
 
 

  
 
 
 
 

  

Objectives of the Tutorial 
At the end, you will know: 

• What GDS is about 
• Motivation for GDS 
• Historical precedent 
• Popular approaches 
• Biological analogies 
• Recent approaches 
• Representational properties 
• Theoretical issues 
• Goals for the field 
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Course Agenda 
Part 1: Intro to GDS 

• Motivation 
• Classical Encodings 
• Dimensions of Development 

Break 
Part 2: Exploring Abstraction 

• CPPNs 
• HyperNEAT 
• Representations and theoretical issues 
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Instructor/Presenter 
 

Ken Stanley’s connections to Generative 
and Developmental Systems (GDS): 
• Co-author of 2003 GDS review paper, 

A Taxonomy for Artificial Embryogeny 
• Co-founder of GECCO GDS Track in 2007 and 

Co-chair of track from 2007-2009 
(now integrated into “Complex Systems” track) 

• Co-inventor of NEAT, CPPN indirect encoding, 
and the HyperNEAT GDS algorithm 

• At least 20 GDS-related publications 
K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life, 9(2):93–130, 2003. 2 
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Solving this Problem Could Solve 
Many Others 
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Development 
 
 
 

 
 
 
 
 
 

(embryo image from nobelpriz7e.org) 

Goal: Evolve Systems of Biological 
Complexity 

 

 

100 trillion connections in the human brain 
30,000 genes in the human genome 
How is this possible? 
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Inspiration vs. Simulation 
 
Often confused in GDS 

• Simulation: Model biology to learn about biology 
• Inspiration: Abstract biology to create new algorithms 

This tutorial’s perspective: Looking for inspiration 
• What from biology is essential to achieve what we 

want? 
• What can be ignored? 
• What should we add that is biologically implausible yet 

works better for our purposes? 
 
 

5 

873



 
 

  
 
 
 
 

  

The Unfolding of Structure 
Allows Reuse 
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Development is Powerful Because of 
Reuse 
Genetic information is reused during embryo 

development 
Many structures share information 
Allows enormous complexity to be encoded 

compactly 
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(James Madison University http://orgs.jmu.edu/strength/KIN_425/kin_425_muscles_calves.htm) 

A Field with Many Names 
 
 Generative and Developmental Systems (GECCO track) 
 Artificial Embryogeny 
 Artificial Ontogeny 
 Computational Embryogeny 
 Computational Embryology 
 Developmental Encoding 
 Indirect Encoding 
 Generative Encoding 
 Generative Mapping 
 … 
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Historical Precedent 
Turing (1952) was interested in 

morphogenesis 
• Experimented with reaction-diffusion equations 

in pattern generation 
Lindenmayer (1968) investigated plant 

growth 
• Developed L-systems, a grammatical rewrite 

system that abstracts how plants develop 
 
 
 

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315. 
Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72.   9 
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Classic Developmental Encodings 
Grammatical (Generative) 

• Utilize properties of grammars and computer 
languages 

• Subroutines and hierarchy 
Cell chemistry (Development) 

• Simulate low-level chemical and biological 
properties 

• Diffusion, reaction, growth, signaling, etc. 
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Some Major Issues in GDS 

Phenotypic duplication can be brittle 

Variation on an established convention is 
powerful 

Reuse with variation is common in nature 15 

Therefore, GDS 
 
Indirect encoding: Genes do not map directly to 

units of structure in phenotype 
Phenotype develops from embryo into mature form 
Genetic material can be reused 
Many existing developmental encoding systems 

Symmetry Repetition Repetition 
with variatio1n4 

Rediscovery Unnecessary with Reuse 
 
 
 
 
Repeated substructures should only need to be 

represented once 
Then repeated elaborations do not require 

rediscovery 
Rediscovery is expensive and improbable 
(Development is powerful for search even 

though it is a property of the mapping) 
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Grammatical Example 2 

Cellular Encoding (CE; Gruau 1993, 1996) 

F. Gruau. Neural network synthesis using cellular encoding and the 
genetic algorithm. PhD thesis, Laboratoire de L'informatiqu2e0du 
Paralllisme, Ecole Normale Supriere de Lyon, Lyon, France, 1994. 

Growth of a Table 
 
 
 
 
 
 
 
 
 
Hornby, G.. S. and Pollack, J. B. The Advantages of Generative Grammatical Encodings for Physical Design. Congress on 

Evolutionary Computation. 2001. 
19 

L-System Evolution Successes 
 
Greg Hornby’s Ph.D. dissertation topic 

(http://ic.arc.nasa.gov/people/hornby) 
Clear advantage over direct encodings 

Grammatical Example 1 

L-systems: Good for fractal-like structures, 
plants, highly regular structures 

 
 
 
 
 
 
 
 

Lindenmayer, A. (1968). Mathematical models for cellular interaction in development: Parts I and II. Journal of Theoretical 
Biology, 18, 280–299, 300–315. 
Lindenmayer, A. (1974). Adding continuous components to L-systems. In G. Rozenberg & A. Salomaa (Eds.), L systems: 
Lecture notes in computer science 15 (pp. 53–68). Heidelberg, Germany: Springer-Verlag. 17 
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Cell Chemistry Example: 
Bongard’s Artificial Ontogeny 

 
 
 
 
 
 
 
 

Bongard, J. C. and R. Pfeifer (2001a) Repeated Structure and Dissociation of Genotypic and Phenotypic   
Complexity in Artificial Ontogeny, in Spector, L. et al (eds.), Proceedings of The Genetic and Evolutionary 
Computation Conference, GECCO-2001. San Francisco, CA: Morgan Kaufmann publishers, pp. 829-836. 

 
 

Bongard, J. C. and R. Pfeifer 
(2003) Evolving Complete Agents  
Using Artificial Ontogeny, in Hara, 
F. and R. Pfeifer, (eds.), Morpho- 
functional Machines: The New 
Species (Designing Embodied 
Intelligence) Springer-Verlag, pp. 
237-258. 22 

 
 
 
 

  

Differences in GDS Implementations 
 
Encoding: Grammatical vs. Cell-chemistry vs. 

Other (coming later) 
Cell Fate: Final role determined in several ways 
Targeting: Special or relative target specification 
Canalization: Robustness to small disturbances 
Complexification: From fixed-length genomes to 

expanding genomes 
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Cell Chemistry Example 2 
 
Federici 2004: Neural networks inside cells 

 
 
 
 
 
 
 
 
 

Daniel Roggen and Diego Federici, Multi-cellular development: is there scalability and robustness to gain? In: Proceedings of 
PPSN VIII 2004 The 8th International Conference on Parallel Problem Solving from Nature, Xin Yao and al. ed., pp 391-400, 
(2004). 
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Cell Chemistry Encodings 
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Complexification through Gene 
Duplication 

 
 
 
 
Gene Duplication can add new genes in any indirect 

encoding 
Major gene duplication event as vertebrates appeared 
New HOX genes elaborated overall developmental 

pattern 
Initially redundant regulatory roles are partitioned  28 

Canalization 

Crucial pathways become entrenched in 
development 
• Stochasticity 
• Resource Allocation 
• Overproduction 

Nijhout, H. F., & Emlen, D. J. (1998). Competition among body parts in the development and evolution of insect morphology. 
Proceedings of the National Academy of Sciences of the USA, 95, 3685–3689. 27 Waddington, C. H. (1942). Canalization of Development and the Inheritance of Acquired Characters. Nature, 150, 563. 

Targeting 
 
How do cells become connected such as in a 

neural network? 
Genes may specify a specific target identity 
Or target may be specified through relative 

position 
 
 

? 
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Cell Fate 
 
 
 
 
 
 
Many different ways to determine ultimate role of cell 
Cell positioning mechanism can also differ from 

nature 
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Gradients Define Axes 
Chemical gradients tell which direction is 

which, which axis is which 

Y-axis X-axis 

32 

What is Development Really Doing? 
A plan upon a plan upon a plan 
Each layer lays a groundwork for the next 
A structure is built in a coordinate frame 

• First the axes must be defined 
• Then the core structure is situated 
• Then further axes are defined 
• And so on 
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High-Level Abstraction: 
Compositional Pattern Producing 
Networks (CPPNs) 
An artificial indirect encoding designed to 

abstract how embryos are encoded 
through DNA (Stanley 2007) 

 
 
 
 
 

Symmetry Repetition Repetition 
Kenneth O. Stanley. Compositional Pattern Producing Networks: A Novel Abstraction 
of Development In: Genetic Programming and Evolvable Machines Special Issue on with variatio3n0 
Developmental Systems 8(2): 131-162. New York, NY: Springer, 2007 

 

Break 
 
Take break 
Resume in 10 minutes 
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artesian Space 

 
 

  
 
 
 
 

  

Segmentation is a Periodic Gradient 
 
 
 
 
 
 
 

(Wikimedia commons) 
 

f(periodic function) = repeating pattern 
Periodic functions mean repeating 

coordinate frames 
36 

Higher Coordinate Frames are 
Functions of Lower Ones 

f (y) = y g(y) = f ( y) 
Using g and x as a coordinate space, we can get h: 

Symmetry from 
a symmetric 

gradient 
h(x, y) = func[x, g(y)] 
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A Novel View: 
The Phenotype as a Function of 
C 

 
 
 
 
Coordinate frames are chemical gradients 
Function is applied at all points 
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Cells Know Where They Are Through 
Gradients 
Therefore, they know who needs to do 

what, and where 
Because where is now defined 
Gradients form a coordinate frame 

(1982) 33 
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Interactive Evolution: 
A Way to Explore Encoding 
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Compositional Pattern Producing 
Networks (CPPNs) 

 
 
 
 
 
 
A connected-graph abstraction of the 

order of and relationship between 
developmental events (no growth!) 

39 

Gradients Can Be Composed 
 
 
 
 
 
 
 
 

Is there a general abstraction of 
composing gradients that we can evolve? 

38 

Gradients Define the Body Plan 
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Imperfect Symmetry 
 
 
 
 
 
 
 
 
 
Gauss(x) and x provide both symmetry 

and asymmetry 
44 

Compositional Pattern Producing 
Networks (CPPNs) 

 
 
 
 
 
 
 
 

Evolutionary Elaboration 
43 

 
 
 
 
 
 
 
 
 
 
 

Parent 
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Parent 
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CPPNs:Repetition with Variation 
 
 
 
 
 
 
 
Seen throughout nature 
A simple combination of periodic and absolute 

coordinate frames 
A novel view: not a traditional subroutine 

46 

Repetition with Variation 
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Jimmy Secretan, Nicholas Beato, David B. 
D.Ambrosio, Adelein Rodriguez, Adam  
Campbell, Jeremiah T. Folsom-Kovarik, and 
Kenneth O. Stanley (2011). Picbreeder: A 
Case Study in Collaborative 
Evolutionary Exploration of Design Space. 
Evolutionary Computation, 19(3): 345–371, 
Cambridge, MA: MIT Press 

CPPN Patterns 
From http://picbreeder.org 

(All are 100% evolved: no retouching) 
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Are Unfolding Over Time and Local 
Interaction Essential to Development? 
What is lost if they are abstracted away? 
What is the role of local interaction? 

• “Where am I?” 
• If I know where I am, do I need it? 

Response to CPPNs: 
• Some are arguing that intermediate 

information during development can be 
exploited by evolution T. Kowaliw and W. Banzhaf, Augmenting Artificial Development 

with Local Fitness, In IEEE CEC 2009 

Still, CPPNs can be iterated over time 
• CPPNs can take environmental inputs 

56 

Picbreeder Phylogenetic Tree 
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Infinite resolution: CPPNs are mathematical expressions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

53 

Is development really the essential property of developmental 
systems that we’ve been looking for? Or is there something more 
fundamental that is simply manifested through development? 

CPPNs Abstract Development 
out of Development! 
CPPN is decoded by querying each point in 

space independently: no local interaction 
The process of development need not be 

simulated 
Some Advantages: 

• Patterns stored at infinite resolution 
• Easily biased in fancy ways 
• Perfect regeneration of damaged structure 
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Image DNA Tool 

Press 
here 

Allows browsing CPPN 60 

The Apple 
 
 
 
 
 
 

How is it represented? 
 

CPPN has 83 nodes, 264 connections 
320 generations 
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The Apple 
 
 
 
 
 

Stem and Body: 
Fractured Regions 
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Representational Properties of CPPNs 
 

Compositionality 
• One pattern can be built upon another 

(output of one function fed into another) 
Fracture 

• Discontinuous variation of patterns 
“fractured problems have a highly discontinuous 
mapping between states and optimal actions.” 

Nate Kohl and Risto Miikkulainen (2009). Evolving Neural Networks for Strategic 
Decision-Making Problems. Neural Networks, Special issue on Goal-Directed 
Neural Systems. 

 

– Define different regions 
• Builds incrementally over evolution 
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orming Intermediate Patterns 

d 
Gaussian 
Function 
of inputs 

y 

64 

ting at the Bottom 

d 

x 

y 

Inputs 63 

ting at the Bottom 

d 

x 

y 

Inputs 62 

y Large Apple Network 
 

Outputs 

Inputs 61 
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Co CP 

CP Ori 

 
 

  
 
 
 
 

  

gins of Fracture Asymmetric 
Stem 
Region 

Main 
source of 
asymmetry 
in apple 
stem 

Symmetric Main 
Body Region 

68 

PN Visualization 
 
 
 
 
 
 
 
 
 
 

67 

PN Visualization 
 
 
 

Let’s 
scroll 
gradually 
up to the 
top 

 
 
 
 
 

Inputs 
66 

mpositionality 
 
 
 

Compositionality: 
Essential to 
Indirect encoding 

 
 
 
 
 
 
 

Inputs 
65 
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CP CP 

Hig CP 

 
 

  
 
 
 
 

  

PN Visualization 
 
 
 

Let’s 
scroll up 
again 

 
 
 
 
 
 
 
 
 

72 

her-Level Compositions 
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PN Visualization 
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PN Visualization 
 
 
 
 

Let’s 
scroll up 
more 
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CP Firs 
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y Large Apple Network 
 

Outputs 

Inputs 76 

ast Outputs (at the top): 
ue & Saturation 

 
 

Hue 
 
 

Brightness 
(from HSB) 

 

Saturation 
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t Output: Brightness 
 
 
 
 

Brightness 
(from HSB) 
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PN Visualization 
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The Swinging Stem 
 
 
 
 

 
 
 
 

Stem angle swing 

Gene Knockout Experiment 
Outputs 

Remember this node? 
(the source of stem 
asymmetry) 

Loss of asymmetry 
on stem only 
(the fracture is deep) 
 

What happens if we 
delete it? 
(gene knockout 
experiment) 

Inputs 79 

Gene Knockout Experiment 
Outputs 

Remember this node? 
(the source of stem 
asymmetry) 

Watch here! 

What happens if we 
delete it? 
(gene knockout 
experiment) 

Inputs 78 

ne Knockout Experiment 

Outputs 
Remember this node? 
(the source of stem 
asymmetry) 

What happens if we 
delete it? 
(gene knockout 
experiment) 

Inputs 77 
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Scaling the Mouth 

Single gene controls the mouth aperture 
 
 
 

CPPN Output 

Weight = 2.1  
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The Mouth of the Skull 
 

Fracture is often surprisingly intuitive 
 

Mouth mask 
 
 
 
 
 

Head mask 
 

23 Nodes, 57 Connections 
74 Generations 

Notice this connection 
83 

Other Notable Fracture 
Masks for different parts inside the CPPN 

Body mask 

Roof mask 

50 Nodes, 141 Connections 
112 Generations Wheel 

cutouts 

82 

Other Notable Fracture 
Where would you split this image? 

 
 
 
 
 
 
 
 
 

50 Nodes, 141 Connections 
112 Generations 
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Cartoon Face 
 
 
 
 

Proto-face 

Many Faces “Conserve” the Same Proto-face 
Mask 
 
 
 
 
 
 

Knocking out Proto-face 
destroys the face 
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Scaling the Mouth 
Single gene controls the mouth aperture 

CPPN Output 

Weight = 2.1 Weight = 1.4 

86 

Scaling the Mouth 
Single gene controls the mouth aperture 

 
 
 
 

CPPN Output 

Weight = 1.4  

 
85 
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Fractured Neural Receptive Fields in 
HyperNEAT 

Oliver J. Coleman, Evolving Neural Networks for Visual Processing, Undergraduate 
Honours Thesis (Bachelor of Computer Science, University of New South Wales 
School of Computer Science and Engineering), 2010. 

92 

Similar Regularity and Fracture in 
HyperNEAT 
Just 4-D instead of 2-D 

Clune J, Stanley KO, Pennock RT, Ofria C (2011) On the performance of indirect 
encoding across the continuum of regularity. IEEE Transactions on Evolutionary 
Computation. 15(3): 346-367. 91 

Hypercube-based NeuroEvolution of 
Augmenting Topologies (HyperNEAT) 
 Evolving neural networks with CPPNs 
 Insight: A connectivity pattern in 2-D is isomorphic to a spatial pattern in 4-D 
 Result: Large-scale connectivity patterns 

 See http://eplex.cs.ucf.edu/hyperNEATpage/HyperNEAT.html for more 
information and publication links 

 
 
Kenneth O. Stanley, David B. D'Ambrosio, and Jason Gauci A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks. 
Artificial Life journal 15(2), 2009. 90 

More Examples 
 
The Emergence of Canalization and 

Evolvability in an Open-Ended, Interactive 
Evolutionary System (Huizinga, Stanley, 
and Clune 2017) 
https://arxiv.org/abs/1704.05143 
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Example: 
Evolve a Skull and a Butterfly with CPPNs 

Target Image 1 Target Image 2 

A Word of Caution: 
The Objective Paradox 

 
The full potential of an indirect encoding 

may not be revealed by testing whether it 
can evolve to satisfy a particular objective 
Reason: Fundamental discoveries (like 

symmetry) that are essential for further 
progress may yield no objective 
improvement on task fitness (like “walk far”) 
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CPPN-encoded Creatures 

Joshua E. Auerbach and Josh C. Bongard 
Evolving Complete Robots with CPPN-NEAT: The Utility of Recurrent 
Connections. 2011 Genetic and Evolutionary Computation  
Conference (GECCO 2011). Dublin, Ireland, July, 2011. 

Joshua E. Auerbach and Josh C. Bongard 
On the Relationship Between Environmental and 
Mechanical Complexity in Evolved Robots 
13th International Conference on the Synthesis and 
Simulation of Living Systems (ALife XIII). 
East Lansing, MI, July, 2012. 

Sebastian Risi, Daniel Cellucci, Hod Lipson (2013).Ribosomal Robots:     Cheney N, MacCurdy R, Clune J, Lipson H. Unshackling evolution: evolving soft 
Evolved Designs Inspired by Protein Folding. robots with multiple materials and a powerful generative encoding. Proceedings of the 
To appear in: Proceedings of the Genetic and Evolutionary Computation  Genetic and Evolutionary Computation Conference (GECCO 2013). Amsterdam, July 94 
Conference (GECCO-2013). New York, NY: ACM. 2013. 

Geometric Patterns Inside Evolved 
HyperNEAT ANNs 

 
Influence Maps of more general solutions 

Influence Maps of less general solutions 
We can see 
the difference 

Jason Gauci and Kenneth O. Stanley 
(2010) Autonomous Evolution of 
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Question: Was it a bad fitness function? 

 
 

No: The Problem is the Stepping Stones 
 

Stepping stones in GDS are complex 
Stepping stones to a skull do not look like a 

skull: 
 
 

The objective-based experiment did not reveal 
the potential of CPPN-based encoding 
Moral: Methods that aim for diversity (like 

novelty search or behavioral diversity) will be 
essential for GDS (even with DNA!) 

Joel Lehman and Kenneth O. Stanley (2011). 
Abandoning Objectives: Evolution Through the Search for Novelty Alone 
In: Evolutionary Computation journal (19):2, pages 189-223, Cambridge, MA: MIT 
Press. 

Mouret, J. B., & Doncieux, S. (2012). Encouraging behavioral diversity in evolu9t8ionary 
robotics: An empirical study. Evolutionary computation, 20(1), 91-133. 

 
 
 
 

  

Regeneration and Self-Repair 
 
A significant early focus in GDS research 
Is self-repair a side-effect of development? 

Miller J. F. Evolving a self-repairing, self- 
regulating, French flag organism. 
Proceedings of Genetic and Evolutionary 
Computation Conference (GECCO 2004), 
Springer LNCS 3102 (2004) 129-139. 

 
 
 
 
 

In some encodings self-repair is not needed 
• In CPPNs every cell knows its role instantaneously from 

its position 
• However, some applications may not provide positional 

information 
100 

Where is GDS Useful? 
 
 Problems with regularities 

• Board games 
• Visual processing/image recognition 
• Pictures 
• Music 
• Puzzles 
• Architectures/morphologies 
• Brains 
• Bodies 

 Problems requiring high complexity 
• High-level cognition 
• Strategic thinking 
• Tactical thinking 
• Open-ended  evolution? 

 Regeneration and self-repair 
Miller J. F. Evolving a self-repairing, self-regulating, French flag organism. Proceedings of Genetic and 
Evolutionary Computation Conference (GECCO 2004), Springer LNCS 3102 (2004) 129-139. 

99 

Results Are Terrible 
Typical best results given 30,000 

generations (only odd runs shown) 
Brian G. Woolley and Kenneth O. Stanley (2011). On the Deleterious Effects of A Priori 
Objectives on Evolution and Representation. In: Proceedings of the Genetic and 
Evolutionary Computation Conference (GECCO-2011). 
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Long Term Issues 
What are the ultimate encodings? 
What are the ultimate applications? 
What application requires a structure of 

100 million parts and actually utilizes the 
structure? 
• How can we formalize the problem? 

How can GDS combine with plasticity? 
How can we make progress despite the 

objective paradox? 
 

102 

Where is GDS not Useful? 
 
Problems without regularity 
Simple high-precision domains 

• Very small picture reproduction 
Simple control tasks 

• Go to the food 
• Balance the pole (5-connection solution) 
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More information 
My Homepage: http://www.cs.ucf.edu/~kstanley 
NEAT Users Group: 

http://groups.yahoo.com/group/neat 
Evolutionary Complexity Research Group:  

http://eplex.cs.ucf.edu 
Uber AI Labs: https://www.uber.com/info/ailabs/ 
Picbreeder: http://picbreeder.org 
HyperNEAT Information: 

http://eplex.cs.ucf.edu/hyperNEATpage/HyperN 
EAT.html 
Email: kstanley@eecs.ucf.edu 
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