experimentalists/stakeholders!

» Dynamically changing (resource) constraints

» Cost choices during optimization

= Some experiments may cost more than others

* Unusual constraints on population sizes and other

hyperparameters

=>» Biological Experiments: Case-Study

Early Experiments I: Flow Plate mz+as

‘ ' I,

+ Anplate with 5 controllable angle brackets
* Measurable air flow drag (by a pitot tube)

Figure from: |. Rechenberg, Evolutionsstrategie ‘73, frommann-holzboog, Stuttgart 1973




Early Experiments |: Flow Plate s

Beup ajeld

Experiment 2:

« Left supporting point 25% lower than
right one.

* Horizontal flow.

* Minimize drag.

Experiment 1:

« Left / right supporting point at same
y-coordinate.

« Horizontal flow.

* Minimize drag.
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MUTATIONEN —=
0 20 40 60 8 100 120 1o 160 180 200

f

Number of mutations and selected plate shapes Number of mutations and selected plate shapes

Start -30 40 40 -30 40 Start 0 0 0 0 0

End 0 4 0 6 -6 End 16 6 2 0 -18

Figures from: |. Rechenberg, Evolutionsstrategie '73, frommann-holzboog, Stuttgart 1973

Early Experiments |l: Bended Pipe = i

» Aflexible pipe with 6 controllable bending devices
* Minimize bend losses of liquid flow
* Measure drag by pitot tube

Figure from: |. Rechenberg, Evolutionsstrategie ‘73, frommann-holzboog, Stuttgart 1973
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Early Experiments Il: Bended Pipe

Y

Beup adid

. WIDERSTAND —=

700 T200 T30
MUTATIONEN —=

Number of mutations and selected pipe shapes Initial (a) and optimized (b) pipe shape

» Bend loss of final form reduced by 10%
* Including drag a total reduction of 2%

Figure from: |. Rechenberg, Evolutionsstrategie ‘73, frommann-holzboog, Stuttgart 1973
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Early Experiment lll: Nozzle

» What can be done if physics, (bio-) chemistry, ... of
process unkown?

* No model or simulation program available!

+ Idea: Optimize with the real object

* “Hardware in the loop”

+ Example: Supersonic nozzle, turbulent flow, physical
model not available.

—_—

/\
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Experimental Setup: Nozzle

* Production of differently formed conic nozzle parts (pierced
plates).

* Form of nozzle part is value of decision variable.

choosing conic nozzle parts (by EA)

clamping of conic nozzle parts (manually)
steam under high pressure passed into nozzle
degree of efficiency is measured!

,simulator

replacement”

Tel-Hai <

Nozzle Experiment (I1) Lo il

7

Hans-Paul Schwefel
while changing nozzle parts

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (1)

collection of conical nozzle parts

device for clamping nozzle parts

Figures courtesy of Hans-Paul Schwefel

MANCHESIER
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steam plant / experimental setup

Figures courtesy of Hans-Paul Schwefel
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Nozzle Experiment (1V)

the nozzle in operation ...

... while measuring degree of efficiency

Figures courtesy of Hans-Paul Schwefel
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Nozzle Results (I1)

HARRARR
U
M
i
e

» 250 experiments were made.
* 45 improvements found.
» Discrete ring segments, variable-dimensional optimisation
* Gene duplication and deletion as additional operators.
J. Klockgether and H.-P. Schwefel, “Two-phase nozzle and hollow core jet

experiments,” in Proceedings of the 11th Symposium on Engineering Aspects of
Magneto-Hydrodynamics, Caltech, Pasadena, California, USA, 1970.
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Nozzle Results (1)

* lllustrative Example: Optimize Efficiency
— Initial:

— Evolution:

Experiment: Coffee Formulations ~ petsai®

AT LEAST IT5 BETTER. ARE THESE CoN, GUYs, GE PATIENT, IN A

THAN THE QUAILEGGS SXITTILES FEW HUNDRED MoRE MEPRLS, THE

IN WHIPPED CRERMAND  L2Z°-fRIED? GENETC ALGORITHM SHOUWD CATCH

MSG FROM LAST THE, VP TOEXISTING RECIPES AND STRRT
) TO OPTIMIZE..

()

[ ~
WEVE DECIDED TO DROP THE (S DEFRRTMENT FROM QUR WEEKLY DINNER PARTY HOSTING ROTRTION.

M. Herdy: Beitrage zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis,
Technical University of Berlin, Germany, 2000. 20
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Coffee Formulations: Results

Optimum taste in 11 generations (55 evaluations)

50
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o
<]

Mischungsbestandteil [
N
o

10N

a 6 8
Generation

M. Herdy: Beitrdge zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis,
Technical University of Berlin, Germany, 2000. 21

EXPERIMENTAL OPTIMIZATION:
FUNDAMENTALS

23
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Coffee Formulations: Results M ™~

» Coffee mixture differs a lot from target coffee !
» Taste is identical !

Multiple realizations, but cost optimal !

» Approximation of cubic polynomial: 35 evals.

Log (Fehler)
o @
5 5

”
=]

n

2 % 6 & 10 32
Generation

M. Herdy: Beitrage zur Theorie und Anwendung der Evolutionsstrategie, PhD Thesis,
Technical University of Berlin, Germany, 2000. 22
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Experimental Requirements
(for an Optimizer)

1. Speed: fast convergence is required

2. Reliability: reproducibility of results within a margin
. Environmental parameters often hidden (temperature, pressure, ...)

3. Robustness: manufacturing feasibility
4. Reference solution (recommended):

pre-designed reference item, robust and stable, having a
known objective function value

24
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Convergence Speed

+ Experiments are typically expensive:

Goal: Drive the system towards finding large improvements
with as few experiments as possible.
 Practical solutions: “greedy” variants of evolutionary
algorithms, e.g.,
= Derandomized evolution strategies
= ParEGO
= Often “stochastic gradient search”
= Need to support parallel execution!
See e.g. Back, Foussette, Krause: Contemporary Evolution
Strategies, Springer 2013, for a comparison of evolution
strategies when very few function evaluations are possible.

25
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Environmental Parameters

* As many as possible physical conditions should be
recorded during the experiment

+ |deally, sensitivity of the system to the environment should
be assessed

 Basic starting points: recording Signal/Noise, extracting
power spectrum of the noise, etc.

27
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Reliability of Results

* Mostly algorithm-dependent
+ Attained results must be reproducible

» Scenarios of recording experimental outliers must be
avoided (elitism is tricky...)
» Perceived result versus a posteriori result
* Possible solutions:
— Employing comma (non-elitist) strategies
— In ES, the recombination operator assists in treating noise (The
Genetic Repair (GR) Hypothesis, Beyer)
— Increasing sampling rate of measurements (“signal averaging”)

26
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Manufacturing Feasibility

* Mostly system-dependent

+ Realization of the prescribed decision parameters of the
experiment to equivalent systems, e.g., in a manufacturing
stage

+ To this end, sensitivity of the system must be assessed
(electronics, for instance)

» Upon obtaining reproducible results, they should be
verified on equivalent systems

28
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Noise Col rs
0
- White Noise (1/f" -noise)
* Pink Noise (flicker noise, or 1/f-noise)

+ Red (Brownian) Noise ( l/f2 -noise)

Tip: Assess the stability of your system by extracting POTENTIAL APPLICATION
the Power Spectral Density of its signal-free state. AREAS

M. Roth, J. Roslund, and H. Rabitz, “Assessing and managing laser system
stability for quantum control experiments”, Rev. Sci. Instrum. 77, 083107 (2006)

29 30

Tel-Hai g Tel-Hai y
A Classification — Potential Application Areas = Colis
E © + Cosmetics / Detergent Formulation Optimization
£ % ‘o e + Catalyst Formulation Optimization (Cost, Effectiveness, ...)
% 2 » Subjective Evaluation Applications based on Human Taste
g é’ or other Senses
;EJ - nstrument setup optmization » Engineering Applications Requiring Real-World
S o dsconmy bonce oo Experiments for Measurement
= *“-£ oty =  Concrete Formulation Optimization
§ it o) ezon @ * Glue Formulation Optimization
£ o e ° + Plant Startup Process
subjective numerical * Chemical Compound Synthesis Processes (e.g., Drugs)
Selection/evaluation * Instrument Setup Optimization
31 32

835



. Tel-Hai
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Rabitz et al. Judson and Rabitz
“Electric Field Design” “Teaching Lasers to Control Molecules”
Quantum Control Theory Quantum Control Experiments
0 . dified E(t
i [ (8)) = H(t) 16 (1)) Puise Shaping (TOReC 20

H (t) =Ho—fi- E-)(t) lE(t) Optimization Routine

Molecular Sample

Find optimal € (t) s.t. l ‘ Fegdbalck ‘
2 Observation (signal)
[(ttarges| ¥ (T))|" — max (detector)
Case-Study:
Hamiltonian required Hamiltonian not required

QUANTUM CONTROL
EXPERIM ENTS PRA 37, 4950 (1988) PRL 68, 1500 (1992)

33 34
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Quantum Control Experiments The QCE Arena: The Optical Table

| e

Modulator

&— ﬁ; aratin,
B — raun

pixels individually
addressed ) shaped pulse

W 7T S

unshaped pulse N_O
) 2
B feedback / b T “°:.'”°’
A signal i 11 CHY

P Detector / 3
Optimizer S molecular sample

Figure courtesy of Jonathan Roslund

35 36
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The Optical Table: Shaping the Pulse

'Grating P

i Unshaped
pulse

Figure courtesy of Jonathan Roslund
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Single-Objective QCE

+ CMA-ES was observed to perform extremely well with
small population sizes

* Recombination is indeed necessary (GR, Beyer)
* Robust, reproducible, reliable solutions

Roslund, J., Shir, O.M., Back, T., Rabitz, H.:
Accelerated Optimization and Automated Discovery
with Covariance Matrix Adaptation for Experimental
Quantum Control. Physical Review A (Atomic,
Molecular, and Optical Physics) 80(4) (2009) 043415

Figure courtesy of Jonathan Roslund

39
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QCE: Sources of Noise/Uncertainty [+

(A) pixel disturbance (B) observation noise
‘ Y olulla e 2
— i Shaper — Bebmemers » L7
y
unshaped pulse shaped pulse Blacfox """"""" P s yicld

(C) environmental drift

(A) Q;(w) = (@("‘)1) +'/\/’1 (07 5%) gy (b(wn) +Nn (Ov 5%))
B) J=J+N(0,¢4) Signal Averaging: <J> =J,

(€©) Jt)=JT+¢(1)

38

Multi-Observable QCE DN ol Hai™

(a) Experimental Pareto frontier for the Total lonization problem approximated by MO-
CMA-ES, displaying the perceived frontier of a single experiment, the reference frontier
of the intensity based non-shaped pulse, as well as a sampling of the Pareto optimal set.
(b) Experimental Pareto frontier for the Molecular Plasma Generation problem
approximated by MO-CMA-ES remedied with occasional re-evaluation, displaying the
perceived frontier, the reference frontier, and the reproduction of the Pareto optimal set.

(a) ' (b) -
1.0 - o
08 " ,;:
08 & o7 £
pes o = e
% 0 o \:‘ 06 .o'
06 oy v
= N s N
A s f ;f’
= 04 K
Il 0.4 . b R 4
& a Perceived Front L oo
> - = Unshaped Reference L ® Perceived Front
0.2 v e + a posteriori: Mean 02 o’ + Reproduced Front
o .) « a posteriori: Sample o " et = Unshaped Reference
T O’V.
00 olet
0.0 02 04 06 08 10 0 01 02z 03 04 05 06 07 08 09 1
./1 = JIon fr = Tpiasma

Shir, 0.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491

40
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Radar Optimal Dynamic Discrimination

* Competition: maximizing free electron number vs. minimizing SHG
« Pay-off over unshaped (TL) reference (HV ratio): 24.5%

1 - 1
09 © Perceived Front
¢ Reproduced Front 2 12
= Unshaped Reference
- P R
1.15|
07 ,“ =]
L} ® 5
o £
06
O Cd o
Tos " 4 5 1.05]
©n o
2
0.4 o g i
b .f 5
03 0 o=}
. 095|
02
01 R 03]
L2
o e®
0 o1 02 03 04,05 06 07 08 09 1 10 20 30 40 50 60 70 80 90 100 110120 130 140 150 160 170 180 190 200
JPlasma Generations

Shir, 0.M., Roslund, J., Leghtas, Z., Rabitz, H.: Quantum Control Experiments as a Testbed for Evolutionary
Multi-Objective Algorithms. Genetic Programming and Evolvable Machines 13(4) (2012) 445—491
41
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FOCAL: Experimental Results ANGicge

(a) Retrieving the Hessian by FOCAL for rank-deficient atomic Rubidium
(b) 5 most important Hessian eigenvectors; Physical form is corroborated

1 (a) (b) ‘
5——/\/
-8

7

90 ~ 4——«\,~/\
_ E
£ =
= £
5 -~ "‘\ a 8
2 780 R 1 Q:. - £ 31—
T y H
: e -ige ® |
= " §

I
770
14—
760 8
T L ‘I T T 1
760 770 780 790 800 750 760 770 780 790 800 810
Wavelength (nm) Wavelength (nm)

Shir, 0.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal
covariance adaptive learning. Physical Review E 89(6) (2014) 063306
43
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Extended Features: Statistical Learning (FOCAL)

* QCE and Derandomized ES enjoy a happy marriage

* However, the default CMA-ES does not learn a covariance
matrix reflective of the inverse Hessian

» FOCAL, for experimental Hessian retrieval

Analytical Spectrum

@

—eo _default CMA-ES

: HHHHH- ““““ | e

10 20 30
Variable Index Variable Index

Shir, O.M., Roslund, J., Whitley, D., Rabitz, H.: Efficient retrieval of landscape Hessian: Forced optimal
covariance adaptive learning. Physical Review E 89(6) (2014) 063306

20
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Case-Study:

BIOLOGICAL EXPERIMENTS

44




Experimental Optimization in Biology, L Bl

Medicine and Food

» Evolution of real DNA on
microarray chips
— Dealing with a very large population
size
— Landscape analysis / optimizing
evolution
» Optimizing the design of an i -
analytical instrument amie e 1 <z

— Handling ephemeral resource
constraints

gazphase | O

fonised sample: Hemc

® CrOp Breedlng molecule

— How to use genotypic information
effectively

2\ Aneectical fieldis applied andions
o j=  aesend toa cetector
5 (cenerally butnot only TOF)

45
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Evolution of drugs / enzymes / biomarkers

Biomolecules Rational Design

* Closed-loop

"Wild ~type Relenza Drug Discovery aptame”c d|rected
Enzymes Viagra Lipinski's Ruleof 5 .

DNA RNA . evolution (CLADE)
Proteins

* Molecules tested on
a chip

» Evolution occurs on
the computer

Intensive computey

Small molecules simulations

Combinatorial
chemistry

» Exquisite control of
the evolution /
easily incorporate
rational design
principles

Evolution and Screening

47
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Challenges in Experimental Optimization = "
« Noise and uncertainty of measurements
« Multiple objectives
« Dynamically changing requirements of biologists !
« Dynamically changing (resource) constraints
« Cost choices during optimization
»  Some experiments may cost more than others
« Unusual constraints on population sizes and other
hyperparameters
46
: Lo\ R
CLADE Details

» Evolve short strands of
DNA (up to 40 bases)

* Population size: ~90,000

‘ * ~24 hr and £hundreds per

— cycle

» Evolve DNA to bind target
proteins specifically and
tightly

» 5-10 cycles used

Microarray detail

Binding of target proteins

48




CLADE - Looking at the aptamer ,3',125;
fitness landscape

Analysis of a complete DNA-protein
m Measured fitness of 1m 10- fi aflinity landscape
base DNA strands in IS Vit o1, et =, oo 3 W, it ey,
H H H Dougles B. Kell!+2 and Joshua Knowles!» I
duplicate. Statistics below. | S imesua o

= Number of local optima:
1809 (single-point
mutations)

Analysis of a complete DNA-protein aHinity
landscape
J.R. Soc. Interface Marz1 8, 2010 T:397-408

) ) ) -1y -
m Epistasis variance 1=Z—

=0.532 2070

= Autocorrelation o= ELCE G )] ~ELfEE )]
correl'n length=6 EIRETI-Ef)F

= The information content

sequence logo for the top Q
1000 aptamers N e

Saduance posttion
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Landscape State Machine L\ ot
Modelling Approach

Predicting Stochastic Search Algorithm Performance using
Landscape State Machines

% William Rewe, David Corne and Joshua Knowles

and performance sttistics are collected and malysed
oy determine the ‘winner' {eg. see [3]).

“evek’ of an ..mm.:um problen 5

syt e spinila e (Sell) Adaptive Parameter Tuning  Algorithms

¥
mization problems cansol be modeled precisely by an LSM, an Theae, piapt sheir scarch behaviour. dring run-¢n
agprovimese LS ean always be constructed by simpling. =|n| response (0 scarch progress or other measures {

Abstrat—A Iamlﬂpe State Machine (LSM) is a Markov

can be wsed, sulsequently, in place of real f sae [6])
order 1o model the prmmhwln of any search algoithm mnl; o Landscape Modelling A model of the landscape of
this paper; we provide ihe optimization problem is consinicicd, ans hms

o wghbour o gt
= dence that (0) L3NS soonroxied by smigied are tested empirically (off-line) on the maodel, instead
els in few evaluatis ly of the real problem [5].
rank the perlormance of including EAs  The chaice of approachies) 1o take depends an severl foctors
withéwithmt niching amd
o e ot oo rin including how much is known or knowable @ priori about
af the LSM can be used as a g the poblem (ic. how black-bo it really is), what kind of
" antees ane is aimi how
i how much time and
ning phase. Mathematical
ing’ usually demand signif.
ige stucrure, while landscape
statisties and emyirical wsting may mly on an edensive

LS
rate sample Is sullicient to accurately vank the performance of  cxpe
search algorithis run at mulliples of s mutatio rate.

L INTRODUCTION

The mevd for tumine of search alocrithms fe ac

51
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CLADE — How to exploit/handle
large population sizes

0.72

Tested EAs on NK landscapes

= Population size=44000

= High selection pressure and
high mutation rates generally

fitness achieved
o
3

favourable 0.64
= Resul
on red
We would like to model and test more EAs on the
aptamer landscape. We can do that with LSMs...
Fig. 4. Best fitnesses achieved by a (1) GA without crossover, with £=4000 and A=40,000.
50
geII-IHai
K ollege
LSM results on CLADE ' =
ni0s | =S —— sessoner
ﬁ 107 —;‘z;;mswv
. . gms o
* LSM predicts optimal gus -
mutation rate with high Eus
. @102
accuracy for all EA settings
10
* ltis better than (or at least oor e e o0
as good as) the 1/L
. . age 00
heuristic on every condition
tested 2490
%185
3180
gﬂS
mﬂﬂ
165
0 2 4 6 8 10 12
mutation rate
52
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References on CLADE &8 coliege

Advanc
Scholar

|| search |

GOUSle scholar [cLApe aptamer author:Rowe

Scholar | Aricles and patents v || anytime |~ | include citations v |

Array-based evolution of DNA aptamers allows modelling of an explicit sequence- ..
CG Knight, M Platt, W Rowe, DC Wedge, F ... - Nucleic Acids ..., 2009 - Oxford Univ Press

.. Christopher G. Knight 1,2 ,3 *, Mark Platt 1,2, Willam Rowe 1.2 , David C. Wedge 1.2, Farid
Khan 1.2, Philip JR ... Prior knowledge can be incorporated in CLADE aptamer des\gn There is

much prior knuwledge that may be relevant to aptamer des\gn eg in terms of known .

Cited by 5 - Rel: ticles - All 13 versions - Import into BibTeX

Aptamer evolution for array-based diagnostics

M Platt, W Rowe, DC Wedge, DB Kell, | Knowles, ... - Analytical ..., 2009 - Elsevier

.. Mark Platt a , b, Corresponding Author Contact Information , 1, E-mail The Corresponding Author ,
Wiliam Rowe a , b, 1, David C, Wedge a , b , Douglas B. kell a, b ... Starting from a random
population, in four generations CLADE produced a new aptamertn thrormbin with . Iy

Cited by 2 - Rela ticles - All 4 versions - Import into BibTex

Analysis of a complete DNA-protein affinity landscape

W Rowe, M Platt, DC Wedage, P ... - Journal of the ..., 2009 - rsif royalsocietypublishing.org

.. 4 Schoaol of Computer Science , University of Manchester, Kilburn Building, Oxford Road,

Manchester M13 9PL , UK, *Author for correspondence (william rowe {at tmanchester.ac.uk). ... 2009},
the so-called CLADE (closed-loop aptamer-directed evolution) methed. ...

d articles - All 3 into BibTex
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LDI Spectroscopy:
Optimizing “Flyability”

* InLDI, a laser is fired at a
sample, e.g. blood serum,
to analyse it

» The sample may be placed sampie moecuie 1
on a silicon matrix

* Properties of the matrix
determine how much/which
compounds in the sample
will “fly” into the mass-
spectrometer when the
laser hits them

matrix —]
)

gaz phase _|

ionised sample’
molecule

= aresend to adetector
(generally but ot only TOF)

An electrical field is applied and ions

55
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Motivation: automation of science
experiments

Peak Detection & Fitness
s File Conversion

|

i

) l

D/ ooy oot |
g it , IH —. |
|

Tgure S1: MUSCLE system diagram

Mass spectrometers optimized by ParEGO were used in the HUSERMET project, a
large study of human blood serum in health and disease with over 800 patient
subjects and performed in collaboration with GlaxoSmithKline, AstraZeneca,
Stockport NHS Trust and others (Bradbury et al, 2014)

Bradbury, James, Grégory Genta-Jouve, J. William Aliwood, Warw\ck B Dunn Royston Gccdacre Joshua D.
Knowles, Shan He, and Mark R. Viant.. MUSCLE: y of
targeted LC-MS/MS analysis, Bioinformatics (2014): btu740. 54

Optimize the Silicon Wafer Matrix

e Sllicon Wafers

— Expensive

- p-type and n-type

- several etching conditions

—order blank wafers in
packs of six

- elched wafers can be used
three times

- once manufactured have a
shelf life

— must be stored In precise
conditions in limited cells

- lag time between ordering
and recelving

56




W Tel-Hai
i College

Optimize the Silicon Wafers

Order More
Walers

A Wafers arrive but

NO SPACE FOR THEM!

Ce00e®

Etched wafers (in limited storage)

GA
current

population

19
0

N

Today’s Laser Setting

EXPERIMENT

Results
-

o<e

57
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Ephemeral Resource Constraints (ERCs) ~— -~

* ERCs raise many questions:
* Who/what is in control ?
* How to mesh scheduling with optimization
* How to prevent diversity loss/ drift effects
* How to reduce wastage of materials
+ Many examples of ERCs available due to the complex
nature of resources

R. Allmendinger and J. Knowles (2012): On Handling C ints in i y

Search. Evolutionary Computation, 21(3): 497-531

R. Allmendinger (2012): Tuning Evolutionary Search for Closed-Loop Optimization. PhD thesis.

Department of Computer Science, University of Manchester, UK. 59
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Ephemeral Resource Constraints (ERCs)

» Variables are not free during optimization — limited by
current resources (E; is defined by ERCs)

maximize y = f(I)

subject to 7 € X,

[(#) T € Eyfo) € X

Y =
i TR
X - feasible search space null

otherwise,

E; X - evaluable search spay

E, can be defined in terms of (constraint)
schemata, e.g. H = (*1**0)

¢ ints in ionary

R. Allmendinger and J. Knowles (2012): On Handling
Search. Evolutionary Computation, 21(3): 497-531.

R. Allmendinger (2012): Tuning Evolutionary Search for Closed-Loop Optimization. Ph thesis.
Department of Computer Science, University of Manchester, UK. 58
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Ephemeral Resource Constraints (ERCs)
Periodic ERC: Models availability of a specific resource (defined by the
constraint schema) at regular time intervals, e.g. “In an optimization
problem requiring skilled engineers to operate instruments, on
Mondays, only engineer eng; is available.”

constraint time frame

o perERC(t8t ¢e2d k. P H)
"

4 4 4 4 4 4 i
H

f A A : ¢
g

0
Commitment relaxation ERC: Commits an optimizer to a specific
variable value combination for some period of time whenever it uses
this particular combination, e.g. “In an optimization problem involving
the selection of instrument settings, the configuration, c, once set,
cannot be changed during the remainder of the working day.”

L4 commRelax ERC (1537 ¢°d V. H)
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Ephemeral Resource Constraints (ERCs)

/ #Cdl 1 2 3 1

Limited storage cells
Time-lag between
ordering and receiving

Update storage cells

Jpdate storage cells 4500 11 in cell 4
and queue of not arrived =——— " | EA
composite orders and 110 in cell 1

resources t+1
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Further resourcing issues

Change of variables during the optimization
« E.g. Identify most effective drug cocktails from a non-
stationary drug library

Library of drugs att =0 Library of drugs at t = Ag
b ¢ d e b f d g

 Fair mutation: Perform usual optimization alongside rapid
exploration of the space of solutions using any of the new
variables

Replace drugs c and e
with drugs f and g

R. Allmendinger and J. Knowles (2010): ionary Optimization on
Variables. Parallel Problem Solving in Nature - PPSN X1 , pp 151-160.
B.G. Small, B.W. McColl, R. Allmendinger, J. Pahle, G. Lopez-Castejon, N.J. Rothwell, J. Knowles, P. Mendes, D.
Brough, and D.B. Kell (2011): Efficient discovery of anti-inflammatory small molecule combinations using
evolutionary computing. Nature Chemical Biology, 7: 902-908. 63

Subject to Changes of
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Ephemeral Resource Constraints (ERCs)

» Various approaches can be used for dealing with ERCs, e.qg.:

+ Static constraint-handling strategies (Allmendinger and
Knowles, 2012)

» Learn policies (via reinforcement learning) to switch between
constraint-handling strategies during optimization
(Allmendinger and Knowles, 2011)

» Optimization combined with online resource purchasing
strategies (Allmendinger and Knowles, 2010)

* Theoretical studies (e.g. using Markov chains) on ERCs can guide
choice of EA configurations (Allmendinger and Knowles, 2015)

* More work needed on combining ERCs with other experimental
challenges e.g. noise, multiple objectives, non-homogeneous
experimental costs.

R. Allmendinger and J. Knowles (2010): On-Line foran ionary Algori i c
Optimization. Parallel Problem Solving in Nature - PPSN XI pp 161- 170

R. Allmendinger and J. Knowles (2011): Policy Learning in ined Optimizati
Genetic and Evolutionary Computation (GECCO '11), pp 1971-1978

R. Alimendinger and J. Knowles (2012): On Handling Ci i in
497-531

R. Allmendinger and J. Knowles (2015): Ci i in Optimizati
Optimization, Springer, pp 95-134.

of the 13th Annual Conference on

y Search. E ¥ C ion, 21(3):

In R. Datta and K. Deb (Eds.) Evolutionary Constrained
62
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Further resourcing issues

Objectives exhibit non-uniform latencies
» Multiobjective optimization problems where at least one of
the objective functions requires a relatively longer time to be
evaluated than the cheapest/quickest of the objective
functions - at any given time, fithess estimates of some
solutions may only be partial
+ E.g. identify most potent drug cocktails that is also most
economical to manufacture
» Potency of drug cocktails: laborious process involving
creating the cocktails and then testing them
» Cost of manufacture: relatively quickly to compute by
looking up the drug amounts and costs and summing
them up (or running a simulation tool).

R. Allmendinger and J. Knowles (2013): Hang On a Minute': Investigations on the Effects of Delayed
Objective Functions in y Multi-Criterion Optimization (EMO 2013),

LNCS 7811, pp 6-20

R. Allmendinger, J. Handl, and J. Knowles (2015): iobjective Optimization: When Objecti Exhibit

Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 64




2 objectives, one fast
and one slow one

/ MOEA

fast o
) G[!)ast GD ngw

i1 timestep - . ]

‘to evaluate: || _fitness values

* foow takes
ksiow timesteps
to evaluate

Standard approach is to wait ! G

until all objectives are D‘i
evaluated before updating the fitness values

population e '

| I
Don't wait but e.g. return ]
available objective values and fitness values !

assign pseudovalues to the
other objectives

-> Solutions with complete and
partial information on objective ;
values co-exist in a population U
Challenges: Selection +
Pseudovalue assignment +

fitness values

fast ‘ slow
Gkslow Gk-s\ow Gks\ow :

Ranking
R. Allmendinger and J. Knowles (2013): Hang On a Minute': Investigations on the Effects of Delayed
Objective Functions in iobjective Optimizatit i y Multi-Criterion Optimi; (EMO 2013),
LNCS 7811, pp 6-20.
R. Alimendinger, J. Handl, and J. Knowles (2015): iobjective Optimizati When Objecti Exhibit
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 65
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Optimization performance affected by g

+ Correlation between objectives
» Length of delay period
» Search space characteristics

IBEA, latency kjp,y = 5 IBEA, latency kyy,,, =20
20 20 Undelayed
Waiting -
Brood Interleaving -
15 15 Speculative Interleaving -
Fast-First
< 10 < 10
5 5
0 0
0 5 10 15 20 0 5 10 15 20
i /1

Median attainment surface for a fixed delay period. Objective f; is the quicker to
evaluate objective. Some strategies suffer from bias towards f;.

R. Allmendinger, J. Handl, and J. Knowles (2015): iobjective Optimization: When Objecti Exhibit
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 67
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» Correlation between objectives
* Length of delay period
» Search space characteristics

IBEA, latency kg, =5 IBEA, latency k,,, =20

‘slow

go g
el s
E] g
£ 0 5
£ £
z Z
S 04 i )
£ £ Undelayed ———
Z & =z ) Waiting
0.2 02 Brood Interleaving 11
= - Speculative Interleaving
Fast-First
ol " . . . ols N . .
-1 0.5 0 05 1 -1 0.5 0 05 1
Correlation corr Correlation corr

Average hypervolume as a function of the correlation level between two objectives
(fixed delay period). Waiting performs well for short delay periods, and non-waiting
strategies for positively correlated objectives and longer waiting periods.

R. Allmendinger, J. Handl, and J. Knowles (2015): iobjective Optimizatit When Objecti Exhibit
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 66
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R. Allmendinger, J. Handl, and J. Knowles (2015): iobjective Optimizati When Objecti Exhibit
Unequal Latencies. European Journal of Operations Research, 243(2): 497-513. 68




Crop-Breeding Strategies

» Food and energy crops in short
supply (simplifying very complex
global socio-political situation)
Some traits in crops are quantitative,
e.g. energy vyield, low-temperature

resistance

Given new sequencing technologies,
we can see the quantitative trait loci
(QTLs) — the genotype. Will this

really help us breed faster for the

traits we want?

69
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Simulation Details

Real Crop Breeding
* Crops take months to ~ 1

Simulation
* NKtlandscape. The t param

year to grow

But population size can be
1,000 - 20,000

Genome size ~10,000
Non-viables do not grow —
provide no feedback
Starting population is
evolved but diverse

controls number of traits to
enhance

Fitness below 0.65 — 0

Start from diverse evolved
population on NK

Allow only 10 generations!

Population size as for real
world

71
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EAs that know where they are?

Fitness-only “F” Algorithms
« Standard EA

+ FUSS

* Crowding

Genotypic “G” Algorithms
» Genotypic Niching

+ EDAs

Which of these are really better, F or G?

Can we tell crop breeders how to
use sequence information to do
efficient search? Can we sell them
the algorithms?

Tel-Hai <

» Surrogate modeling / LEM

70
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Crop-Breeding: Some Results

Fitness LEM = Michalski R.S.,
LEM P

MODEL: Evolutionary

il Niching EA 38, pp 9-40, 2000.

1 10 20
Generations

"LEARNABLE EVOLUTION

Processes Guided by Machine
Learning," Machine Learning ,

72




Other applications in biology / food /

medicine
* Chocolate flavour/aroma
— Subjective measurement and time
lags
» Configuration of GC-MS
instrument for looking at
Human serum
— Multiobjective
— Used ParEGO - surrogate
modeling approach
+ Evolving nano-technologies or
autonomous robots
— Limited resources

i College
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Instruments

:;' College
Precision tools used to create value from raw material or
automate a certain operation

Tel-Hai -
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Case-Study:

INSTRUMENT SETUP
OPTIMIZATION
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Instrument setup optimization W Tel-Hai
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General goal: Configure operating conditions of instrument

Fit parts as accurately

and quickly as possible

without destroying any
other parts

Ty

Produce coffee

and other food to
i obtain a certain
: desired taste

such that the instruments performs as “efficiently” as possible.

Ensure filling and cutting is done
without loosing much material




Chromatography LT e I
Well-established approach for purifying proteins Overview of a typical biologics

Relies on using expensive raw materials (resin) L4 )'D g
Time-consuming y = @ manufacturing process

Requires operating conditions to be optimized
Various chromatography techniques are available
Combination of these need to be used in purification

Downstream
Processing of cell mass from the upstream to
meet purity and quality requirements

BBETC. WP [BETC Wabinar Seres]

Optimization of Chromatography

W Tel-Hai

& Operating Conditions (Typically) {f} &8 college
Overview of a typical biologics ¥ .
manufacturing process ! g’opne(;i‘:i‘j;gs . @

Cell Culture Clarification [ - S~ ; ‘

Liquid
4 handling
- w-6-@- (- - K-
' Cell ——
|bank SPsl"h:‘l’;“’ Seed Bioreactors. e " o | Cent ‘It'C it
Vil lask Bioreactor  Centrfugation Fi?l?g:ion Harvest Circumir;rrized(zrgg();s)lgesign

Typically: )
Product fapture Fine Purification . yFI:,)oE-griven ! ER
@ | g i - #_ oo + Chromatography steps are e
0o considered independently
Affinity low pH Viral lon uripE  Formutation A 1
Chvamatoasy inoraction Fivation Bulk il (one step at the time) —= =
Chromatography =
Measure protein purity

and yield via HPLC

[BETC Webinar Sares]
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Optimization of Chromatograph
pl 1zatl g p y /i‘n ITeI-Hai
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Operating Conditions (Proposed) !

College

Operating
condltlons X

handling
robot

Maln challenges:
Noisy objective

Proposed:

» Optimize all function values
chromatography + Failed experiments
steps at once via Resourcing issues
sequential

Noisy objective
function values
fiy oo iy

experimentation

Measure protein purity
and yield via HPLC

R. Allmendinger, S. Gerontas, N.J. Titchener-Hooker, and S.5. Farid (2014): Tuning Evolutionary Multiobjective Optimization for
Closed-Loop Estimation of Chromatographic Operating Conditions. Parallel Problem Solving in Nature - PPSN Xlll, pp 741-750. 81

Challenges Lo Joi

* Resourcing issue:
Stop experiment if total yield £y = Yy X...x ¥, <90%

TECAN:
HPLC:
Step
ield Y;: Y, =97% Y,=75% ?
y L fre1a > 90% — continue e < 90% — stop

R Al\mendmger S. Gerontas, N.J. Tltchener Hooker, and S.S. Farid (2014): Tuning Evolutionary Multiobjective
ization for Closed-Loop Estil of C ic Operating C itie Parallel Problem Solving
in Nature - PPSN Xll, pp 741-750. 83
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Challenges L) oo

» Linkage constraints: Operating condition setting at step / can dictate
lowest possible setting of another operating condition at step i + 1

Resins: resing i resin; i resing
I i
Operating ] |
conditions: | 11 | [ aam | L ca [~ T Ca | [ %1 | =~ | Cka |
Chromatography step 1 Chromatography step i Chromatography step k

+ Multiple objectives:
*  Yield: max f;gq = Y1 X...X Y, measured at each step i = 1,....k
*  Impurities: min £, = Total amount of impurities remaining

Vield Aggregotes

* Resourcing issue:
Stop experiment if total yield

fieia = Y1X...X Y, <90%

Some results for dealing with the _Hai

resourcing issue U College

~
=

T
Unconstrained
Strict penalizing
Relaxed penalizing -
Fitness-inheritance *
Pareto Front @

o
=3

Fitness-inheritance
strategy:

Fill missing yield
measurements Yp+1 s

Y, with measurements
obtained for the most
similar (in terms of
operating conditions) and
fully evaluated multi-step
chromatography process,
and also copy fimpyriy OF
that process.

& 3

Impurities ZIP;
w
=1

Yield ¥

R. Allmendinger, S. Gerontas, N.J. T\tchener Hooker, and S.S. Farid (2014): Tuning Evolutionary Multiobjective
Optimization for Closed-Loop Esti of Cl ic Operating C iti Parallel Problem Solving
in Nature - PPSN XIIl, pp 741-750. 84




DISCUSSION

85

Some Practical Principles for
Closed-Loop Optimization

* Keep experimentalists in
the loop

* Understand the
experimental platform

» Simulate the platform, and
compare algorithms

» Dot for real — and get
feedback

87

Tel-Hai

Evolutionary Algorithms Used BN Coiece

*Nozzle Experiments:
Two-Membered Evolution
Strategy [Rechenberg; 1973]

*Quantum Control Experiments:
Derandomized Evolution

Strategies [Hansen et al.; 1994- |
2008] evaluate

initialize population

Biological Experiments: PESA-II
[Corne et al, 2002], ParEGO
[Knowles et al. 2006], (u+A)-ES,
and Learnable evolution model
[Michalski,2000]

(terminate)

select
mutate

select mating partners|

recombine

86
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Keep experimentalists in the loop

» Explain EAs, manage

expectations of outcomes. =

+ Understand the variables "
and objectives._Confirm 3
times at least. .

« Still be prepared to change 200

800|

600

Peak Count

objectives half-way through! Runtime

10 12 14 16 18 20 22 24 26 28

« Enable them to use familiar

. during optimizati
software for viewing results. uring optimization

Objectives shown above were changed

88
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Understand the experimental platform

« Variables, constraints, e _
measurements, noise i

« Financial costs, time lags tﬁ;\‘: ;!:-/

* Resource constraints = |

+ Batch size of platform :
dictates/constrains
population size of EA

89
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Conclusions

» Experimental Optimization is hard — but an Evolutionary
approach is feasible!

+ EAs should be given a chance in new application areas
* Fundamental research in EAs is much needed

91
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Simulations prior to the real thing

* Really helpful to manage
expectations of stakeholders

MJ model, #v=2, Ag=10

* Tune your algorithms for weird
and wonderful population
sizes, constraints, budget
limitations of real experimental
platform

* If possible, use domain : enerattons
experts to design test
problems that are similar to
the real problem

]
20

Zont [/

3
2

Z
.
§-0.
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Goals and Open Questions

« Given a budget of k experiments — what strategy should be
taken?

* NFL holds more than ever — there will be no winner
algorithm handling all experimental scenarios!

* How do statistical approaches perform in comparison?
— Design-of-Experiments

* Holy Grail: A package of strategies to drive an
experimental system to a reliable maximum with minimum
experiments

Box, G. E. P; Hunter, J. S.; Hunter, W. G.: Statistics for experimenters: design,
innovation, and discovery; Wiley-Interscience, 2005. 92
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