
1

Tutorial:	Theory	for	Non-Theoreticians

Benjamin	Doerr
Ecole Polytechnique
Palaiseau,	France

lastname@lix.polytechnique.fr

http://gecco-2017.sigevo.org/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s).
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). 978-1-4503-4939-
0/17/07...$15.00
http://dx.doi.org/10.1145/3067695.3067713

Benjamin Doerr: Theory for Non-Theoreticians

Link to the Latest Version
§ You can always find the latest version online at

http://people.mpi-inf.mpg.de/~doerr/gecco17_tutorial_theory.pdf

2

Benjamin Doerr: Theory for Non-Theoreticians

Instructor: Benjamin Doerr
§ Benjamin Doerr is a full professor at the French École Polytechnique.

§ He received his diploma (1998), PhD (2000) and habilitation (2005) in
mathematics from Kiel University. His research area is the theory both of
problem-specific algorithms and of randomized search heuristics like
evolutionary algorithms. Major contributions to the latter include runtime
analyses for evolutionary algorithms and ant colony optimizers, as well
as the further development of the drift analysis method, in particular,
multiplicative and adaptive drift. In the young area of black-box
complexity, he proved several of the current best bounds.

§ Together with Frank Neumann and Ingo Wegener, Benjamin Doerr
founded the theory track at GECCO and served as its co-chair 2007-
2009 and 2014. He is a member of the editorial boards of several
journals, among them Artificial Intelligence, Evolutionary Computation,
Natural Computing, and Theoretical Computer Science. Together with
Anne Auger, he edited the book Theory of Randomized Search
Heuristics.

3 Benjamin Doerr: Theory for Non-Theoreticians

This Tutorial: A Real Introduction to Theory
§ GECCO, CEC, PPSN always had a good number of theory tutorials

§ They did a great job in educating the theory community

§ However, not much was offered for those attendees which

§ have little experience with theory

§ but want to understand what the theory people are doing (and why)

§ This is the target audience of this tutorial. We try to answer those
questions which come before the theory tutorials

4

389

Benjamin Doerr: Theory for Non-Theoreticians

History/Evolution of This Tutorial:
§ GECCO 2013: Anne Auger and me proposed a real beginner’s theory

tutorial, but is was not accepted.

§ PPSN 2014: Anne and me did a real beginner’s theory tutorial
§ covering both discrete and continuous optimization

§ GECCO 2015: The beginner’s tutorial (proposed by Carola and me) was
not accepted

§ GECCO 2016 & CEC 2016: Carola and me did the beginner’s tutorial
§ only covering discrete search spaces

§ PPSN 2016: I did a beginner’s tutorial

§ This tutorial:
§ 20% overlap with PPSN 2014
§ 60% overlap with GECCO/CEC 2016
§ 85% overlap with PPSN 2016

5 Benjamin Doerr: Theory for Non-Theoreticians

Questions Answered in This Tutorial
§ What is theory in evolutionary computation (EC)?

§ Why do theory? How does it help us understanding EC?

§ How do I read and interpret a theory result?

§ What type of results can I expect from theory (and which not)?

§ What are current “hot topics” in the theory of EC?

6

Benjamin Doerr: Theory for Non-Theoreticians

Focus: EAs with Discrete Search Spaces
§ We try to answer these questions independent of a particular subarea of

theory

§ However, to not overload you with definitions and notation, we focus on
evolutionary algorithms on discrete search spaces

§ Hence we intentionally omit examples from

§ genetic programming, estimation of distribution algorithms, ant colony
optimizers, swarm intelligence, …

§ all subareas of continuous optimization

§ As said, this is for teaching purposes only. There is strong theory
research in all these areas. All answers this tutorial give are equally valid
for these areas

7 Benjamin Doerr: Theory for Non-Theoreticians

A Final Word Before We Start
§ If I’m saying things you don’t understand or if you want to know more

than what I had planned to discuss, don’t be shy to ask questions at any
time!

§ This is “your” tutorial and I want it to be as useful for you as possible

§ This is still a young tutorial. To further improve it, your feedback (positive
and negative) is greatly appreciated!

§ à So talk to me after the tutorial, during the coffee breaks, social
event, late-night beer drinking, … or send me an email

8

390

Benjamin Doerr: Theory for Non-Theoreticians

Outline of the Tutorial
§ Part I: What We Mean by Theory of EC
§ Part II: A Guided Walk Through a Famous Theory Result

§ an illustrative example to convey the main messages of this tutorial
§ Part III: How Theory Has Contributed to a Better Understanding of EAs

§ 3 examples showing how theory can have an impact
§ Part IV: Current Hot Topics in the Theory of EAs

§ in particular: dynamic/adaptive parameter choices
§ Part V: Concluding Remarks

§ Appendix: glossary, references

9 Benjamin Doerr: Theory for Non-Theoreticians

Part I:
What We Mean by

“Theory of EC”

10

Benjamin Doerr: Theory for Non-Theoreticians

What Do We Mean With Theory?
§ Definition (for this tutorial):

By theory, we mean results proven with mathematical rigor

§ Mathematical rigor:

§ make precise the evolutionary algorithm (EA) you regard

§ make precise the problem you try to solve with the EA

§ make precise a statement on the performance of the EA solving this
problem

§ prove this statement

§ Example:
Theorem: The (1+1) EA finds the optimum of the OneMax test function
𝑓: {0,1}(→ ℝ; 𝑥 ↦ ∑ 𝑥.(

./0 in an expected number of at most 𝑒𝑛	ln	(𝑛)
iterations.
Proof: blah, blah, …

11 Benjamin Doerr: Theory for Non-Theoreticians

Other Notions of Theory
§ Theory: Mathematically proven results

§ Experimentally guided theory: Set up an artificial experiment to
experimentally analyze a particular question

§ example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

§ Descriptive theory: Try to describe/measure/quantify observations

§ example: some parts of landscape analysis

§ “Theories”: Unproven claims that (mis-)guide our thinking

§ example: building block hypothesis

12

391

Benjamin Doerr: Theory for Non-Theoreticians

Other Notions of Theory
§ Theory: Mathematically proven results

============<in this tutorial, we focus on the above>============
§ Experimentally guided theory: Set up an artificial experiment to

experimentally analyze a particular question

§ example: add a neutrality bit to two classic test functions, run a GA on
these, and derive insight from the outcomes of the experiments

§ Descriptive theory: Try to describe/measure/quantify observations

§ example: some parts of landscape analysis

§ “Theories”: Unproven claims that (mis-)guide our thinking
§ example: building block hypothesis

13 Benjamin Doerr: Theory for Non-Theoreticians

Why Do Theory? Because of Results
§ Absolute guarantee that the result is correct

§ your can be sure

§ reviewers can check truly the correctness of results
§ readers can trust reviewers or, with moderate maths skills, check the

correctness themselves

§ Many results can only be obtained by theory; e.g., because you make a
statement on a very large or even infinite set
§ all bit-strings of length 𝑛,

§ all TSP instances on 𝑛 vertices,
§ all input sizes 𝑛 ∈ ℕ,

§ all possible algorithms for a problem

14

Benjamin Doerr: Theory for Non-Theoreticians

Why Do Theory? Because of the Approach
§ A proof (automatically) gives insight in

§ how things work (à working principles of EC)

§ why the result is as it is

§ Self-correcting/self-guiding effect of proving: when proving a result, you
are automatically pointed to the questions that need more thought

§ Trigger for new ideas

§ clarifying nature of mathematics

§ playful nature of mathematicians

15 Benjamin Doerr: Theory for Non-Theoreticians

The Price for All This
All this has a certain a price…
Possible drawbacks of theory results include:

§ Restricted scope: So far, mostly simple algorithms could be analyzed for
simple optimization problems

§ Less precise results: Constants are not tight, or not explicit as in
“𝑂 𝑛; ” = “less than 𝑐𝑛; for some unspecified constant 𝑐”

§ Less specific results: You get a weaker guarantee for all problem
instances instead of a stronger one for the instances that show up in your
real-world application

§ Theory results can be very difficult to obtain: The proof might be short
and easy to read, but finding it took long hours

§ Usually, there is no generic way to the solution, but you need a
completely new, clever idea

16

392

Benjamin Doerr: Theory for Non-Theoreticians

Theory and Experiments:
Complementary Results

17

EXPERIMENTS .
§ only a finite number of instances

of bounded size
à have to see how

representative this is
§ only tells you numbers
§ real-world instances

§ everything you can implement
§ exact numbers
§ depends on implementation
§ can be cheap (well, depends…)

THEORY .
§ cover all problem instances of

arbitrary sizes
à guarantee!

§ proof tells you the reason
§ only models for real-world

instances (realistic?)

§ limited scope, e.g., (1+1) EA
§ limited precision, e.g., 𝑂 𝑛;

§ implementation independent
§ finding proofs can be difficult

à Ideal: Combine theory and experiments. Difficulty: Get good theory people
and good experimental people to talk to each other…

Benjamin Doerr: Theory for Non-Theoreticians

Part II:
A Guided Walk

Through a Famous
Theory Result

18

Benjamin Doerr: Theory for Non-Theoreticians

Outline for This Part
§ We use a simple but famous theory result

§ as an example for a non-trivial result

§ to show how to read a theory result

§ to explain the meaning of such a theoretical statement

§ to discuss typical shortcomings of theory results

19 Benjamin Doerr: Theory for Non-Theoreticians

A Famous Result
Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

𝑓: 0,1 (→ ℝ, 𝑥0,… , 𝑥(↦?𝑤.𝑥.

(

./0

, 𝑤0,… ,𝑤(∈ ℝ,

in an expected number of 𝑂(𝑛 log𝑛) iterations.

Reference:
[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1–2):51–81,
2002.

-- famous paper (500+ citations, maybe the most-cited pure EA theory paper)

-- famous problem (20+ papers working on exactly this problem, many very
useful methods were developed in trying to solve this problem)

20

393

Benjamin Doerr: Theory for Non-Theoreticians

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

𝑓: 0,1 (→ ℝ, 𝑥0, … , 𝑥(↦?𝑤.𝑥.
(

./0
, 𝑤0, … , 𝑤(∈ ℝ,

in an expected number of 𝑂(𝑛 log 𝑛) iterations.

(1+1) evolutionary algorithm to maximize 𝒇: 𝟎, 𝟏 𝒏 → ℝ:
1. choose 𝑥 ∈ 0,1 (uniformly at random
2. while not terminate do
3. generate 𝑦 from 𝑥 by flipping each bit independently

with probability 1/𝑛 (“standard-bit mutation”)
4. if 𝑓 𝑦 ≥ 𝑓 𝑥 then 𝑥 ≔ 𝑦
5. output 𝑥

Reading This Result

21

at most 𝐶𝑛 ln 𝑛 for some
unspecified constant 𝐶

a hidden all-quantifier: we claim
the result for all 𝑤0, … , 𝑤(∈ ℝ

performance measure: number of iterations or
fitness evaluations, but not runtime in seconds

A mathematically
proven result

should be made
precise in the paper to
avoid any ambiguity

Benjamin Doerr: Theory for Non-Theoreticians

What is Cool About This Result?
§ Gives a proven performance guarantee
§ General: a statement for all linear functions in all dimensions 𝑛

§ Non-trivial
§ Surprising

§ Provides insight in how EAs work

Theorem: The (1+1) evolutionary algorithm finds the maximum of any
linear function

𝑓: 0,1 (→ ℝ, 𝑥0,… , 𝑥(↦?𝑤.𝑥.
(

./0
, 𝑤0,… ,𝑤(∈ ℝ,

in an expected number of 𝑂(𝑛 log𝑛) iterations.

22

à more on these 3 items
on the next slides

Benjamin Doerr: Theory for Non-Theoreticians

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

23 Benjamin Doerr: Theory for Non-Theoreticians

Non-Trivial: Hard to Prove & Hard to Explain
Why it Should be True

§ Hard to prove
§ 7 pages complicated maths proof in [DJW02]
§ we can do it in one page now, but only because we developed deep

analysis techniques (artificial fitness functions, drift analysis)

§ No “easy” explanation
§ monotonicity is not enough: if the 𝑤. are all positive, then “flipping a 0

to a 1 always increases the fitness” (monotonicity).
§ easy explanation that is not true: monotonic functions are easy to

optimize for an EA – disproved in [DJS+13]
§ separability is not enough

§ a linear function can be written as a sum of functions 𝑓. such that
the 𝑓. depend on disjoint sets of bits

§ not true that the optimization time of such a sum is not much more
than the worst optimization time of the summands (because the
independent 𝑓. are optimized in parallel) – disproved in [DSW13]

24

394

Benjamin Doerr: Theory for Non-Theoreticians

Surprising: Same Runtime For Very
Different Fitness Landscapes

§ Example 1: OneMax, the function counting the number of 1s in a string,
OM: 0,1 (→ ℝ, (𝑥0, … , 𝑥() ↦ ∑ 𝑥.(

./0

§ unique global maximum at (1, … , 1)

§ perfect fitness distance correlation: if a search point has higher
fitness, then it is closer to the global optimum

§ Example 2: BinaryValue (BinVal or BV for short), the function mapping a
bit-string to the number it represents in binary
	BV: 0,1 (→ ℝ, (𝑥0, … , 𝑥() ↦ ∑ 2(Q.𝑥.(

./0

§ unique global maximum at 1, … , 1

§ Very low fitness-distance correlation. Example:
§ BV 10…0 = 2(Q0, distance to optimum is 𝑛 − 1

§ BV 01…1 = 2(Q0 − 1, distance to opt. is 1

25 Benjamin Doerr: Theory for Non-Theoreticians

Insight in Working Principles
§ Insight from the result:

§ Even if there is a low fitness-distance correlation (as is the case for
the BinVal function), EAs can be very efficient optimizers

§ Insight from the proof:

§ The Hamming distance 𝐻(𝑥, 𝑥∗) of 𝑥 to the optimum 𝑥∗ measures
very well the quality of the search point 𝑥:

§ If the current search point of the (1+1) EA is 𝑥, then the optimum is
found within an expected number 𝐸[𝑇Y] of iterations that satisfies

𝑒𝑛 ln 𝐻(𝑥, 𝑥∗) − 𝑂 𝑛 ≤ 𝐸 𝑇Y ≤ 4𝑒𝑛 ln 2𝑒𝐻 𝑥, 𝑥∗ 	

independent of 𝑓

26

Benjamin Doerr: Theory for Non-Theoreticians

A Glimpse on a Modern Proof
§ Theorem [DJW12]: For all problem sizes 𝑛 and all linear functions 𝑓: 0,1 (→ ℝ

with 𝑓 𝑥 = 𝑤0𝑥0 + ⋯+ 𝑤(𝑥(the (1+1) EA finds the optimum of 𝑓 in an expected
number of at most 4𝑒𝑛 ln(2𝑒𝑛) iterations.

§ 1st proof idea: Without loss, we can assume that 𝑤0 ≥ 𝑤; ≥ ⋯ ≥ 𝑤(> 0

§ 2nd proof idea: Regard an artificial fitness measure!

§ Define 𝑓 𝑥 = ∑ 2 − .Q0
(

	𝑥.(
./0 “artificial weights from 1 + 0

(
to 2

§ Key lemma: Consider the (1+1) EA optimizing the original 𝑓. Assume that
some iteration starts with the search point 𝑥 and ends with the random
search point 𝑥′. Then

𝐸 𝑓(𝑥∗) 	− 𝑓 𝑥b ≤ 1 −
1
4𝑒𝑛

𝑓 𝑥∗ − 𝑓 𝑥

expected artificial fitness distance reduces by a factor of 1 − 0
cd(

§ 3rd proof idea: Multiplicative drift theorem translates this expected progress w.r.t.
the artificial fitness into a runtime bound
§ roughly: the expected runtime is at most the number of iterations needed to

get the expected artificial fitness distance below one.

27 Benjamin Doerr: Theory for Non-Theoreticians

Multiplicative Drift Theorem
§ Theorem [DJW12]: Let 𝑋f, 𝑋0, 𝑋;, …	 be a sequence of random variables taking

values in the set 0 ∪ 1,∞ . Let 𝛿 > 0. Assume that for all 𝑡 ∈ ℕ, we have
𝐸 𝑋kl0 ≤ 1 − 𝛿 𝐸 𝑋k .

Let 𝑇 ≔ min 𝑡 ∈ ℕ	 𝑋k = 0}. Then 𝐸 𝑇 ≤
1 + ln𝑋f

𝛿
.

§ On the previous slide, this theorem was used with
§ 𝛿 = 1/4𝑒𝑛
§ 𝑋k = 𝑓 𝑥∗ − 𝑓 𝑥(k)

§ and the estimate 𝑋f ≤ 2𝑛.

§ Bibliographical notes: Artificial fitness functions very similar to this 𝑓 were
already used in [DJW02] (conference version [DJW98]). Drift analysis
(“translating progress into runtime”) was introduced to the field in [HY01] to give a
simpler proof of the [DJW02] result. A different approach was given by [Jäg08].
The multiplicative drift theorem [DJW12] (conference version [DJW10]) proves
the [DJW02] result in one page and is one of the most-used drift theorems today.

28

“Drift analysis”:
Translate expected

progress into
expected (run-)time

395

Benjamin Doerr: Theory for Non-Theoreticians

What is Uncool About
The Linear Functions Result?

§ An unrealistically simple EA: the (1+1) EA
§ Linear functions are artificial test function only

§ Not a precise result, but only 𝑂(𝑛 log 𝑛) in [DJW02] or a most likely
significantly too large constant in the [DJW12] result just shown

à We discuss these points on the following slides

Theorem: The (1+1) evolutionary algorithm finds the maximum of any linear
function

𝑓: 0,1 (→ ℝ, 𝑥0, … , 𝑥(↦?𝑤.𝑥.
(

./0
, 𝑤0, … , 𝑤(∈ ℝ,

in an expected number of 𝑂(𝑛 log 𝑛) iterations.

29 Benjamin Doerr: Theory for Non-Theoreticians

Maybe Uncool: Only the Simple (1+1) EA
§ This was, at that time (2002), the absolute maximum that was possible

when asking for a proven result.
§ Today, we know (a little bit) more. E.g., the (1+ 𝝀) EA optimizes any

linear function in time (= number of fitness evaluations)

𝑂 𝑛 log𝑛 + 𝜆𝑛 .

This bound is sharp for BinVal, but not for OneMax, where the
optimization time is

𝑂 𝑛 log𝑛 + 𝜆𝑛	 rst rst urst u .

à Not all linear functions have the same optimization time! [DK15]
§ We are optimistic that the theory community will make progress towards

more complicated EAs

30

Benjamin Doerr: Theory for Non-Theoreticians

Maybe Uncool: Only Linear Functions
§ Again, this was the starting point. Today, we know how the (1+1) EA (and

some other algorithms) compute
§ Eulerian cycles [Neu04,DHN06,DKS07,DJ07]
§ shortest paths [STW04,DHK07,BBD+09]
§ minimum spanning trees [NW07,DJ10,Wit14]
§ and many other “easy” optimization problems

§ We also have some results on approximate solutions for NP-complete
problems like partition [Wit05], vertex cover [FHH+09,OHY09], maximum
cliques [Sto06]

§ We are optimistic that we will enlarge the set of problems we understand.
However, like in many fields, it is also clear that “theory will always be
behind”; that is, it will take quite some time until theoretical analyses
become available for typical algorithms used in practice and realistic real-
world problems

31 Benjamin Doerr: Theory for Non-Theoreticians

Maybe Uncool: 𝑶(𝒏	𝐥𝐨𝐠	𝒏), Large Constants
§ Having only asymptotic results is a typical price for proven results (also in the

classic algorithms field).

§ There is the general experience that often a proven “𝑂(𝑛 log 𝑛)” in fact means
“roughly 𝑐𝑛 log 𝑛” for a small constant 𝑐, which can, e.g., be obtained from
experiments

§ We know more now [Wit13]: The runtime of the (1+1) EA on any linear function is
𝑒𝑛 ln 𝑛 + 𝑂(𝑛), that is, at most 𝑒𝑛 ln 𝑛 + 𝐶𝑛 for some constant 𝐶

§ still an asymptotic result, but the asymptotics are only in a lower order term

§ [Wit13] also has a non-asymptotic result, but it is hard to digest

32

396

Benjamin Doerr: Theory for Non-Theoreticians

Summary “Guided Tour”
§ We have seen one of the most influential theory results: The (1+1) EA

optimizes any linear function in 𝑂(𝑛 log 𝑛) iterations

§ We have seen how to read and understand such a result

§ We have seen why this result is important

§ non-trivial and surprising
§ gives insights in how EAs work

§ spurred the development of many important tools (e.g., drift analysis)

§ We have discussed strengths and limitations of theory results

33 Benjamin Doerr: Theory for Non-Theoreticians

Part III:
How Theory Can
Contribute to a

Better Understanding
of EAs

34

Benjamin Doerr: Theory for Non-Theoreticians

Outline for This Part
3 ways how theory can help understanding and improving EAs

1. Debunk misconceptions

2. Help choosing the right parameters, representations, operators, and
algorithms

3. Invent new representations, operators, and algorithms

35 Benjamin Doerr: Theory for Non-Theoreticians

Contribution 1: Debunk Misconceptions
§ When working with EA, it is easy to conjecture some general rule from

observations, but (without theory) it is hard to distinguish between “we
often observe” and “it is true that”

§ Reason: it is often hard to falsify a conjecture experimentally

§ the conjecture might be true “often enough” or for the problems we
just have in mind, but not in general

§ Danger: misconceptions prevail in the EA community and mislead the
future development of the field

§ 2 (light) examples on the following slides

36

397

Benjamin Doerr: Theory for Non-Theoreticians

Misconception: Functions Without Local
Optima are Easy to Optimize

§ A function 𝑓: 0,1 (→ ℝ	has no local optima if each non-optimal search
point has a neighbor with better fitness
§ if 𝑓(𝑥) is not maximal, then by flipping a single bit of 𝑥 you can get a

better solution
§ Misconception: Such functions are easy to optimize…

§ because already a simple hill-climber flipping single bits (randomized
local search) does the job

§ Truth: There are functions 𝑓: 0,1 (→ ℝ without local optima where all
reasonable EAs with high probability need time exponential in 𝑛 to find
even a reasonably good solution [HGD94,Rud97,DJW98]

§ reason: yes, it is easy to find a better neighbor if you’re not optimal
yet, but you may need to do this an exponential number of times
because all improving paths to the optimum are that long

37 Benjamin Doerr: Theory for Non-Theoreticians

Misconception: Monotonic Functions are
Easy to Optimize for EAs

§ A function 𝑓: 0,1 (→ ℝ	is monotonically strictly increasing if the fitness
increases whenever you flip a 0-bit to 1
§ special case of “no local optima” where each neighbor with more ones

is better

§ Misconception: Such functions are easy to optimize for standard EAs…
§ because already a simple hill-climber flipping single bits (randomized

local search) does the job in time 𝑂(𝑛 log𝑛)

§ [DJS+13]: There is a monotonically strictly increasing function such that
with high probability the (1+1) EA with mutation probability 16/𝑛 needs
exponential time to find the optimum

§ very different from linear functions with positive weights: 𝑂 𝑛 log𝑛 time
38

Benjamin Doerr: Theory for Non-Theoreticians

Summary Misconceptions
§ Intuitive reasoning or experimental observations can lead to wrong beliefs.

§ It is hard to falsify them experimentally, because

§ counter-examples may be rare (so random search does not find them)

§ counter-examples may have an unexpected structure

§ There is nothing wrong with keeping these beliefs as “rules of thumb”, but
it is important to distinguish between what is a rule of thumb and what is a
proven fact

§ Theory is the right tool for this!

39 Benjamin Doerr: Theory for Non-Theoreticians

Contribution 2: Help Designing EAs
§ When designing an EA, you have to decide between a huge number of

design choices: the basic algorithm, the operators and representations,
and the parameter settings.

§ Theory can help you with deep and reliable analyses of scenarios similar
to yours

§ The question “what is a similar scenario” remains, but you have the
same difficulty when looking for advice from experimental research

§ 2 examples:

§ fitness-proportionate selection

§ edge-based representations for optimization problems in graphs

40

398

Benjamin Doerr: Theory for Non-Theoreticians

Designing EAs:
Fitness-Proportionate Selection

§ Fitness-proportionate selection has been criticized (e.g., because it is not
invariant under re-scaling the fitness), but it is still used a lot.

§ Theorem [OW15]: If you use

§ the Simple GA as proposed by Goldberg [Gol89] (fitness-proportionate
selection, comma selection)

§ to optimize the OneMax test function 𝑓: 0,1 (→ ℝ; 𝑥 ↦ 𝑥0 + ⋯+ 𝑥(
§ with a population size 𝑛f.;c{{ or less

then with high probability the GA in a polynomial number of iterations
does not create any individual that is 1% better than a random individual

§ Interpretation: Most likely, fitness-proportionate selection and comma
selection together make sense only in rare circumstances

§ more difficulties with fitness-proportionate selection: [HJKN08, NOW09]

41 Benjamin Doerr: Theory for Non-Theoreticians

Designing EAs: Representations
§ Several theoretical works on shortest path problems [STW04, DHK07,

BBD+09], all use a vertex-based representation:
§ each vertex points to its predecessor in the path

§ mutation: rewire a random vertex to a random neighbor
§ [DJ10]: How about an edge-based representation?

§ individuals are set of edges (forming reasonable paths)

§ mutation: add a random edge (and delete the one made obsolete)

§ Result: All previous algorithms become faster by a factor of ≈ } ~

|�|

§ [JOZ13]: edge-based representation also preferable for vertex cover

§ Interpretation: While there is no guarantee for success, it may be useful
to think of an edge-based representation for graph-algorithmic problems

42

typical theory-
driven curiosity

Benjamin Doerr: Theory for Non-Theoreticians

Contribution 3: Invent New Operators
and Algorithms

§ Theory can also, both via the deep understanding gained from proofs
and by “theory-driven curiosity” invent new operators and algorithms.

§ Example 1: What is the right way to do mutation?

§ A thorough analysis how EAs optimize jump functions suggests that
we should use mutation operators such that the Hamming distance
between parent and offspring follows a heavy-tailed distribution (and
not a binomial one)
à this GECCO, best-paper nominee in the GA track

§ Example 2: The (1 + 𝜆, 𝜆) GA

§ Invent an algorithm that truly profits also from inferior search points

43 Benjamin Doerr: Theory for Non-Theoreticians

Example 1: Invent A New Mutation Operator
§ Short storyline: The recommendation to flip bits independently with

probability 1 𝑛⁄ might be overfitted to ONEMAX or other unimodal
functions

§ Longer storyline of this (longer) part:

§ 4 young researchers ask themselves what is the right mutation rate to
optimize jump functions (which are not unimodal)

§ surprise: for jump size 𝑚, the right mutation rate is 𝑚 𝑛⁄ and this
speeds-up things by a factor of 𝑚 𝑒⁄ �

§ but: missing this optimal mutation rate by a factor of (1 ± 𝜀) increases
the runtime again by a factor of at least 0

�
	𝑒��~ �⁄

§ reason: With standard-bit mutation, the Hamming distance
between parent and offspring is strongly concentrated

§ solution: design a mutation operator where this Hamming distance
follows a power-law (not strongly concentrated)

44

399

Benjamin Doerr: Theory for Non-Theoreticians

General Belief on Mutation
§ Disclaimer: In this part, we only deal with bit-string representations, that

is, the search space is 0,1 (for some 𝑛.

§ General belief: A good way of doing mutation is standard-bit mutation,
that is, flipping each bit independently with some probability 𝑝 (“mut. rate”)

§ global: from any parent you can generate any offspring (possibly with
very small probability) à algorithms cannot get stuck forever in a local
optimum (“convergence”)

§ Recommendation: Use a small mutation rate like 1 𝑛⁄
§ nature-inspired

§ reduces the destructive effect of mutation: since mutation is
undirected, in average it moves you towards search points with
Hamming distance 𝑛 2⁄ from the optimum

45 Benjamin Doerr: Theory for Non-Theoreticians

Proven Results for Mutation
§ The mutation rate of 1 𝑛⁄ is the one that maximizes the probability to flip a

single bit à it minimizes the waiting time for “finding the last bit”, that is,
flipping the missing bit when one is at a Hamming neighbor of the
optimum.

§ The optimal mutation rate for the (1+1) EA optimizing OneMax or linear
functions [Wit13] is 0l�(0)(.

§ When 𝜆 ≤ ln𝑛, then the optimal mutation rate for the (1+λ) EA optimizing
OneMax is 0l�(0)([GW15].

§ The optimal mutation rate for the (1+1) EA optimizing the LeadingOnes
test function is 0.�{…l�(0)([BDN10].

46

Benjamin Doerr: Theory for Non-Theoreticians

Object of This Study: Jump Functions
Jump functions [DJW02]:

§ 𝐽𝑈𝑀𝑃�,(: fitness of an 𝑛-bit string 𝑥 is the number 𝑥 0 of ones, except if
𝑥 0 ∈ 𝑛 − 𝑚 + 1,… , 𝑛 − 1 , then the fitness is the number of zeroes.

§ Observations:

§ All 𝑥 with 𝑥 0 = 𝑛 − 𝑚 form an easy to reach local optimum.

§ From there, only flipping (the right) 𝑚 bits gives an improvement.

§ The unique global optimum is 𝑥∗ = (1…1).
47

𝑛/2 𝑛 − 𝑚 𝑛
𝑥 0

Benjamin Doerr: Theory for Non-Theoreticians

Runtime Analysis
§ In the following, we always regard how the (1+1) EA optimizes the jump

function 𝐽𝑈𝑀𝑃�,(.

§ Motivation: This is the most simple mutation-based algorithm, so we
feel that this is the cleanest way to study different ways to do mutation.

§ Side remark: From the proofs, it is easy to see that most results also
hold for many other elitist mutation-based algorithms.

§ Theorem: Let 𝑇� 𝑚, 𝑛 denote the expected optimization time of the (1+1)
EA optimizing 𝐽𝑈𝑀𝑃�,(with mutation rate 𝑝 ≤ 1 2⁄ . Then

𝑇� 𝑚, 𝑛 = Θ 𝑝Q� 1 − 𝑝 (Q� .

§ Corollary (speed-up at least exponential in 𝑚): For any 𝑝 ∈ [2 𝑛⁄ ,𝑚 𝑛⁄],
𝑇� 𝑚, 𝑛 ≤ 6𝑒;	2Q�	𝑇0 (⁄ 𝑚, 𝑛 .

§ à Clearly, 𝟏 𝒏⁄ is not the optimal mutation rate!
48

400

Benjamin Doerr: Theory for Non-Theoreticians

Optimal Mutation Rates
§ Theorem: Let 𝑇��k 𝑚, 𝑛 ≔ inf 𝑇� 𝑚, 𝑛 	 	𝑝 ∈ [0, 1 2⁄] .

§ Then	𝑇��k 𝑚, 𝑛 = Θ 𝑇� (⁄ 𝑚, 𝑛 .

§ If 𝑝 ≥ (1 + 𝜀)(𝑚 𝑛⁄) or 𝑝 ≤ 1 − 𝜀 (𝑚 𝑛⁄), then

𝑇� 𝑚, 𝑛 ≥
1
6 	exp

𝑚	𝜀;

5 	𝑇��k 𝑚, 𝑛 .

§ In simple words: 𝑚 𝑛⁄ is essentially the optimal mutation rate. A small
deviation from it increases the runtime massively.

§ Dilemma: To find the optimal mutation rate, we need to know beforehand
which numbers of bits we need to flip during a typical run of the EA L
[not a realistic hope for any real problem]

49 Benjamin Doerr: Theory for Non-Theoreticians

Understanding the Dilemma
§ Reason for the dilemma: When flipping bits independently at random,

then the Hamming distance of parent and offspring is strongly
concentrated around the mean

§ à exponential tails of the binomial distribution

§ We made this dilemma very precise for jump functions, but of course it is
the same for all other optimization problems where, at some time, a
certain (larger) number of bits needs to be flipped.

§ It seems that

§ previous theory work has not detected this, since it mostly regarded
unimodal functions (where flipping single bits is usually best)

§ previous experimental work has not detected this … (I don’t know
why. Lack of the “clarifying nature of mathematics”?)

50

Benjamin Doerr: Theory for Non-Theoreticians

Solution: Heavy-tailed Mutation
§ What do we need?

§ Larger numbers of bits flip with reasonable probability

§ No strong concentration

§ 1-bit flips occur with constant probability (we don’t want a massive
slow-down for easy problems)

§ NEW: Heavy-tailed mutation (with parameter 𝛽 > 1):

§ choose 𝛼 ∈ {1, 2, … , 𝑛 2⁄ } randomly with Pr 𝛼 ∼ 𝛼Q� [power-law distrib.]

§ perform standard-bit mutation with mutation rate 𝛼 𝑛⁄

§ Some maths: The probability to flip 𝑘 bits is Θ 𝑘Q�

§ à no exponential tails around the mean J

§ Pr 1	bit	flips = Θ(1), e.g., ≈32% when 𝛽 = 1.5 (≈37% for classic mut.)
51 Benjamin Doerr: Theory for Non-Theoreticians

Heavy-tailed Mutation: Results
§ Theorem: The expected optimization time on 𝐽𝑈𝑀𝑃�,(satisfies

𝑂 𝑚�Qf.�	𝑇��k 𝑚, 𝑛 .	

§ In simple words: We’re at most an 𝑂(𝑚�Qf.�) factor slower than the EA
using the (for this 𝑚) optimal mutation rate!

§ Compared to the classic EA, this is a speed-up by a factor of 𝑚 (�).

52

401

Benjamin Doerr: Theory for Non-Theoreticians

Experiments (m=8, n=20..150)

53

Runtime of the (1+1) EA on 𝐽𝑈𝑀𝑃¡,((average over 1000 runs). To allow this number of
experiments, the runs where stopped once the local optimum was reached and the remaining
runtime was sampled directly from the geometric distribution describing this waiting time.

Benjamin Doerr: Theory for Non-Theoreticians

Beyond Jump Functions
§ The “only” reason for these speed-ups is that we increase the probability

for a 𝑘-bit flip from roughly 0
d⋅£! to roughly 𝑘Q�. Hence it is fair to suspect

that similar advantages are also observed for other problems where
multi-bit flips are useful.

§ Example: Let 𝐺 be an undirected graph having 𝑛 edges. A matching is a
set of non-intersecting edges. Let 𝑂𝑃𝑇 be the size of a maximum
matching. Let 𝑚 ∈ ℕ and 𝜀 = ;

;�l0.

§ The classic (1+1) EA finds a matching of size ¦§¨0l� in an expected
number of 𝑇(,� iterations, where 𝑇(,� is some number in Θ(𝑛;�l;).

§ The (1+1) EA with heavy-tailed mutation does the same in expected
time 1 + 𝑜 1 	𝑒	𝜁 𝛽 d

�

�
𝑚�Qf.�		𝑇(,�.

54

Riemann zeta function:
𝜁 𝛽 < 2.62 for 𝛽 ≥ 1.5

Benjamin Doerr: Theory for Non-Theoreticians

Summary Heavy-tailed Mutation
§ Key working principle:

§ reduce the probability of a 1-bit flip slightly (say from 37% to 32%)

§ distribute this free probability mass in a power-law fashion on all
other 𝑘-bit flips
à increases the prob. for a 𝑘-bit flip from roughly 0

d⋅£!
to roughly 𝑘Q�

à reduces the waiting time for a 𝑘-bit flip from 𝑒 ⋅ 𝑘! to 𝑘�

§ this redistribution of probability mass is a good deal, because we
usually spend much more time on finding a good multi-bit flip

§ 𝐽𝑈𝑀𝑃�,(: spend Θ(𝑛 log 𝑛) time on 1-bit flips, but 𝑛
𝑚 time to

find the one necessary 𝑚-bit flip

§ There is good reason to believe that heavy-tailed mutation is useful for
a wide range of multi-modal problems.

55 Benjamin Doerr: Theory for Non-Theoreticians

Example 2: Invent New Algorithms (1/3)
§ Theory can also, both via the deep understanding gained from proofs

and by “theory-driven curiosity” invent new operators and algorithms.
Here is one recent example:

§ Theory-driven curiosity: Explain the following dichotomy!

§ the theoretically best possible black-box optimization algorithm 𝒜∗ for
OneMax (and all isomorphic fitness landscapes) needs only
𝑂(𝑛 log𝑛⁄) fitness evaluations

§ all known (reasonable) EAs need at least 𝑛 ⋅ ln𝑛 fitness evaluations

§ One explanation (from looking at the proofs): 𝒜∗ profits from all search
points it generates, whereas most EAs gain significantly only from search
points as good or better than the previous-best

§ Can we invent an EA that also gains from inferior search points?

§ YES [DDE13,GP14,DD15a,DD15b,Doe16], see next slides

56

402

Benjamin Doerr: Theory for Non-Theoreticians

New Algorithms (2/3)
§ A simple idea to exploit inferior search points (in a (1+1) fashion):

1. create 𝜆 mutation offspring from the parent by flipping 𝜆 random bits

2. select the best mutation offspring (“mutation winner”)
3. create 𝜆 crossover offspring via a biased uniform crossover of

mutation winner and parent, taking bits from mutation winner with
probability 1 𝜆⁄ only

4. select the best crossover offspring (“crossover winner”)

5. elitist selection: crossover winner replaces parent if not worse
§ Underlying idea:

§ If 𝜆 is larger than one, then the mutation offspring will often be much
worse than the parent (large mutation rates are destructive)

§ However, the best of the mutation offspring may have made some
good progress (besides all destruction)

§ Crossover with parent repairs the destruction, but keeps the progress
57 Benjamin Doerr: Theory for Non-Theoreticians

New Algorithms (3/3)
§ Performance of the new algorithm, called (1+(𝜆,𝜆)) GA:

§ solves OneMax in time (=number of fitness evaluations) 𝑂(rst (u +

𝜆𝑛®, which is 𝑂(𝑛	 log𝑛�) for 𝜆 = log𝑛�

§ the parameter 𝜆 can be chosen dynamically imitating the 1/5th rule,
this gives an 𝑂(𝑛) runtime

§ experiments:

§ these improvements are visible already for small values of 𝜆 and
small problem sizes 𝑛

§ [GP14]: good results for satisfiability problems

§ Interpretation: Theoretical considerations can suggest new algorithmic
ideas. Of course, much experimental work and fine-tuning is necessary
to see how such ideas work best for real-world problems.

58

Benjamin Doerr: Theory for Non-Theoreticians

Summary Part 3
Theory has contributed to the understanding and use of EAs by

§ debunking misbeliefs (drawing a clear line between rules of thumb and
proven fact)

§ e.g., “no local optima” does not mean “easy”

§ giving hints how to choose parameters, representations, operators, and
algorithms

§ e.g., how useful is crossover when we hardly find an example where
is provably improves things?

§ inventing new representations, operators, and algorithms; this is fueled
by the deep understanding gained in theoretical analyses and “theory-
driven curiosity”

59 Benjamin Doerr: Theory for Non-Theoreticians

Part IV:
Current Topics of

Interest
in Theory of EC

60

403

Benjamin Doerr: Theory for Non-Theoreticians

What We Currently Try to Understand
§ Precise runtime guarantees
§ Dynamic/adaptive parameter choices
§ Population-based EAs
§ Dynamic optimization, noisy environments
§ Non-elitism
§ Black-box complexity

§ Examples for all will be given on the next slides.

§ Parallel to these topics, we study also methodical questions
(e.g., drift analysis), but these are beyond the scope of this tutorial

61 Benjamin Doerr: Theory for Non-Theoreticians

Precise Runtime Guarantees
§ Theory results can give advice on how to chose the parameters of an EA

§ Example: the discussion on optimal mutation rates in part III

§ The more precisely we know the runtime (e.g., upper and lower bounds
for its expected value), the more precise recommendations we can give
for the right parameter choice (e.g., 𝑚 𝑛⁄ instead of Θ(𝑚 𝑛⁄))
§ in practice, constant factors matter J

§ Challenge: For such precise runtime bounds often the existing
mathematical tools are insufficient
§ in particular, tools from classic algorithms theory are often not strong

enough, because in that community (for several good reasons) there
is no interest in bounds more precise than 𝑂(…).

62

Benjamin Doerr: Theory for Non-Theoreticians

Dynamic Parameter Choices
§ Instead of fixing a parameter (mutation rate, population size, …) once

and forever (static parameter choice), it might be preferable to use
parameter choices that change
§ depending on time
§ depending on the current state of the population
§ depending on the performance in the past

§ Hope:
§ different parameter settings may be optimal early and late in the

optimization process
§ with self-adjusting parameters, we do not need to know the optimal

parameters beforehand, but the EA finds them itself

§ Experimental work suggests that dynamic parameter choices often
outperform static ones (for surveys see [EHM99,KHE15])

63 Benjamin Doerr: Theory for Non-Theoreticians

Theory for Dynamic Parameter Choices:
Deterministic Schedules

§ Deterministic variation schedule for the mutation rate [JW00, JW06]:

§ Toggle through the mutation rates 0
(
, ;
(
, c
(
,… ,≈ 0

;
§ Result: There is a function where this dynamic EA takes time
𝑂(𝑛; log𝑛), but any static EA takes exponential time

§ For most functions, the dynamic EA is slower by a factor of log𝑛

64

404

Benjamin Doerr: Theory for Non-Theoreticians

Theory for Dynamic Parameter Choices:
Depending on the Fitness

§ Fitness-dependent mutation rate [BDN10]: When optimizing the
LeadingOnes test function 𝐿𝑂: 0,1 (→ {0, … , 𝑛} with the (1+1) EA

§ the fixed mutation rate 𝑝 = 0
(gives a runtime of ≈ 0.86	𝑛;

§ the fixed mutation rate 𝑝 = 0.�{
(gives ≈ 0.77	𝑛; (optimal fixed mut. rate)

§ the mutation rate 𝒑 = 𝟏
𝒇 𝒙 l𝟏, gives ≈ 0.68	𝑛; (optimal dyn. mut. rate)

§ Fitness-dependent offspring pop. size for the (1 + 𝜆, 𝜆) GA [DDE13]:

§ if you choose 𝝀 = 𝒏
𝒏Q𝒇(𝒙)

� , then the optimization time on OneMax drops

from roughly 𝑛 log 𝑛� to 𝑂 𝑛

§ Interpretation: Fitness-dependent parameters can pay off. It is hard to find
the optimal dependence, but others give improvements as well (à proofs)

65 Benjamin Doerr: Theory for Non-Theoreticians

Theory for Dynamic Parameter Choices:
Success-based Dynamics

§ Success-based choice of island number: You can reduce of the parallel
runtime (but not the total work) of an island model when choosing the
number of islands dynamically [LS11]:
§ double the number of islands after each iteration without fitness gain
§ half the number of islands after each improving iteration

§ A success-based choice (1/5-th rule) of 𝜆 in the (1+(𝜆,𝜆)) GA automatically
finds the optimal mutation strength [DD15a]
§ 𝜆 ≔ 𝐹¶ 	𝜆 after each iteration without fitness gain, 𝐹 > 1 a constant
§ 𝜆 ≔	𝜆 𝐹⁄ after each improving iteration
§ Important that 𝐹 is not too large and that the fourth root is taken

(à 1/5-th rule). The doubling scheme of [LS11] would not have worked

§ Simple mechanisms to automatically find the current-best parameter
setting (note: this is great even when the optimal parameter does not
change over time)

66

Benjamin Doerr: Theory for Non-Theoreticians

Example Run Self-Adjusting (𝟏 + 𝝀, 𝝀) GA

67

𝝀∗ =
𝒏

𝒏 − 𝒇(𝒙)
�

Benjamin Doerr: Theory for Non-Theoreticians

Summary Dynamic Parameter Choices
§ State of the art: A growing number of results, some very promising

§ personal opinion: this is the future of discrete EC, as it allows to
integrate very powerful natural principles like adaption and learning

§ NEW tutorial “Non-static parameter choices” (C. Doerr) at this GECCO

68

An extension of the classi-
fication of Eiben, Hinterding,
and Michalewicz (1999)

[DJ00,DJ06]

[BDN10,DDE13]

[DL16]

[LS11,DD15a,DDK16,DDY16]

405

Benjamin Doerr: Theory for Non-Theoreticians

Population-Based EAs
§ Population-based: using a non-trivial (≥ 2) population of individuals
§ In practice, non-trivial populations are often employed

§ In theory,
§ no convincing evidence (yet) that larger populations are generally

beneficial (apart from making the algorithm easy to run on parallel
machines)

§ the typical result is “up to a population size of …, the total work is
unchanged, for larger population sizes, you pay extra”

§ some evidence (on the level of artificially designed examples) that
populations help in dynamic or noisy settings

§ not many methods to deal with the complicated population dynamics

§ Big open problem: Give rigorous advice how to profitably use larger
populations (apart allowing parallel implementations)
§ and devise methods to analyze such algorithms

69 Benjamin Doerr: Theory for Non-Theoreticians

Dynamic Optimization
§ Dynamic optimization: Optimization under (mildly) changing problem data
§ Question: How well do EAs find and track the moving optimum?

§ First theory result [Dro02]: dynamic version of OneMax where the
optimum changes (by one bit) roughly every 𝐾 iterations
§ If 𝐾 = 𝑛 log𝑛⁄ or larger, then a polynomial number of iterations

suffices to find or re-find the current optimum
§ 𝐾 can be quite a bit smaller than the usual 𝑒𝑛 ln𝑛 runtime!

§ First indication that EAs do well in dynamic optimization
§ More recent results: Many (artificial) examples showing that populations,

diversity mechanisms, island models, or ant colonies help finding or
tracking dynamically changing optima [JS05,KM12,OZ15,LW14,LW15,…]

§ Two main open problems: (i) What are realistic dynamic problems?
§ (ii) What is the best way to optimize these?

70

Benjamin Doerr: Theory for Non-Theoreticians

Non-Elitism
§ Most EAs analyzed in theory use truncation selection, which is an elitist

selection = you cannot lose the best-so-far individual

§ Mostly negative results on non-elitism are known. For example, [OW15]
proves that the Simple Genetic Algorithm using fitness-proportional
selection is unable to optimize OneMax efficiently [see above]

§ Strong Selection Weak Mutation (SSWM) algorithm [PPHST15], inspired
by an inter-disciplinary project with populations-genetics:
§ worsening solutions are accepted with some positive probability
§ for improving offspring, acceptance rate depends on the fitness gain
§ Examples are given in [PPHST15] for which SSWM outperforms

classic EAs

§ Black-box complexity view: there are examples where any elitist
algorithm is much worse than a non-elitist algorithm [DL15]

§ State of the art: Not much real understanding apart from sporadic results.
The fact that non-elitism is used a lot in EC practice asks for more work.

71 Benjamin Doerr: Theory for Non-Theoreticians

Limits of EC: Black-Box Complexity
§ EAs are black-box algorithms: they learn about the problem at hand only

by evaluating possible solutions

§ What is the price for such a problem-independent approach?
àThis is the main question in black-box complexity.

§ In short, the black-box complexity of a problem is the minimal number of
function evaluations that are needed to solve it

§ = performance of the best-possible black-box algorithm

72

𝒇

Algorithm

(𝒙, 𝒇(𝒙))
(𝒚, 𝒇(𝒚))

𝒛

𝒇(𝒛)

406

Benjamin Doerr: Theory for Non-Theoreticians

Black-Box Complexity Insights
§ Unified lower bounds: The black-box complexity is a lower bound for the

runtime of any black-box algorithm: all possible kinds of EAs, ACO, EDA,
simulated annealing, …

§ Specialized black-box models allow to analyze the impact of algorithmic
choices such as type of variation in use, the population size, etc.

§ Example result: [LW12] proves that every unary unbiased algorithm
needs Ω 𝑛 log 𝑛 function evaluations to optimize OneMax
§ unary: mutation only, no crossover
§ unbiased: symmetry in

§ bit-values 0 and 1
§ bit positions 1,2,…,𝑛

à Result implies that algorithms using fair mutation as only variation
cannot be significantly more efficient on OneMax than the (1+1) EA

73 Benjamin Doerr: Theory for Non-Theoreticians

Black-Box Complexity vs. Games –
Where EA Theory Meets Classic CS

§ Black-box algorithms are strongly related to Mastermind-like guessing
games:
§ algorithm guesses a search point
§ opponent reveals the fitness

§ Such guessing games have a long history in
classic computer science due to applications
in security and privacy

§ We have several (hidden) black-box complexity
publications in classic CS venues (including a
paper to appear in the Journal of the ACM)
§ EC theory meets classic theory
§ a chance to get the classic CS community interested in our field!

74

Benjamin Doerr: Theory for Non-Theoreticians

Part V:
Conclusion

75 Benjamin Doerr: Theory for Non-Theoreticians

Summary
§ Theoretical research gives deep insights in the working principles of EC,

with results that are of a different nature than in experimental work

§ “very true” (=proven), but often apply to idealized settings only

§ for all instances and sizes, …, but sometimes less precise

§ often only asymptotic results instead of absolute numbers

§ proofs tell us why certain facts are true

§ The different nature of theoretical and experimental results implies that
a real understanding is best obtained from a combination of both

§ Theory-driven curiosity and the clarifying nature of mathematical proofs
can lead to new ideas, insights and algorithms

76

407

Benjamin Doerr: Theory for Non-Theoreticians

How to Use Theory in Your Work?
§ Try to read theory papers, but don’t expect more than from other papers

§ Neither a theory nor an experimental paper can tell you the best
algorithm for your particular problem, but both can suggest ideas

§ Try “theory thinking”: take a simplified version of your problem and
imagine what could work and why

§ Don’t be shy to talk to the theory people!

§ they will not have the ultimate solution and their mathematical
education makes them very cautious presenting an ultimate solution

§ but they might be able to prevent you from a wrong path or suggest
alternatives to your current approach

77 Benjamin Doerr: Theory for Non-Theoreticians

Recent Books (Written for Theory People,
But Not Too Hard to Read)

§ Auger/Doerr (2011). Theory of Randomized Search Heuristics, World Scientific

§ Jansen (2013). Analyzing Evolutionary Algorithms, Springer

§ Neumann/Witt (2010). Bioinspired Computation in Combinatorial Optimization,
Springer

78

Benjamin Doerr: Theory for Non-Theoreticians

Acknowledgments
§ This tutorial is also based upon work from COST Action CA15140

`Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO)' supported by COST (European
Cooperation in Science and Technology).

79 Benjamin Doerr: Theory for Non-Theoreticians 80

Thanks for your attention!

408

Benjamin Doerr: Theory for Non-Theoreticians

Appendix A
Glossary of Terms

Used in This Tutorial

81 Benjamin Doerr: Theory for Non-Theoreticians

Discrete and Pseudo-Boolean Optimization
In this tutorial we are mostly interested in the optimization of problems of the
type 𝑓: 0,1 (→ ℝ
§ Problems 𝑓: 𝑆 → ℝ with finite search space 𝑆 are called discrete

optimization problems
(in contrast to continuous problems 𝑓:ℝ(→ ℝ or, more generally 𝑓: 𝑆 →
ℝ with continuous 𝑆)

§ When 𝑆 = 0,1 (and 𝑓: 0,1 (→ ℝ, we call 𝑓 a pseudo-Boolean function
§ Please note: don’t get fooled! Even if optimizing a function 𝑓: 0,1 (→ ℝ

may look harmless, a HUGE range of problems (even NP-hard ones like
Max-SAT and many others!) can be expressed this way

82

Benjamin Doerr: Theory for Non-Theoreticians

What we Mean by “Optimization”
§ Recall: we assume that we aim at optimizing a function 𝑓: 0,1 (→ ℝ

§ For this tutorial “optimization” = maximization,
that is, we aim at finding a bit string 𝑥 = 𝑥0, … , 𝑥(such that 𝑓 𝑥 ≥ 𝑓 𝑦
for all 𝑦 ∈ 0,1 (

§ Note in particular: we are not interested in this tutorial in identifying local
optima, only the global best solution(s) are interesting for us

83

local optima

Global optimum

Benjamin Doerr: Theory for Non-Theoreticians

Expected Runtimes – Introduction
§ All EAs are randomized algorithms, i.e., they use random decisions

during the optimization process (for example, the variation step, i.e., the
step in which new search points are generated, is often based on random
decisions---we will discuss this in more detail below)

§ Our object of interest, the runtime of EAs, is the number of function
evaluations that an EA needs until it queries for the first time an optimal
solution. Since EAs are randomized algorithms, their runtime is a random
variable

84

409

Benjamin Doerr: Theory for Non-Theoreticians

Expected Runtimes – Definition
§ Formally, let 𝐴 be an EA, let 𝑓 be a function to be optimized and let

𝑥0, 𝑥;, … be the series of search points queried by 𝐴 in one run of
optimizing 𝑓. The search points 𝑥. are random and so is the series of
fitness values 𝑓 𝑥0 , 𝑓 𝑥; , …. The runtime 𝑇 is defined by

𝑇 ≔ min 𝑖 ∈ ℕ 𝑓 𝑥. = max
¿∈ f,0 À	𝑓 𝑦

§ Several features of this random variable are interesting. We mostly care
about the expected runtime of an EA. This number is the average
number of function evaluations that are needed until an optimal solution
is evaluated for the first time.

§ Caution (1/2): sometimes runtime is measured in terms of generations,
not function evaluations

§ Caution (2/2): Regarding expectation only can be misleading (see next
slide for an example), this is why we typically study also other features of
the runtime, such as its concentration

85 Benjamin Doerr: Theory for Non-Theoreticians

Expected Runtimes – Caution!
§ The expected runtime does not always tell you the full truth:

There are functions for which the expected runtime is very large but
which can be optimized in a small number of steps with a fair probability.
Example: The DISTANCE function regarded in [DJW02], see next slide

86

Benjamin Doerr: Theory for Non-Theoreticians

Expected Runtimes – Caution!

87

Formally,

Distance 𝑥 ≔ ? 𝑥.

�

./0,…,(

−
𝑛
2 −

1
3

;

We regard a simple hill climber
(Randomized Local Search, RLS)
which is

§ initialized uniformly at random,

§ flips one bit at a time,

§ always accepts search points of
best-so-far fitness

With probability (almost) 1/2, the
algorithm has optimized DISTANCE

after 𝑂 𝑛 log 𝑛 steps

With probability ~1/2 it does not find
the optimum at all, thus having an
infinite expected optimization time

Benjamin Doerr: Theory for Non-Theoreticians

Big-O Notation, aka Landau Notation (1/2)
§ The “big-O” notation is used in algorithms theory to classify the order at

which the running time of an algorithm grows with the size of the input
problems

§ In our example, it says that “The expected runtime of the (1+1) EA on
any linear function with weights ≠ 0 is Θ(𝑛	log	𝑛).”

§ Θ 𝑛	log	𝑛 means that the expected runtime of the (1+1) EA on 𝑓 is

§ 𝑂 𝑛 log𝑛 , that is, there exists a constant 𝐶 > 0 such that for all 𝑛 the
expected runtime is at most 𝐶𝑛 log𝑛

§ Ω 𝑛 log𝑛 , that is, there exists a constant 𝑐 > 0 such that for all 𝑛 the
expected runtime is at least 𝑐𝑛 log𝑛

§ That is, there exist constants 0 < 𝑐 < 𝐶 such that
𝑐𝑛 log𝑛 ≤ 𝐸(𝑇 0l0 �Å,Æ) ≤ 𝐶𝑛 log𝑛

88

410

Benjamin Doerr: Theory for Non-Theoreticians

Big-O Notation, aka Landau Notation (2/2)
Further frequently used notation
§ 𝑓 ∈ 𝑜(𝑛) if 𝑓 grows slower than linear. Formally:

for all constants 0 < 𝑐 there exists a 𝑛f such that for all 𝑛 > 𝑛f: 𝑓 𝑛 ≤ 𝑐𝑛

§ 𝑓 ∈ 𝜔(𝑛) if 𝑓 grows faster than linear. Formally:
for all constants 0 < 𝑐 there exists a 𝑛f such that for all 𝑛 > 𝑛f: 𝑓 𝑛 ≥ 𝑐𝑛

89 Benjamin Doerr: Theory for Non-Theoreticians

Appendix B
List of References

90

Benjamin Doerr: Theory for Non-Theoreticians

References (1/6)

91 Benjamin Doerr: Theory for Non-Theoreticians

References (2/6)

92

411

Benjamin Doerr: Theory for Non-Theoreticians

References (3/6)

93 Benjamin Doerr: Theory for Non-Theoreticians

References (4/6)

94

Benjamin Doerr: Theory for Non-Theoreticians

References (5/6)

95 Benjamin Doerr: Theory for Non-Theoreticians

References (6/6)

96

412

