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Gene Regulation in Biology
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• A gene regulatory network is a set of DNA segments which 
governs gene expression in cells

• The gene expression codes for levels of mRNA of e.g., 
structural proteins, enzymes, or other proteins (like transcription 
factors, etc.)

• Transcription factors enhance or inhibit the production of other 
proteins by the cells.

• Gene regulation:
- provides the behavior of the cells (reaction to environmental 

conditions)
- allows for specialisation in multicellular organism by turning on and 

off some part of the genomes

Gene Regulation in Biology

4

359



Gene Regulation in Biology
• Protein aspect
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Gene Regulation in Biology
• Gene regulation in developmental biology

- During the development of an organism, the  
GRN allows for:
‣ the segmentation of the embryo (ex: drosophila)

11

(Tomer et al. 2012)

Gene Regulation in Biology
• Gene regulation in developmental biology

- During the development of an organism, the  
GRN allows for:
‣ the segmentation of the embryo
‣ the generation of morphogen gradients
‣ morphogens are signalling proteins produced by the cells
‣ they are diffused in the cellular matrix for communication
‣ one of the main use is the creation of a “coordinate system” in the embryo
‣ example: bicoid in drosophila embryo 
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divisions (Fig. 2D) until the nuclei reached the periphery at nuclear
cycle 10 (Fig. 2E). Little change in the transcript pattern was
observed between nuclear cycles 10 and 13, although by this time
two bcd mRNA gradients were evident: one along the basal, the
other along the apical, periplasm of nuclei. Mitosis, as exemplified
by an embryo at the end of nuclear cycle 11, did not affect the
distribution of bcd mRNA (Fig. 2F). During nuclear cycle 13, basal
and apical bcd gradients were prominent, though basal bcd
transcripts covered a much wider layer of the cortex than did apical
transcripts (Fig. 2G and inset). During early nuclear cycle 14, a
striking change in pattern was observed: bcd transcripts began to
disappear from the basal periplasm, while their apical concentration
appeared unchanged (Fig. 2H and inset). The extended gradient was
obvious from the monotonically decreasing bcd mRNA
concentration (Fig. 2K). Subsequently, basal bcd transcripts
disappeared within minutes, but apical transcripts remained (Fig.
2I,L). A few minutes later, the apical transcripts had also disappeared
(data not shown).

Quantitative analysis of bcd mRNA gradient
formation
To measure bcd mRNA levels, we analyzed fluorescence
intensities by a method similar to that used to determine the
nuclear Bcd protein gradient (Houchmandzadeh et al., 2002). In
unfertilized eggs and cleavage-stage embryos, where nuclei have

not yet migrated to the periphery (Fig. 2A-C), basal and apical bcd
transcript levels were measured along lines located at the same
distance from the surface of the embryo as those employed at later
stages (Fig. 3L). In unfertilized eggs and early cleavage-stage
embryos, basal transcripts formed a steep gradient with a bend at
~20% EL (Fig. 3A-C, blue) and thus might appear to be “strictly
localized to the anterior cytoplasm” (Ephrussi and St Johnston,
2004). By contrast, apical transcripts began to form a shallow
gradient (Fig. 3B,C, pink). Clearly, basal as well as apical bcd
mRNAs already extended to posterior regions, as was apparent
from a progressive increase in their concentration posterior to the
bend (Fig. 3B,C).

During nuclear cycles 7-9, the slope of the basal gradient
decreased, moving the bend to ~30% EL, whereas the slope of the
apical gradient increased (Fig. 3D). By the time the nuclei reached
the periphery, similarly shaped gradients of basal and apical bcd
mRNAs were obvious (Fig. 3E). During the subsequent nuclear
cycles, the appearance of these gradients did not change
substantially (Fig. 3F,G). During early nuclear cycle 14, basal
transcripts were first reduced, forming a shallow gradient, and then
disappeared, whereas apical transcript levels were still high but also
began to decrease (Fig. 3H,I). Before nuclear cycle 14, bcd mRNA
must be stable because little, if any, degradation was apparent, as
previously observed in activated unfertilized eggs (Surdej and
Jacobs-Lorena, 1998).

RESEARCH ARTICLE Development 136 (4)

Fig. 2. Formation of bcd mRNA gradient analyzed by confocal microscopy. Confocal images (taken with a Leica TCS SP microscope) at
midsagittal planes of Drosophila embryos oriented with their dorsal side up and anterior to the left. (A-I) bcd transcripts are detected by FISH with a
DIG-labeled bcd cDNA in an unfertilized (unf) egg (A), and in embryos during interphase of nuclear cycle 3 (B), 6 (C), 9 (D), 10 (E), mitosis of nuclear
cycle 11 (F), interphase of nuclear cycle 13 (G), and 4 (H) and 10 (I) minutes after onset of nuclear cycle 14. During cleavage stage, nuclear cycles
were determined by counting the nuclei stained with DAPI (B-D). Insets in G-I show magnifications of the anterior region of the embryos. (J) Bcd
protein gradient in an embryo 10 minutes after onset of nuclear cycle 14, visualized by an anti-Bcd antiserum and fluorescent immunostaining.
(K,L) Magnified views of the dorsal anterior region of the embryos shown in H and I, respectively, visualizing the posterior extent of the bcd mRNA
gradients using a color scale from 10 to 120, as shown to the right. For color conversion and interpretation of signal intensities, the OsiriX DICOM
program was used (Rosset et al., 2004).

(Spirov et al. 2009)
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Gene Regulation in Biology
• Gene regulation in developmental biology

- During the development of an organism, the  
GRN allows for:
‣ the segmentation of the embryo
‣ the generation of morphogen gradients
‣ the differentiation of the cells into  

different cell types  
 
=> 1 DNA for multiple cell functions

13

Source: http://www.scq.ubc.ca/stem-cell-bioengineering/

Artificial Gene Regulatory 
Networks

14

Artificial Gene Regulatory Networks
• Models of gene regulation designed for:

- biological purposes
‣ simulation of real GRNs
‣ interactions between the protein
‣ dynamics of the network
‣ implication in the developmental process
‣ implication in the regulation of the cell life cycle

- computational purposes
‣ inspiration from the biology
‣ identical structure based on interaction between proteins
‣ artificial evolution of the proteins
‣ generally used to control agents (cells, robots, etc.)

15

Artificial Gene Regulatory Networks
• Biological models

- ODEs
‣ Representation of gene regulation with ordinary differential 

equations, based on chemistry and enzymatic kinematics 
- Boolean networks
‣ Genes, inputs and outputs of the networks are Boolean nodes 

of the network
‣ Edges are Boolean transition functions

- Stochastic gene networks
‣ Gene expression in cells is not deterministic  

=> Use of probabilistic models

16
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Artificial Gene Regulatory Networks
• Computational models

- Models used to control agents
- Agents can be:
‣ Cells in evo-devo models
‣ Virtual or real robots
‣ etc.

- 2 groups of models
‣ Biologically plausible networks
‣ Bit-string representation

‣ “Object-oriented” networks
‣ Networks of proteins

17

Artificial Gene Regulatory Networks
• Bit-string models
• Biologically plausible model of regulation

- Encoding close to biology:
‣ bit string ≈ string of nucleotides
‣ Use of promoters to separate genes

- Dynamics equations close to real gene regulatory networks

• But not efficient for computational purposes:
- Hard to evolve (junk DNA)

18

Artificial Gene Regulatory Networks
• Computational models: bit-strings

- Encoding

- Dynamics

19

XYZ010101011011...01 0011…11 10100111010010100100 … 011001001000100100010001111010

32-bit 
enhancer 

site

32-bit 
inhibiter 

site 32-bit promoter 5x32-bit gene

Transcoding

32-bit protein

0100...01
Production enhanced and inhibited 

by other genes' enhancer and 
inhibiter sites

1001...0011Protein of gene i :
Enhancer site of protein j : 0110…1010

XOR 1111…1001 Enhancing affinity
uij

+

Matching between 
proteins and sensors

(Banzhaf 2003)
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Artificial Gene Regulatory Networks
• Computational models: bit-strings
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Artificial Gene Regulatory Networks
• Computational models: bit-strings

- Random DNA strings produce 3 types of behaviors

- By adding input and output proteins, possibility to control a cart 
pole

21

Stable TransitoryOscillatory

(Banzhaf 2003)

Fig. 5. Regulatory networks extracted from best performing random (left) and DM-
genome (right). Hexagon nodes represent TF-genes, double hexagon nodes represent
P-genes, the triple hexagon represents the chosen P-gene, and triangles represent the
4 extra proteins. The networks were drawn using a threshold value of 19.

an interesting balance between biological accuracy and computational potential,
and was proposed as a good basis to introduce more accurate biological basis for
EC.

The results obtained show that there is a clear computational potential within
the model; it should therefore be possible to use other similar models as basis
for EC techniques.

The adaptation of such models to EC is not straightforward. As these are
mostly complex systems, a thorough comprehension of their exact dynamics is
often not possible. The choice of how to encode inputs and outputs is also not a
simple issue, and can greatly influence their computational potential.

Another key issue is the execution speed. While their biological equivalent
systems are extremely fast, at the moment these computer models are somewhat
slow, and the model used here is no exception. In order to accelerate the regu-
latory reactions, several tricks were used, such as adapting the sampling time of
the differential equation (the δ parameter), and parallelization by distributing
the evaluation of genomes across a cluster – the resulting average execution time
of a single run was around 25 minutes, when executing the code on 8 recent
machines running in parallel. Of course, a fascinating possibility to overcome
this issue would be to synthesize the resulting GRN into biological medium.

(Nicolau et al. 2010)

Artificial Gene Regulatory Networks
• Computational models: bit-strings

- Variation of dynamical behaviors is smooth

- Both mutations were applied to the regulatory site of proteins 
- Heterochrony (shift in expression timing)

22

Original A further 1-bit mutation1-bit mutation

(Banzhaf 2003)
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Artificial Gene Regulatory Networks
• Computational models: “Object-oriented” models 

- Higher level of representation
- Direct encoding of proteins and the affinities between 

proteins
‣ No promoter
‣ No junk DNA
‣ Easier to evolve

- Inputs and outputs can be easily represented
‣ “Plug-and-play” to any agent-based problem

23

Artificial Gene Regulatory Networks
• Computational models: “Object-oriented” models  

GRN = network of proteins
- Nodes = Proteins ; characterized by:
‣ identifier tag id ∈ [0, p]              ‣  Enhancing tag enh ∈ [0, p]
‣ Protein type                              ‣  Inhibiting tag inh ∈ [0, p]  

(input, output ou regulatory)

- Edges = matching between proteins 

• Dynamics of the network
- Enhancing and inhibiting coefficients of protein i:

- Differential evolution of the concentration of protein i:

24

GRN and which regulates other proteins but is not regu-
lated), an output protein (which concentration is used as
output of the network and which is regulated but does not
regulate other proteins) or a regulatory protein (internal
protein that regulates and is regulated by other proteins).

This encoding removes the problem of noncoding DNA of
Banzhaf’s approach. Each integer is used in the regulatory
network and a modification of one of them will automati-
cally imply a modification of the network. The enhancing
matching factor u+

ab

(respectively inhibiting u�
ab

) between
the protein a and the protein b is given by the distance be-
tween the identifier value id

a

of protein a and the enhancer
identifier value enh

b

of protein b:

u+
ab

= p� |id
a

� enh
b

| (1)

The dynamics of a regulatory network is calculated by
comparing the proteins two by two using the enhancing and
the inhibiting matching factors. For each protein of the net-
work, the global enhancing value is given by the following
equation:

e
i

=
1

N

NX

j

c
j

e�u
+
ij

�u

+
max (2)

where e
i

is the enhancing value for a protein i, N is the
number of proteins in the network, c

j

is the concentration
of protein j, u+

ij

is the enhancing matching factor between
protein i and protein j and u+

max

is the maximum enhancing
matching factor observed. � is a control parameter described
later.

The final modification of protein i concentration is given
by the following differential equation:

dc
i

dt
=

⇥(e
i

� h
i

)

�
(3)

where e
i

is the enhancing signal previously presented, h
i

is the inhibiting signal (calculated exactly as the enhancing
signal by using inhibiting matching factors instead of the
enhancing matching factors), c

i

is the current concentration
of the protein i and � is a function that keeps of the sum of
all protein concentrations equal to 1.

� and ⇥ are two constants that set up the speed of reaction
of the regulatory network. The higher these values, the more
sudden the transitions in the GRN. The lower they are, the
smoother the transitions are.

Whereas the input proteins of a GRN can be used to de-
scribe the current state of the environment, the output pro-
teins provide the answer of the network. The network can
also be easily encoding in a genome so that it can be evolved
to be adapted problem. The next section presents how the
GRN is used to generate pictures and how it is encoded to
be evolved by an evolutionary algorithm.

Picture generation
Binding between a GRN and a picture
To generate a picture with a GRN, the GRN calculates the
RGB color of each pixel of the picture. To do so, the GRN
has two inputs that correspond to the coordinates of the cur-
rent pixel and three outputs, one for each color component.
The coordinate (x, y) of a pixel are transformed into proteins
concentrations so that they do not overflow the network:

in
x

=
0.1x

width
; in

y

=
0.1y

height
(4)

where in
x

(resp. in
y

) is the concentration of the protein as-
sociated to the abscissa x (resp. the ordinate y) of the current
pixel, width and height define the size of the picture.

The resulting RGB compontent values are given by the
following equations:

out
r

=
255 ⇥ c

r

max
r

; out
g

=
255 ⇥ c

g

max
g

; out
b

=
255 ⇥ c

b

max
b

(5)

where out
r

(resp. out
g

and out
b

) is the value of the red
(resp. green and blue) component for the current pixel, c

r

(resp. c
g

and c
b

) is the concentration of the output protein
associated to the red (resp. green and blue) component in
the GRN (this concentration is always between 0 and 1) and
max

r

(resp. max
g

and max
b

) is the maximum concentra-
tion observed in the picture for the red (resp. green and blue)
component.

Before the generation of the picture, the GRN is first
evolved for 100 steps without any inputs in order to stabi-
lize the concentration. This is a very common technique be-
cause the GRN are known to oscillate during the first steps.
After this initialization, the GRN is duplicated for each pixel
of the picture and the duplicated GRN’s are run for 25 more
steps with the inputs corresponding to their pixels. The pixel
color is then calculated as explained before.

Encoding of the GRN
To be evolved by a evolutionary algorithm, the GRN is en-
coded into a genome with two chromosomes. The first chro-
mosome encodes the set of proteins and the second one en-
codes the parameters of the dynamics � and ⇥.

Because a GRN can have a variable number of proteins,
the first chromosome is defined as a variable length chromo-
some of indivisible proteins. Each protein is encoded within
four integers: three between 0 and p for the three different
identifiers and one in [0, 2] for the type of the protein.

If an evolutionary algorithm has to evolve this chromo-
some, the modification operators have to be redefined. First,
the crossover consists in exchanging subparts of two differ-
ent networks. Because proteins are indivisible, the crossover
points have to be chosen between two proteins. It ensures the
integrity of each sub-network. The local connectivity is thus
kept. Only new links between the different sub-networks are

GRN and which regulates other proteins but is not regu-
lated), an output protein (which concentration is used as
output of the network and which is regulated but does not
regulate other proteins) or a regulatory protein (internal
protein that regulates and is regulated by other proteins).

This encoding removes the problem of noncoding DNA of
Banzhaf’s approach. Each integer is used in the regulatory
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where e
i

is the enhancing signal previously presented, h
i

is the inhibiting signal (calculated exactly as the enhancing
signal by using inhibiting matching factors instead of the
enhancing matching factors), c

i

is the current concentration
of the protein i and � is a function that keeps of the sum of
all protein concentrations equal to 1.

� and ⇥ are two constants that set up the speed of reaction
of the regulatory network. The higher these values, the more
sudden the transitions in the GRN. The lower they are, the
smoother the transitions are.

Whereas the input proteins of a GRN can be used to de-
scribe the current state of the environment, the output pro-
teins provide the answer of the network. The network can
also be easily encoding in a genome so that it can be evolved
to be adapted problem. The next section presents how the
GRN is used to generate pictures and how it is encoded to
be evolved by an evolutionary algorithm.

Picture generation
Binding between a GRN and a picture
To generate a picture with a GRN, the GRN calculates the
RGB color of each pixel of the picture. To do so, the GRN
has two inputs that correspond to the coordinates of the cur-
rent pixel and three outputs, one for each color component.
The coordinate (x, y) of a pixel are transformed into proteins
concentrations so that they do not overflow the network:
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where in
x

(resp. in
y

) is the concentration of the protein as-
sociated to the abscissa x (resp. the ordinate y) of the current
pixel, width and height define the size of the picture.

The resulting RGB component values are given by the fol-
lowing equations:
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where out
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lize the concentration. This is a very common technique be-
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After this initialization, the GRN is duplicated for each pixel
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to be adapted problem. The next section presents how the
GRN is used to generate pictures and how it is encoded to
be evolved by an evolutionary algorithm.
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To generate a picture with a GRN, the GRN calculates the
RGB color of each pixel of the picture. To do so, the GRN
has two inputs that correspond to the coordinates of the cur-
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and max
b

) is the maximum concentra-
tion observed in the picture for the red (resp. green and blue)
component.

Before the generation of the picture, the GRN is first
evolved for 100 steps without any inputs in order to stabi-
lize the concentration. This is a very common technique be-
cause the GRN are known to oscillate during the first steps.
After this initialization, the GRN is duplicated for each pixel
of the picture and the duplicated GRN’s are run for 25 more
steps with the inputs corresponding to their pixels. The pixel
color is then calculated as explained before.

Encoding of the GRN
To be evolved by a evolutionary algorithm, the GRN is en-
coded into a genome with two chromosomes. The first chro-
mosome encodes the set of proteins and the second one en-
codes the parameters of the dynamics � and ⇥.

Because a GRN can have a variable number of proteins,
the first chromosome is defined as a variable length chromo-
some of indivisible proteins. Each protein is encoded within
four integers: three between 0 and p for the three different
identifiers and one in [0, 2] for the type of the protein.

If an evolutionary algorithm has to evolve this chromo-
some, the modification operators have to be redefined. First,
the crossover consists in exchanging subparts of two differ-
ent networks. Because proteins are indivisible, the crossover
points have to be chosen between two proteins. It ensures the
integrity of each sub-network. The local connectivity is thus
kept. Only new links between the different sub-networks are

GRN and which regulates other proteins but is not regu-
lated), an output protein (which concentration is used as
output of the network and which is regulated but does not
regulate other proteins) or a regulatory protein (internal
protein that regulates and is regulated by other proteins).

This encoding removes the problem of noncoding DNA of
Banzhaf’s approach. Each integer is used in the regulatory
network and a modification of one of them will automati-
cally imply a modification of the network. The enhancing
matching factor u+

ab

(respectively inhibiting u�
ab

) between
the protein a and the protein b is given by the distance be-
tween the identifier value id

a

of protein a and the enhancer
identifier value enh

b

of protein b:

u+
ab

= p� |id
a

� enh
b

| (1)

The dynamics of a regulatory network is calculated by
comparing the proteins two by two using the enhancing and
the inhibiting matching factors. For each protein of the net-
work, the global enhancing value is given by the following
equation:
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where e
i

is the enhancing value for a protein i, N is the
number of proteins in the network, c

j

is the concentration
of protein j, u+

ij

is the enhancing matching factor between
protein i and protein j and u+

max

is the maximum enhancing
matching factor observed. � is a control parameter described
later.

The final modification of protein i concentration is given
by the following differential equation:
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where e
i

is the enhancing signal previously presented, h
i

is the inhibiting signal (calculated exactly as the enhancing
signal by using inhibiting matching factors instead of the
enhancing matching factors), c

i

is the current concentration
of the protein i and � is a function that keeps of the sum of
all protein concentrations equal to 1.
� and ⇥ are two constants that set up the speed of reaction

of the regulatory network. The higher these values, the more
sudden the transitions in the GRN. The lower they are, the
smoother the transitions are.

Whereas the input proteins of a GRN can be used to de-
scribe the current state of the environment, the output pro-
teins provide the answer of the network. The network can
also be easily encoding in a genome so that it can be evolved
to be adapted problem. The next section presents how the
GRN is used to generate pictures and how it is encoded to
be evolved by an evolutionary algorithm.

Picture generation
Binding between a GRN and a picture
To generate a picture with a GRN, the GRN calculates the
RGB color of each pixel of the picture. To do so, the GRN
has two inputs that correspond to the coordinates of the cur-
rent pixel and three outputs, one for each color component.
The coordinate (x, y) of a pixel are transformed into proteins
concentrations so that they do not overflow the network:
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(4)

where in
x

(resp. in
y

) is the concentration of the protein as-
sociated to the abscissa x (resp. the ordinate y) of the current
pixel, width and height define the size of the picture.

The resulting RGB compontent values are given by the
following equations:
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associated to the red (resp. green and blue) component in
the GRN (this concentration is always between 0 and 1) and
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) is the maximum concentra-
tion observed in the picture for the red (resp. green and blue)
component.

Before the generation of the picture, the GRN is first
evolved for 100 steps without any inputs in order to stabi-
lize the concentration. This is a very common technique be-
cause the GRN are known to oscillate during the first steps.
After this initialization, the GRN is duplicated for each pixel
of the picture and the duplicated GRN’s are run for 25 more
steps with the inputs corresponding to their pixels. The pixel
color is then calculated as explained before.

Encoding of the GRN
To be evolved by a evolutionary algorithm, the GRN is en-
coded into a genome with two chromosomes. The first chro-
mosome encodes the set of proteins and the second one en-
codes the parameters of the dynamics � and ⇥.

Because a GRN can have a variable number of proteins,
the first chromosome is defined as a variable length chromo-
some of indivisible proteins. Each protein is encoded within
four integers: three between 0 and p for the three different
identifiers and one in [0, 2] for the type of the protein.

If an evolutionary algorithm has to evolve this chromo-
some, the modification operators have to be redefined. First,
the crossover consists in exchanging subparts of two differ-
ent networks. Because proteins are indivisible, the crossover
points have to be chosen between two proteins. It ensures the
integrity of each sub-network. The local connectivity is thus
kept. Only new links between the different sub-networks are

GRN and which regulates other proteins but is not regu-
lated), an output protein (which concentration is used as
output of the network and which is regulated but does not
regulate other proteins) or a regulatory protein (internal
protein that regulates and is regulated by other proteins).

This encoding removes the problem of noncoding DNA of
Banzhaf’s approach. Each integer is used in the regulatory
network and a modification of one of them will automati-
cally imply a modification of the network. The enhancing
matching factor u+

ab

(respectively inhibiting u�
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) between
the protein a and the protein b is given by the distance be-
tween the identifier value id

a

of protein a and the enhancer
identifier value enh

b

of protein b:

u+
ab

= p� |enh
a

� id
b

| (1)

u+
ab

= p� |inh
a

� id
b

| (2)

The dynamics of a regulatory network is calculated by
comparing the proteins two by two using the enhancing and
the inhibiting matching factors. For each protein of the net-
work, the global enhancing value is given by the following
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where e
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is the enhancing value for a protein i, N is the
number of proteins in the network, c
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is the concentration
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is the enhancing matching factor between
protein i and protein j and u+

max

is the maximum enhancing
matching factor observed. � is a control parameter described
later.

The final modification of protein i concentration is given
by the following differential equation:
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where e
i

is the enhancing signal previously presented, h
i

is the inhibiting signal (calculated exactly as the enhancing
signal by using inhibiting matching factors instead of the
enhancing matching factors), c

i

is the current concentration
of the protein i and � is a function that keeps of the sum of
all protein concentrations equal to 1.

� and ⇥ are two constants that set up the speed of reaction
of the regulatory network. The higher these values, the more
sudden the transitions in the GRN. The lower they are, the
smoother the transitions are.

Whereas the input proteins of a GRN can be used to de-
scribe the current state of the environment, the output pro-
teins provide the answer of the network. The network can
also be easily encoding in a genome so that it can be evolved
to be adapted problem. The next section presents how the
GRN is used to generate pictures and how it is encoded to
be evolved by an evolutionary algorithm.

Picture generation
Binding between a GRN and a picture
To generate a picture with a GRN, the GRN calculates the
RGB color of each pixel of the picture. To do so, the GRN
has two inputs that correspond to the coordinates of the cur-
rent pixel and three outputs, one for each color component.
The coordinate (x, y) of a pixel are transformed into proteins
concentrations so that they do not overflow the network:
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where in
x

(resp. in
y

) is the concentration of the protein as-
sociated to the abscissa x (resp. the ordinate y) of the current
pixel, width and height define the size of the picture.

The resulting RGB component values are given by the fol-
lowing equations:
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where out
r

(resp. out
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and out
b

) is the value of the red
(resp. green and blue) component for the current pixel, c

r

(resp. c
g

and c
b

) is the concentration of the output protein
associated to the red (resp. green and blue) component in
the GRN (this concentration is always between 0 and 1) and
max

r

(resp. max
g

and max
b

) is the maximum concentra-
tion observed in the picture for the red (resp. green and blue)
component.

Before the generation of the picture, the GRN is first
evolved for 100 steps without any inputs in order to stabi-
lize the concentration. This is a very common technique be-
cause the GRN are known to oscillate during the first steps.
After this initialization, the GRN is duplicated for each pixel
of the picture and the duplicated GRN’s are run for 25 more
steps with the inputs corresponding to their pixels. The pixel
color is then calculated as explained before.

Encoding of the GRN
To be evolved by a evolutionary algorithm, the GRN is en-
coded into a genome with two chromosomes. The first chro-
mosome encodes the set of proteins and the second one en-
codes the parameters of the dynamics � and ⇥.

Because a GRN can have a variable number of proteins,
the first chromosome is defined as a variable length chromo-
some of indivisible proteins. Each protein is encoded within
four integers: three between 0 and p for the three different
identifiers and one in [0, 2] for the type of the protein.

If an evolutionary algorithm has to evolve this chromo-
some, the modification operators have to be redefined. First,
the crossover consists in exchanging subparts of two differ-
ent networks. Because proteins are indivisible, the crossover
points have to be chosen between two proteins. It ensures the
integrity of each sub-network. The local connectivity is thus
kept. Only new links between the different sub-networks are
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• Computational models: “Object-oriented” models 

Artificial Gene Regulatory Networks

P1
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enh=50
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P2
id=29

enh=12
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P3
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enh=13
inh=9
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inh=61

P5
id=39

enh=28
inh=1

P6
id=12
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inh=49

Enhances
Inhibites

t=0t=1

Input prot.

Regulatory prot.
Output prot.

25
p=64

• Computational models: “Object-oriented” models 
- Evolution with a genetic algorithm

- “Neat-like” algorithm applicable to optimize GRNs more efficiently
‣ Start with small networks (inputs + outputs + 1 regulatory 

protein)
‣ Aligning crossover
‣ Speciation

Artificial Gene Regulatory Networks

26

GRN Genome
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Dynamic coefficients:
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{6;2;24}

P6

{19;14;1}

Dynamic coefficient chromosome

β

1.2864

δ

0.8732

Encoding

(Cussat-Blanc et al. 2015)

• Computational models: “Object-oriented” models 
- Easy to use:
‣ Concentration of input proteins: sensors of the agent
‣ Concentration of outputs proteins: Actuators or weight for a 

behavior/action

- Compact encoding in comparison to neural networks

Artificial Gene Regulatory Networks

27

actuator 1
actuator 2

actuator m

sensor 1
sensor 2

sensor n

...
sensor 3
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P3
id=48
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P4
id=5

enh=31
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P5
id=39
enh=28
inh=1

P6
id=12
enh=5
inh=49GRN ...

Application of 
Gene Regulatory Networks 

28

• Viewing the dynamics
• Evo-devo
• Controlling agents’ actuators
• Regulating high-level behaviors
• ANN & GP with GRNs
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Application of GRNs
• Generating images

29

(x,y)
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x

y

Red

Green

Blue

Application of GRNs
• Generating images

30(Cussat-Blanc 2012)

Application of GRNs
• Generating videos

31

Application of GRNs

32

• Evo-Devo: Evolution and Development
- Definition: grow virtual organism with evolved GRNs

- Embryogenesis: Formation Processus  
of multicellular organisms from 
the egg cell to the autonomous  
living being

- Artificial embryogenesis:  
Generation of virtual organisms by 
taking inspiration of the development 
process of living beings 
=> based on biological concepts
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Application of GRNs
• Evo-Devo: cellular automata

- Evolution of a matrix with simple rules based on the neighborhood 
- The state of the cells at time t determines their state at time t+1
- Example: Conway’s game of life

- Shapes can be generated by evolving the rules
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Chapitre 2. Etat de l’art - Une histoire des créatures artificielles

règles simples 13. Grâce à cette méthode, di�érentes formes émergent et sont capables de

se déplacer, de se reproduire, de fusionner, etc. (illustré par la figure 2.14).

En ajoutant un algorithme génétique pour trouver les règles de transition d’un état à

l’autre, Hugo de Garis développa un certain de nombre de formes en 2D [de Garis, 1999].

Pour cela, les règles employées di�èrent quelque peu de celles du jeu de la vie. On part

d’une cellule unique dans l’environnement qui a la possibilité de se reproduire. Une cellule

ne peut se reproduire que si elle possède un voisin libre. En partant de ceci, on obtient 14

possibilités d’état de reproduction des cellules. Le génome des règles de reproduction est

alors le suivant :

– Gène 0 : Nombre d’itération de développement.

– Gène 2i : Quel état de reproduction est possible pour l’itération i ?

– Gène 2i + 1 : Direction de reproduction pour l’itération i.

La fonction d’évaluation guidant la convergence de l’algorithme génétique est donnée

par la formule suivante :

fitness =
Nbin � 1

2Nbout

des

avec

– Nbin le nombre de cellules vivantes dans la forme désirée,

– Nbout le nombre de cellules vivantes en dehors de la forme désirée,

– des le nombre total de cellules de la forme désirée.
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Figure 2.15 – Exemples de formes produites avec des automates cellulaires.

Il arrive alors à produire di�érentes configurations telles que des formes simples (tri-

angles, carrés...) ou plus complexes (des lettres, des tortues, des bonshommes de neige...)

13. Les deux règles sont les suivantes :
– Si la cellule est vivante et est entourée par deux ou trois cellules vivantes, elle reste en vie à la

génération suivante, sinon elle meurt ;
– Si la cellule est morte et est entourée par exactement trois cellules vivantes, elle devient vivante.
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(De Garis 1999)

(Conway 1970)

Application of GRNs
• Evo-Devo: use of GRNs

- Development of specialization patterns with a cellular automata
- French flag problem
‣ Different cell specialization, depending on the position of the cells
‣ Morphogen gradient pre-positioned or produced by the organismsChapitre 5. Results

the second series of the tandem.

Fig. 5.24 – French flag with a flagpole pattern.
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6 Micha' Joachimczak and Borys Wróbel

0 50 100 150 200

225 231 250 275 300

(a)

(b) (c)
Fig. 4. Development of the best individual with 2 colour effectors (a); below, self-generated gra-
dients of positional information employing two different morphogens (b,c): left - production level
of a morphogen in each cell (blue to red colour map), right - normalized morphogen density maps
in the space surrounding the embryo.

gle morphogen at one extreme of the embryo would suffice in principle), all analysed
individuals developed using the differential production of at least two morphogens.

One of the problems identified in early experiments was that when evaluated by their
similarity with target pattern after 300 steps, the patterns were rarely stable. Typically,
they would sweep through the embryo (driven by diffusing waves of morphogens) or
oscillate. We have managed to partially alleviate this by calculating overall fitness as
an average of similarity values taken every 5 simulation steps in the last 50. Individuals
that were largely stable through this period would then be obtained. However, in most
cases, the pattern degraded if development was allowed to continue beyond its default
lifetime of 300 steps. We note, however, that it is (sadly) a common feature of living
systems to degrade if their lifespan is extended beyond what they were selected for by
evolution.

In the next series of experiments, we investigated the stabilizing role of the gradi-
ents of substances present in the environment of the developing embryo. Two external
factors diffused from sources external to the embryo at its two extremes (similarly to
Bicoid and Nanos, which determine anterior/posterior axis in Drosophila embryo de-
velopment; see, e.g., [15]). This allowed for stable embryo patterning, but only if the
cells were additionally prevented from producing their own morphogens (which makes
those maternal factors the only inducers of differential expression). The dominant role
of self-produced morphogens can be explained by the fact that, in our system, mor-
phogens produced by the embryo can reach much higher concentrations than the diffu-
sive substances present in the environment.

Robustness to perturbations such as mutations or damage is one of the essential fea-
tures observed in developmental systems (see e.g. [2, 4, 16]). Although all the individ-
uals presented in this paper evolved in the absence of any developmental stochasticity,
they were found to respond extremely well to the removal of a single cell, even at the
very early stages of development (Fig. 5). This suggests that fault tolerance developed
as an effect of mutational robustness and can be considered to be an indication of good
evolvability ([17]).

To assess the scalability of the model, different approaches to patterning were eval-
uated. Fig. 6a shows the use of non-thresholded colour effectors. This turned out to be
a harder problem, which is understandable if one considers that it was now not only

(Joachimczak et al. 2008)

(Flann et al. 2005)

(Chavoya et al. 2008)

(Knabe et al. 2008)

Application of GRNs
• Evo-Devo: use of GRNs

- Complexification of the shape by introducing a developmental 
process
‣ Probability of division for each cell
‣ Intercellular adhesion (mass/spring system) 

to aggregate the cells

- Development and control of the morphology
‣ Morphology produce by an Evo-Devo process
‣ Once stable, the morphology is moved by a GRN in a fluidic 

environment
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Final shape

Motion

(Doursat 2009)

(Joachimczak et al. 2012)

Application of GRNs
• Evo-Devo: Generating artificial creatures

- GRN used to regulate the cell’s life cycle
- Optimization fo the GRN to produce  

creatures adapted to their environment
- Functional differentiation of the cells
- Simulated physics and chemistry in the  

environment

36

Chemical environmentPhysical environment

Cell specialization

367



Application of GRNs
• Evo-Devo: Generating artificial creatures

- In each cell, the GRN manages:
‣ High-level actions (division, apoptosis, quiescence, differentiation)
‣ The chemical production of the cells (morphogens, nutrients, energy)

- For regulation, GRN uses:
‣ information on the cell’s internal state (energy, stock of nutrient, etc.)
‣ information on its local environment local (morphogens)

- Optimization of GRN to generate complex multicellular organisms
‣ Possible optimization objectives (fitness):
‣ Generate colored shapes (color =  differentiation state)
‣ Generate user-defined functions (harvest a protein, move to a point, etc.)
‣ SURVIVE

- What does it mean to survive?
‣ Have at least 1 living cell in the organism 

=> being able to adapt to environmental conditions 
=> the complexity is not in the fitness function anymore but move to the 
definition of the environment

37

Application of GRNs
• Evo-Devo: Generating artificial creatures

- Example:
‣ 2 types of cells:
‣ Nutritive => Extract energy from 

the environment
‣ Defensive => Resist to external  

agressions

- Environment :
‣ Contains nutrients
‣ Contains nocive particules that 

kills nutritive cells

- Fitness:
‣ Survive == simulation duration 

38

Application of GRNs
• Evo-Devo: Generating artificial creatures

- At the beginning of the evolution, very simple strategy:

- Then, progressive complexification

39

Application of GRNs
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• Evo-Devo: Generating artificial creatures
- Finally, motion emerges (with no cell migration!)

(Disset et al. 2014)
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Application of GRNs
• Simulated car racing

- Direct connection of the GRN to a virtual  
car

- Use of TORCS for the car physics
- Available sensors:
‣ 18 track sensors
‣ 3 speed sensors
‣ 8 state sensors (rpm, position, time, etc.)

- Available actuators:
‣ Wheel angle ∈ [-1, 1]
‣ Throttle ∈ [0, 1]
‣ Break ∈ [0, 1]

- Only keep the necessary sensors

41

• Simulated car racing

• Inputs must be normalized
• Final actuator values given by:

- Wheel angle = (r-l)/(r+l)
- Throttle = max(0, (t-b)/(t+b))
- Break = max(0, (b-t)/(b+t))

Application of GRNs
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• Simulated car racing
- How to teach the GRN to drive? What is a good fitness?
- Solution: incremental evolution

1. Teach to drive on 1 simple track
2. Generalize the behavior on other tracks
3. Polish the behavior of the network

Application of GRNs

43(Sanchez et al. 2014)

• Features of system
- Easy to use
- Adaptative to the track and its surface
- Robust resistant to the noise

• Example of robustness
- Use of the controller trained in the game to drive a robot 

Application of GRNs
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Application of GRNs
• Regulating high-level behaviors

- Example: protect a target against enemies
‣ Decentralized control of a group of defenders
‣ Multiple threats incoming from the environment

• Use of a GRN to regulate high level behavior such as:
- Defence
- Attack
- Scatter
- Regroup

45

Application of GRNs
• Regulating high-level behaviors

- Hybrid and modular architecture
- Behaviors generate direction vector
- The GRN aggregate the vectors to produce the final move

46

Application of GRNs
• 4 strategies emerge:

47

WingLine

Minimal Grid

(Delecluse 2013)

• Producing ANN with GRNs

- Transform a GRN into a Spiking Neural Network
‣ 1 regulatory unit = 1 neuron
‣ protein concentration = neuron membran potential
‣ regulatory unit connections = synapses

48

(Wróbel 2014)

Application of GRNs
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Abstract— GReaNs (which stands for Genetic Regulatory 
evolving artificial Networks) is an artificial life software platform 
that has previously been used for modeling of evolution of gene 
regulatory networks able to process signals, control animats and 
direct multicellular development in two and three dimensions. 
The structure of the network in GReaNs is encoded in a linear 
genome, without imposing any restrictions on the size of the 
genome or the size of the network. Each node in the regulatory 
network in GReaNs has been considered thus far to be an 
artificial analog of a biological transcriptional unit. However, 
they could equally well be seen as artificial neurons. In this 
extended abstract we present an extension to the GReaNs 
platform in which the linear genome encodes a spiking neural 
network which consists of leaky integrate and fire neurons with a 
fixed threshold, or adaptive-exponential integrate and fire 
neurons. As a proof-of-principle, we report the evolution of 
spiking networks that match a desired spiking pattern. 

Keywords-gene regulatory networks; spiking neural networks; 
leaky integrate and fire neurons; adaptive-exponential neurons; 
genetic algorithm 

 

I.  INTRODUCTION 

The GReaNs (which stands for Gene Regulatory evolving 
artificial Networks) platform has been previously used to 
evolve regulatory networks which controlled multicellular 
development in three dimensions [1, 2], and to investigate the 
ability of a network to process signals [3], to control foraging 
of animats built from one cell [4] and the locomotion of 
multicellular animats in two dimensions [5].  

 
Figure 1.  A schematic structure of a genetic element (left) and for the 

encoding of regulatory units in the genome in GReaNs (right). See text for 
details. 

In these previous papers, nodes in the regulatory network 
were an abstraction of transcriptional units (co-regulated genes) 
in biology (Fig. 1), or more generally: units of the regulation of 
gene expression. Nodes in GReaNs, or regulatory units, are 
encoded in the linear genome in GReaNs (Fig. 1) as series of 
genetic elements of type P (for promoters) followed by a series 
of elements of type G (for genes). G elements code for 
products, which change concentration in each simulation step. 
All products in the same unit have the same concentration. The 
fact that products can have affinity to promoters allows for 
regulation. In addition, the genome has to have elements which 
allow for external inputs and outputs of the network; these 
elements have type E. Each genetic element is by itself a series 
of numbers: an integer specifying the type, a bit specifying the 
sign (signs determine if a particular product-promoter 
interaction is inhibitory or excitatory), and real numbers 
(coordinates) that specify a point in space (product-promoter 
affinity is a function of the Euclidean distance between the 
corresponding points).  Because the connection is always from 
a product-coding gene to the promoter, the connections 
between regulatory units are asymmetric, and the net 
regulatory effect of one unit on the other results from the 
combined effect of all products coded in the former on all 
promoters of the latter. An important feature of the encoding 
used in GReaNs is that the topology of the network is not 
restricted, and that the size of the genome (and thus of the 
network) is not limited in any way.  

In previous papers [1-5] each regulatory unit in GReaNs was   
considered to be an artificial analog of a node in a biological 
gene regulatory network. But they could equally well be seen 
as computationally equivalent nodes in a neural network. 
Indeed, the recurrent networks explored previously in GReaNs  
can be seen as networks of discretely or continuously variable 
artificial neurons (cf. [6,7]). 
Our long term goal is to build a system in which evolving 
genomes will encode a multicellular body and a multicellular 
brain (consisting of spiking neurons). The first step towards 
this goal is reported in this extended abstract: the introduction 
of two spiking neuron models to GReaNs, the leaky integrate 

promoters 
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• Producing ANN with GRNs
- Usage example: reproducing spikes

49

(Wróbel 2012)

Application of GRNs Application of GRNs
• GRN programming

- Map network into program

50

Original Simplification

(Lopes and Costa 2012)
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• GRN programming
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Even n-bit Parity

(Lopes 2015)

Fibonacci Series

Application of GRNs

8. RESULTS 
 
In this section we will first describe the results obtained on the problems with recursion, 
providing a formal demonstration of the execution of the typical evolved program (Section 8.1). 
Then the results for the multiple output problems will be presented and briefly discussed in 
Section 8.2. 
 
8.1 PROBLEMS WITH RECURSION 
 
The n-bit parity, the Fibonacci sequence, the squares sequence, and the modified factorial have 
in common that the fitness cases used during the evolutionary runs are a small subset of those 
used to assess the generalisation abilities of the evolved solutions. The task is to extrapolate 
some function from a reduced set of known cases (either the first terms of a sequence or the 
results for some points of a function). The subset of the fitness cases used during the 
evolutionary run is usually an easy task, with most runs taking only few thousand evaluations to 
reach optimal individuals and a success rate close to 100% in every problem (Table 9). Actually, 
in all of the problems there were runs in which a fit individual was found on the initial - 
randomly generated  population (MinEval). This demonstrates the adequacy of the representation 
to map artificial gene regulatory networks into program graphs in these problem domains. 
The exception was the modified factorial problem, showing that there are scalability issues. The 
success rate achieved (percentage of runs that solved the problem for the first ten elements) 
decreased drastically when ! = 3. The results of the first two levels of the step are in line with 
those obtained in the squares sequence (similar to ! = 1) or the Fibonacci sequence (similar to 
! = 2), but finding solutions that are able to keep track of the values from three iterations earlier 
was more difficult.  
 
Table 9: Summary of the results for the problems with recursion: Fibonacci sequence, n-bit parity, 
modified factorial (k=2,s={1,2,3}), and the squares sequence (with full and reduced function set). The 
success rate, the average, standard deviation, and the minimum number of evaluations, as well as the 
average and minimum number of functions are presented, respectively. 
 

 Problem S.R. 
(%) AvgEval StdDev MinEval AvgFun MinFun G.R. 

(%) 
 nbitparity 100 10871 34290 100 5.4 4 91 
squares 100 16478 45725 100 4.8 4 99 
Fibonacci 100 37009 65622 100 5.4 4 100 
modfactorial-k2s1 100 3087 3890 100 5.3 4 78 
modfactorial-k2s2 100 22065 34791 100 5.1 4 100 
modfactorial-k2s3 5 567500 274475 220600 7.4 7 100 

  
  
An interesting property of the evolved solutions is the reduced number of functions in the 
programs (AvgFun and MinFun). Although there is evidence of bloat even in the graphs where 
the number of functions was minimal, it is negligible when compared to typical GP. One can see 

Gene Regulation - Pros and Cons
• Pros:

- Plug-and-play
- Temporal aspect: Many tasks are dynamic
- Natively continuous
- Many different behaviors possible
- Close to natural systems

• Cons:
- Can be difficult to evolve
- Black-box system
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