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General Scheme for Evolutionary Algorithms2
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1: initialise a population P0 of λ individuals uniformly at random.
2: for t = 0, 1, 2, . . . until termination condition do
3: evaluate the individuals in population Pt.
4: for i = 1 to λ do
5: select two parents from population Pt.
6: recombine the two parents.
7: mutate the offspring and add it to population Pt+1.

2Pseudo-code adapted from Eiben and Smith [2003].

Bitwise Mutation

for i = 1 to n do
with probability χ/n

x′
i
:= 1− xi

otherwise

x′
i
:= xi

return x′
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Uniform Crossover - Two Offspring One Offspring

Parents Offspring

for i = 1 to n do
with probability 1/2

ui := xi and vi := yi

otherwise

ui := yi and vi := xi
return u and v.

Uniform Crossover - Two Offspring One Offspring

Parents Offspring

for i = 1 to n do
with probability 1/2

ui := xi and vi := yi

otherwise

ui := yi and vi := xi
return u or v with equal probability.

Tournament Selection

Tournament selection with tournament size k

1. Sample uniformly at random with replacement a subset
P ′ ⊆ P of k individuals from population P .

2. Select the individual in P ′ with highest fitness, with ties
broken uniformly at random.

◮ Often, tournament size k = 2 is used.

A Model of Population-based EAs
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Wide range of evolutionary algorithms...

◮ selection mechanisms (ranking selection, (µ, λ)-selection,
tournament selection, ...)

◮ fitness models (deterministic, stochastic, dynamic, partial, ...)

◮ variation operators

◮ search spaces (e.g. bitstrings, permutations, ...)

We will describe many of these with a general mathematical model.
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A Model of Population-based EAs
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Require: Search space X and random operator D : X λ → X
1: P0 ∼ Unif(X λ)
2: for t = 0, 1, 2, . . . until termination condition do
3: for i = 1 to λ do
4: Pt+1(i) ∼ D(Pt)

Aims and Goals of this Tutorial

◮ The scope of this tutorial is restricted to
◮ population-based evolutionary algorithms,

with finite parent– and offspring population sizes > 1,
◮ using non-elitist selection mechanisms

◮ This tutorial will provide an overview of
◮ the goals of runtime analysis of EAs
◮ selected, generally applicable techniques

◮ You should attend if you wish to
◮ theoretically understand the behaviour and performance of the

EAs you design
◮ familiarise yourself with some of the techniques used
◮ pursue research in the area

◮ enable you or enhance your ability to

1. understand theoretically population-dynamics of EAs on
different problems

2. perform time complexity analysis of population-based EAs on
common toy problems

3. have the basic skills to start independent research in the area

Outline

Introduction
Runtime Analysis

Upper bounds
The Level Based Theorem
Examples
Mutation and Selection
Mutation, Crossover and Selection
Noisy and Uncertain Fitness

Lower Bounds
Negative Drift Theorem for Populations
Mutation-Selection Balance
Negative Drift with Crossover

Speedups by Crossover

Evolutionary Algorithms are Algorithms

Criteria for evaluating algorithms

1. Correctness
◮ Does the algorithm always give the correct output?

2. Computational Complexity
◮ How much computational resources does

the algorithm require to solve the problem?

Same criteria also applicable to evolutionary algorithms

1. Correctness.
◮ Discover global optimum in finite time?

2. Computational Complexity.
◮ Time (number of function evaluations)

most relevant computational resource.
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Runtime Analysis of Population-based EAs

Definition
Given any target subset B(n) ⊂ {0, 1}n (e.g. optima), let

TB(n) := min
t∈N

{tλ | Pt ∩B(n) 6= ∅}

be the first time3 the population contains an individual in B(n).

Problem
Show how

◮ E
[

TB(n)

]

(the expected runtime)

◮ Pr
(

TB(n) ≤ t
)

(the “success” probability)

depend on the mapping D.

3We here count time as the number of search points that have been sampled since
the start of the algorithm. For a typical D that models an EA, this corresponds to the
number of times the fitness function is evaluated.

Runtime as a function of problem size
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◮ Exponential =⇒ Algorithm impractical on problem.
◮ Polynomial =⇒ Possibly efficient algorithm.

Runtime as a function of problem size
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◮ Exponential =⇒ Algorithm impractical on problem.
◮ Polynomial =⇒ Possibly efficient algorithm.

Asymptotic notation

f(n) ∈ O(g(n)) ⇐⇒ ∃ constants c, n0 > 0 st. 0 ≤ f(n)≤cg(n)

f(n) ∈ Ω(g(n)) ⇐⇒ ∃ constants c, n0 > 0 st. 0 ≤ cg(n)≤f(n)

f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

f(n) ∈ o(g(n)) ⇐⇒ lim
n→∞

f(n)

g(n)
= 0
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Runtime Analysis of Evolutionary Algorithms Approaches to Runtime Analysis of Populations
◮ Infinite population size
◮ Markov chain analysis He and Yao [2003]
◮ No parent population, or monomorphic populations

◮ (1+1) EA
◮ (1+λ) EA Jansen, Jong, and Wegener [2005]
◮ (1,λ) EA Rowe and Sudholt [2012]

◮ Fitness-level techniques
◮ (1+λ) EA Witt [2006]
◮ (N+N) EAs Chen, He, Sun, Chen, and Yao [2009]
◮ non-elitist EAs with unary variation operators Lehre [2011b],

Dang and Lehre [2014]
◮ Classical drift analysis

◮ Fitness proportionate selection Neumann, Oliveto, and Witt
[2009], Oliveto and Witt [2014, 2015]

◮ Family trees
◮ (µ+1) EA Witt [2006]
◮ (µ+1) IA Zarges [2009]

◮ Multi-type branching processes Lehre and Yao [2012]
◮ Negative drift theorem for populations Lehre [2011a]

◮ Level-based analysis Corus, Dang, Eremeev, and Lehre [2014]

Level-based Theorem
4

4Corus, Dang, Eremeev, and Lehre [2014] and arXiv:1407.7663

Outline - Level-based Theorem5

1. Definition of levels of search space

2. Definition of “current level” of population

3. Statement of theorem and its conditions

4. Recommendations for how to apply the theorem

5. Some example applications

6. Derivation of special cases
◮ Mutation-only EAs
◮ Crossover
◮ Mutation-only EAs with uncertain fitness (e.g. noise)

5It is out of scope of this tutorial to present the proof of this theorem. The proof
uses drift analysis with a distance function that takes into account the current level, as
well as the number of individuals above the current level.
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Level Partitioning of Search Space X

Definition
(A1, . . . , Am) is a level-partitioning of search space X if

◮
⋃m

j=1Aj = X (together, the levels cover the search space)

◮ Ai ∩Aj = ∅ whenever i 6= j (the levels are nonoverlapping)

◮ the last level Am covers the optima for the problem

We will write A≥j to denote everything in level j and higher, i.e.,

A≥j :=
m
⋃

i=j

Ai.

Current level of a population P wrt γ0 ∈ (0, 1)

Definition
The unique integer j ∈ [m− 1] such that

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1|

Example

Current level wrt γ0 = 1
2
is ....4.

Level-based theorem (informal version)

If the following three conditions are satisfied

(G1) it is always possible to sample above the current level

(G2) the proportion of the population above the current
level increases in expectation

(G3) the population size is large enough

then the expected time to reach the last level cannot be too high.

Level-based Theorem6 (1/2) (setup)

◮ Given a level-partitioning (A1, . . . , Am) of X
◮ m− 1 upgrade probabilities z1, . . . , zm−1 ∈ (0, 1] and
zmin := mini zi

◮ a parameter δ ∈ (0, 1), and

◮ a constant γ0 ∈ (0, 1),

6This version of the theorem simplifies some of the conditions at the cost of a
slightly less precise bound on the runtime.
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Level-based Theorem (2/2) [Corus, Dang, Eremeev,
and Lehre, 2014]

≥ γ(1 + δ)

≥ zj

y ∼ D(P )

AmA≥1 A≥j A≥j+1 · · ·

P

γ0λ γλ

If for all populations P ∈ Xλ, an individual y ∼ D(P ) has

Pr
(

y ∈ A≥j+1

)

≥ zj, (G1)

Pr
(

y ∈ A≥j+1

)

≥ γ(1 + δ), (G2)

where j ∈ [m− 1] is the current level of population P , i.e.,

|P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1| = γλ,

and the population size λ is bounded from below by

λ ≥
(

4

γ0δ2

)

ln

(

128m

zminδ2

)

, (G3)

then the algorithm reaches the last level Am in expected time

E [TAm] ≤
(

8

δ2

)m−1
∑

j=1

(

λ ln

(

6δλ

4 + zjδλ

)

+
1

zj

)

.

Suggested recipe for application of level-based
theorem

1. Find a partition (A1, . . . , Am) of X that reflects the state
of the algorithm, and where Am consists of all goal states.

2. Find parameters γ0 and δ and a configuration of the algorithm
(e.g., mutation rate, selective pressure) such that whenever
|P ∩A≥j+1| = γλ > 0, condition (G2) holds, i.e.,

Pr
(

y ∈ A≥j+1

)

≥ γ(1 + δ)

3. For each level j ∈ [m− 1], estimate a lower bound
zj ∈ (0, 1) such that whenever |P ∩A≥j+1| = 0,
condition (G1) holds, i.e.,

Pr
(

y ∈ A≥j+1

)

≥ zj

4. Calculate the sufficient population size λ from condition (G3).

5. Read off the bound on expected runtime.

Simple Example to Illustrate Theorem

Problem

◮ search space X = {1, · · · ,m}
◮ fitness function f(x) = x (to be maximised)

Evolutionary Algorithm

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select a parent x from Pt using (µ, λ)-selection
Obtain y by mutating x
Set i-th offspring Pt+1(i) = y

(µ, λ)-selection mechanism

1. Sort the current population P = (x1, . . . , xλ) such that

f(x1) ≥ f(x2) ≥ . . . ≥ f(xλ)

2. return Unif(x1, . . . , xµ)
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A simple mutation operator...

Pr (V (x) = y) =

{

1
3

if y ∈ {x− 1, x, x+ 1}
0 otherwise.

Step 1: Level-partition

Problem

◮ search space X = {1, · · · ,m}
◮ fitness function f(x) = x (to be maximised)

Level-partition of X

Aj := {j}
A≥j = {j, j + 1, . . . ,m}

Properties of a Population at Level j

◮ Assume that the current level of the population P is j, i.e.,

γλ = |P ∩A≥j+1| < γ0λ ≤ |P ∩A≥j| (1)

◮ (µ, λ) selects parent u.a.r. among best µ individuals

◮ by choosing parameter γ0 := µ/λ, assumption (1) implies
◮ Pr

(

select parent in A≥j

)

= 1
◮ Pr

(

select parent in A≥j+1

)

= γλ
µ

Condition (G2)

Assuming that λ
µ
= 9

4
=

1+1

2

1−1

3

Pr
(

y ∈ A≥j+1

)

≥ Pr
(

select parent in A≥j+1

)

· Pr (do not downgrade)

≥ γ · λ
µ
·
(

1− 1

3

)

= γ

(

1 +
1

2

)

.

≥ γ(1 + δ)

=⇒ Condition (G2) satisfied for δ = 1/2.
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Condition (G1)

Pr
(

y ∈ A≥j+1

)

≥ Pr (select parent in Aj) · Pr
(

upgrade offspring to A≥j+1

)

≥ 1 · 1
3

= zj > 0

=⇒ Condition (G1) satisfied by choosing zj := 1
3
for all j ∈ [m].

Condition (G3) - Sufficiently Large Population

Recall that γ0 = µ/λ = 4/9 and δ = 1/2 and zmin = 1/3

(

4

γ0δ2

)

ln

(

128m

zminδ2

)

= 36 ln(1536m)

< 36(ln(m) + 8) ≤ λ

Hence, choosing λ ≥ 36(ln(m) + 8) sufficient to satisfy (G3).

Example: Summary

We have shown that if λ ≥ 36(ln(m) + 8) and µ = 4λ/9

◮ (G1) is satisfied for zj = 1/3 for all j ∈ [m− 1]

◮ (G2) is satisfied for δ = 1/2, and

◮ (G3) is satisfied

hence, by the level-based theorem, the expected running time of
the EA is no more than

(

8

δ2

)m−1
∑

j=1

(

λ ln

(

6δλ

4 + zjδλ

)

+
1

zj

)

<

(

8

δ2

)m−1
∑

j=1

(

λ ln

(

6

zj

)

+
1

zj

)

= 32

m−1
∑

j=1

(λ ln(18) + 3) < 100mλ.

Population-Selection Variation Algorithm (PSVA)

Pt
x

MS y
x

for t = 0 to∞ do
for i = 1 to λ do

Sample i-th parent x according to select(Pt)
Sample i-th offspring Pt+1(i) according to mutate(x)
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Measuring Selective Pressure

Definition (Cumulative selection probability)

For any population P of λ individuals, where the levels of the individuals
are in decreasing order ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓλ−1, define for all
γ ∈ (0, γ0)

ζ(γ, P ) := Pr
(

select(P ) ∈ A≥ℓ⌈γλ⌉

)

,

(i.e., prob. of not selecting a worse individual than the γλ-ranked).

Example

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9
5 5 4 4 4 3 3 2 1 1

ζ(1/10, P ) = Pr
(

select(P ) ∈ A≥ℓ1

)

= Pr
(

select(P ) ∈ A≥5

)

ζ(3/10, P ) = Pr
(

select(P ) ∈ A≥ℓ3

)

= Pr
(

select(P ) ∈ A≥4

)

Corollary for PSVA

If for any level j ∈ [m− 1] and all search points x ∈ A≥j ,

(C1) Pr
(

mutate(x) ∈ A≥j+1

)

≥ sj ≥ smin

(C2) Pr
(

mutate(x) ∈ A≥j

)

≥ p0
and for all non-optimal populations P ∈ (X \Am)λ and
γ ∈ (0, γ0]

(C3) ζ(γ, P ) ≥ (1 + δ)γ

p0
and the population size λ satisfies

(C4) λ ≥
(

4

γ0δ2

)

ln

(

128m

γ0sminδ2

)

then the expected time to reach the last level Am is less than

(

8

δ2

)m−1
∑

j=1

(

λ ln

(

6δλ

4 + γ0sjδλ

)

+
1

γ0sj

)

.

Proof of Corollary: (C2) & (C3) =⇒ (G2)

MS y
x

If |P ∩A≥j| ≥ γ0λ > |P ∩A≥j+1| =: γλ and y ∼ D(P )
then

Pr
(

y ∈ A≥j+1

)

≥ Pr
(

x ∈ A≥j+1

)

Pr
(

y ∈ A≥j+1 | x ∈ A≥j+1

)

(i.e., select x from level j + 1

and do not downgrade it)

≥ ζ(γ, P )p0

≥ γ(1 + δ).

Proof of Corollary: (C1) & (C3) =⇒ (G1)

MS y
x

If |P ∩A≥j| ≥ γ0λ and |P ∩A≥j+1| = 0 and y ∼ D(P )

Pr
(

y ∈ A≥j+1

)

≥ Pr (x ∈ Aj) Pr
(

y ∈ A≥j+1 | x ∈ Aj

)

(i.e., select x from level j and upgrade it)

≥ ζ(γ0, P )sj

≥ γ0(1 + δ)sj/p0

= zj > 0
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Example Application

LeadingOnes(x) =
n
∑

i=1

i
∏

j=1

xj

Partition into n+ 1 levels

Aj := {x ∈ {0, 1}n | x1 = · · · = xj−1 = 1 ∧ xj = 0}

Example Application
(µ,λ) EA with bit-wise mutation rate χ/n on LeadingOnes.
For any const. δ ∈ (0, 1) and large n, no bits mutated with prob.

(

1− χ

n

)n

>
1− δ
eχ

.

If x ∈ A≥j, λ/µ > eχ
(

1+δ
1−δ

)

and λ > c′′ ln(n) then

(C1) Pr
(

mutate(x) ∈ A≥j+1

)

≥ χ(1− δ)
neχ

=: sj =: smin

(C2) Pr
(

mutate(x) ∈ A≥j

)

≥ 1− δ
eχ

=: p0

(C3) ζ(γ, P ) ≥ γλ/µ > γeχ
(

1 + δ

1− δ

)

= γ(1 + δ)/p0

(C4) λ > c′′ ln(n) > c ln(m/smin)

then
E [T ] = O

(

∑m−1
j=1 λ ln

(

λ
1+sjλ

)

+ 1
sj

)

= O(nλ ln(λ) + n2)

Genetic Algorithms with Crossover

M

S

C

x1

x2

z

y

Definition (Genetic Algorithm)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select parents x1 and x2 from population Pt acc. to psel
Create z by applying a crossover operator to x1 and x2.
Create y by applying a mutation operator to y.

Corollary for Genetic Algorithms
If for any level j ∈ [m− 1] and all search points x ∈ A≥j

(C1) Pr
(

mutate(x) ∈ A≥j+1

)

≥ sj ≥ smin

(C2) Pr
(

mutate(x) ∈ A≥j

)

≥ p0
and for all u ∈ A≥j and v ∈ A≥j+1

(C3) Pr
(

crossover(u, v) ∈ A≥j+1

)

≥ ε1
and for all non-optimal populations P ∈ (X \Am)λ and γ ∈ (0, γ0]

(C4) ζ(γ, P ) ≥ γ
√

1 + δ

p0ε1γ0

and the population size λ satisfies

(C5) λ ≥
(

4

γ0δ2

)

ln

(

128m

γ0δ2smin

)

then the expected time to reach the last level Am is less than

(

8

δ2

)m−1
∑

j=1

(

λ ln

(

6δλ

4 + γ0sjδλ

)

+
1

γ0sj

)

.
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Example application – (µ,λ) GA on Onemax

M

S

C

x1

x2

z

y
OneMax(x) :=

n
∑

i=1

xi.

(µ,λ) Genetic Algorithm (GA)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select a parent x from population Pt acc. to (µ, λ)-selection
Select a parent y from population Pt acc. to (µ, λ)-selection
Apply uniform crossover to x and y, i.e. z := crossover(x, y)
Create Pt+1(i) by flipping each bit in z with probability χ/n.

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and
λ
µ
> 2eχ(1 + δ) for any constant δ > 0, then the expected runtime of

(µ,λ) GA on OneMax is O(nλ).

Partition of Search Space into Levels

Partition into m := n+ 1 levels A0, . . . , An

Aj := {x ∈ {0, 1}n | Onemax(x) = j}

Condition (C1) and (C2)

Given any search point x ∈ A≥j ,

◮ to remain at the same level, it is sufficient to not flip any bits

Pr
(

mutate(x) ∈ A≥j

)

≥
(

1− χ

n

)n

≥ 1− δ
eχ

=: p0.

◮ to reach a higher level, it suffices to flip a zero-bit into a
one-bit and leave the other bits unchanged, i.e.,

Pr
(

mutate(x) ∈ A≥j+1

)

≥ (n− j)χ
n

(

1− χ

n

)n−1

≥ χ(n− j)(1− δ)
neχ

=: sj.

Example application – (µ,λ) GA on Onemax
If λ/µ > . . . and λ > c ln(n) and x ∈ A≥j then

(C1) Pr
(

mutate(x) ∈ A≥j+1

)

≥ χ(n− j)(1− δ)
neχ

=: sj X

(C2) Pr
(

mutate(x) ∈ A≥j

)

≥ 1− δ
eχ

=: p0 X

and for all u ∈ A≥j and v ∈ A≥j+1

(C3) Pr
(

crossover(u, v) ∈ A≥j+1

)

≥ ε1 > 0

and for all non-optimal populations P ∈ (X \Am)λ and γ ∈ (0, γ0]

(C4) ζ(γ, P ) ≥ γλ
µ
≥ γ

√

1+δ
p0ε1γ0

and the population size λ satisfies

(C5) λ > c ln(n) ≥
(

4

γ0δ2

)

ln

(

128m

γ0δ2smin

)

X

◮ (C5) holds if the constant c > 0 is large enough (m = n+ 1)

◮ Remains to show that (C3) and (C4) can be satisfied

◮ Need to determine the parameter ε1.
◮ Need to determine a lower bound for the ratio λ/µ.
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Condition (C3) – (µ,λ) GA on OneMax

Parents Offspring

Proof.
Assume that x ∈ A≥j+1 and y ∈ A≥j , and w.l.o.g. that |u| ≥ |v|

2j + 1 ≤ |x|+ |y|
= |u|+ |v|
≤ 2|u|.

Therefore Pr
(

u ∈ A≥j+1

)

= 1 and

Pr
(

crossover(x, y) ∈ A≥j+1 | x ∈ A≥j+1 and y ∈ A≥j

)

≥ 1

2
=: ε.

Example application – (µ,λ) GA on Onemax
If λ/µ > 2eχ

(

1+δ
1−δ

)

for any const. δ > 0, and λ > c ln(n)

(C1) Pr
(

mutate(x) ∈ A≥j+1

)

≥ χ(n− j)(1− δ)
neχ

=: sj X

(C2) Pr
(

mutate(x) ∈ A≥j

)

≥ 1− δ
eχ

=: p0X

(C3) Pr
(

crossover(u, v) ∈ A≥j+1

)

> 1/2 =: ε1 > 0X

(C4) β(γ) ≥ γλ
µ
≥ γ

√

1+δ
p0ε1γ0

X

(C5) λ > c ln(n) ≥
(

4

γ0δ2

)

ln

(

128m

γ0δ2smin

)

X

We have all the necessary parameters, and would like to find a simple
expression for the expected runtime

(

8

δ2

)



λ

n−1
∑

j=0

ln

(

6δλ

4 + γ0sjδλ

)

+

n−1
∑

j=0

1

γ0sj



 .

Bounding the first term (first attempt, imprecise)

n−1
∑

j=0

ln

(

6δλ

4 + γ0sjδλ

)

<

n−1
∑

j=0

ln

(

6δλ

4

)

= O(n ln(λ)).

◮ This upper bound is imprecise because it does not exploit that
the upgrade probabilities sj are large for small j.

Bounding the first term (second attempt, more
precise)

n−1
∑

j=0

ln

(

6δλ

4 + γ0sjδλ

)

<

n−1
∑

j=0

ln

(

6

γ0sj

)

using ln(a) + ln(b) = ln(ab) and defining c := 6eχ

γ0(1−δ)χ

= ln





n−1
∏

j=0

cn

n− j



 = ln

(

(cn)n

n!

)

and using the lower bound n! > (n/e)n

< ln

(

(cn)nen

nn

)

= n ln(ec) = O(n).
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Bounding the second term

Recall the definition of the n-th Harmonic number

Hn :=

n
∑

i=1

1

i
= O(ln(n)).

The second term can therefore be bounded as

n−1
∑

j=0

1

γ0sj
= O





n−1
∑

j=0

n

n− j



 = O(n ln(n))

Final result

Theorem
If λ > c ln(n) for a sufficiently large constant c > 0, and
λ
µ
> 2eχ(1 + δ) for any constant δ > 0, then the expected

runtime of (µ,λ) GA on OneMax is

(

8

δ2

)



λ

n−1
∑

j=0

ln

(

6δλ

4 + γ0sjδλ

)

+

n−1
∑

j=0

1

γ0sj





= O(nλ) +O(n lnn) = O(nλ).

Uncertainty in Comparison-based PSVAs

1

2

3

M

Sources of uncertainty

1. Droste noise model (Droste, 2004)

2. Partial evaluation

3. Noisy fitness (Prügel-Bennet, Rowe, Shapiro, 2015)

Sufficient with mutation rate δ/(3n) and

Pr (x choosen | f(x) > f(y)) ≥ 1

2
+ δ with 1/δ ∈ poly(n)

(Dang & Lehre, GECCO 2014 & FOGA 2015)

Lower Bounds
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Lower Bounds

Problem
Consider a sequence of populations P1, . . . over a search space X ,
and a target region A ⊂ X (e.g., the set of optimal solutions), let

TA := min{ λt | Pt ∩A 6= ∅ }

We would like to prove statements on the form

Pr (TA ≤ t(n)) ≤ e−Ω(n). (2)

◮ i.e., with overwhelmingly high probability, the target region A
has not been found in t(n) evaluations

◮ lower bounds often harder to prove than upper bounds

◮ will present an easy to use method that is applicable in many
situations

Algorithms considered for lower bounds

Definition (Non-elitist EA with selection and mutation)

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select parent x from population Pt according to psel
Flip each position in x independently with probability χ/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by mutating the parent)

Assumptions

◮ population size λ ∈ poly(n), i.e. not exponentially large

◮ bitwise mutation with probability χ/n, but no crossover.

◮ results hold for any non-elitist selection scheme psel
that satisfy some mild conditions to be described later.

Reproductive rate7

Definition
For any population P = (x1, . . . , xλ) let psel(xi) be the
probability that individual xi is selected from the population P

◮ The reproductive rate of individual xi is λ · psel(xi).

◮ The reproductive rate of a selection mechanism
is bounded from above by α0 if

∀P ∈ Xλ, ∀x ∈ P λ · psel(x) ≤ α0

(i.e., no individual gets more than α0 offspring in expectation)

7The reproductive rate of an individual as defined here corresponds to the notion of
“fitness” as used in the field of population genetics, i.e., the expected number of
offspring.

(µ, λ)-selection mechanism

Probability of selecting i-th individual is pi ∈ {0, 1
µ
}.

◮ reproductive rate bounded by α0 = λ/µ
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Negative Drift Theorem for Populations (informal)

If individuals closer than b of target has reproductive rate
α0 < eχ,
then it takes exponential time ec(b−a) to reach within a of target.

Negative Drift Thm. for Populations [Lehre, 2011a]
Consider the non-elitist EA with

◮ population size λ = poly(n)

◮ bitwise mutation rate χ/n for 0 < χ < n

let T := min{t | H(Pt, x
∗) ≤ a} for any

x∗ ∈ {0, 1}n.

If there are constants α0 ≥ 1, δ > 0 and integers
a(n) and b(n) < n

χ
where b(n)− a(n) = ω(lnn),

st.

(C1) If a(n) < H(x, x∗) < b(n) then
λ · psel(x) ≤ α0.

(C2) ψ := ln(α0)/χ+ δ < 1

(C3) b(n) < min
{

n
5
, n
2

(

1−
√

ψ(2− ψ)
)}

then there exist constants c, c′ > 0 such that

Pr
(

T ≤ ec(b(n)−a(n))
)

≤ e−c′(b(n)−a(n)).

The worst individuals have low reproductive rate

Lemma
Consider any selection mechanism which for x, y ∈ P satisfies

(a) If f(x) > f(y), then psel(x) > psel(y).
(selection probabilities are monotone wrt fitness)

(b) If f(x) = f(y), then psel(x) = psel(y).
(ties are drawn randomly)

If f(x) = miny∈P f(y), then psel(x) ≤ 1/λ.
(individuals with lowest fitness have reproductive rate ≤ 1)

Proof.

◮ By (a) and (b), psel(x) = miny∈P psel(y).

◮ 1 =
∑

x∈P psel(x) ≥ λ ·miny∈P psel(y) = λ · psel(x).

Example 1: Needle in the haystack

Definition

Needle(x) =

{

1 if x = 1n

0 otherwise.

Theorem
The optimisation time of the non-elitist EA with any selection
mechanism satisfying the properties above8 on Needle is
at least ecn with probability 1− e−Ω(n) for some constant c > 0.

8From black-box complexity theory, it is known that Needle is hard for all search
heuristics (Droste et al 2006).
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Example 1: Needle in the haystack (proof9)

◮ Apply negative drift theorem with a(n) := 1.

◮ By previous lemma, can choose α0 = 1 for any b(n),
hence ψ = ln(α)/χ+ δ = δ < 1 for all χ and δ < 1.

◮ Choosing the parameters δ := 1/10 and b(n) := n/6 give

min

{

n

5
,
n

2

(

1−
√

ψ(2− ψ)
)

}

=
n

5
< b(n).

◮ It follows that Pr
(

T ≤ ec(b(n)−a(n))
)

≤ e−Ω(n).

9For simplicity, we assume that b(n) ≤ n/χ.

Exercise: Optimisation time on Jumpk

0 |x| (number of 1-bits) n

Fitness

Opt.
k

Jumpk(x) :=

{

0 if n− k ≤ |x| < n,

|x| otherwise.

Recipe

◮ a(n) = 1

◮ b(n) = k

◮ α0 = 1 as before

◮ small δ

When the best individuals have low reproductive
rate

Remark

◮ The negative drift conditions hold trivially
if α0 < eχ holds for all individuals.

Example (Insufficient selective pressure)

Selection mechanism Parameter settings

Linear ranking selection η < eχ

k-tournament selection k < eχ

(µ,λ)-selection λ < µeχ

Any in cellular EAs ∆(G) < eχ

Mutation-selection balance

χ
n0 2

n

λ
µ

1

7

exp

poly

Runtime
Example

The runtime T of a non-elitist EA with

◮ (µ, λ)-selection

◮ bit-wise mutation rate χ/n

◮ population size λ > c log(n)

on LeadingOnes has expected value

E [T ] =

{

eΩ(n) if λ < µeχ

O(nλ ln(λ) + n2) if λ > µeχ
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Mutation-selection balance

χ
n0 2

n

λ
µ

1

7

exp

poly

Runtime
Example

The runtime T of a non-elitist EA with

◮ (µ, λ)-selection

◮ bit-wise mutation rate χ/n

◮ population size λ > c log(n)

on LeadingOnes has expected value

E [T ] =

{

eΩ(n) if λ < µeχ

O(nλ ln(λ) + n2) if λ > µeχ

λ
µ > eχ

Other Example Applications

Expected runtime of EA with bit-wise mutation rate χ/n

Selection Mechanism High Selective Pressure Low Selective Pressure

Fitness Proportionate ν > fmax ln(2eχ) ν < χ/ ln 2 and λ ≥ n3

Linear Ranking η > eχ η < eχ

k-Tournament k > eχ k < eχ

(µ, λ) λ > µeχ λ < µeχ

Cellular EAs ∆(G) < eχ

Onemax O(nλ) eΩ(n)

LeadingOnes O(nλ ln(λ) + n2) eΩ(n)

Linear Functions O(nλ ln(λ) + n2) eΩ(n)

r-Unimodal O(rλ ln(λ) + nr) eΩ(n)

Jumpr O(nλ+ (n/χ)r) eΩ(n)

Fitness proportional selection + crossover Oliveto
and Witt [2014, 2015]

Definition (Simple Genetic Algorithm (SGA) (Goldberg 1989))

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to λ do

Select two parents x and y from Pt proportionally to fitness
Obtain z by applying uniform crossover to x and y with

p = 1/2
Flip each position in z independently with p = 1/n.
Let the i-th offspring be Pt+1(i) := x.
(i.e., create offspring by crossover followed by mutation)

Application to OneMax

Expected Behaviour

◮ Backward drift due to mutation close to the optimum

◮ no positive drift due to crossover

◮ selection too weak to keep positive fluctuations

Difficulties When Introducing Crossover:

◮ Variance of offspring distribution

◮ # flipping bits due to mutation Poisson-distributed→ variance
O(1)

◮ # of one-bits created by crossover binomially distributed according
to Hamming distance of parents and 1/2→ deviation Ω(

√
n)

possible
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Negative Drift Theorem With Scaling
Let Xt, t ≥ 0, random variable describing a stochastic process over
finite state space S ⊆ R;

If there ∃ interval [a, b] and, possibly depending on ℓ := b− a, bound
ǫ(ℓ) > 0 and scaling factor r(ℓ) st.

(C1) E(Xt+1 −Xt | X0, . . . , Xt ∧ a < Xt < b) ≥ ǫ,

(C2) Prob(|Xt+1 −Xt| ≥ jr | X0, . . . , Xt ∧ a < Xt) ≤ e−j

for j ∈ N0,

(C3) 1 ≤ r ≤ min{ǫ2ℓ,
√

ǫℓ/(132 log(ǫℓ)}.
then

Pr
(

T ≤ eǫℓ/(132r2)
)

= O(e−ǫℓ/(132r2)).

target
a b

drift away from target

no large jumps

start

Diversity

Xt: # individuals with 1 in some fixed position at time t

Assume uniform selection (and no mutation). Then:

◮ The probability crossover produces an individual with 1 in the
fixed position is (Xt = k):

◮
k
µ
· k
µ
+ 2 · 1

2
· k(µ−k)

µ2 = k
µ

◮ {Xt} ≈ B(µ, k/µ)  E(Xt | Xt−1 = k) = k
(martingale)

◮ But random fluctuations  absorbing state 0 or µ due to the
variance (E(T0∨µ) = O(µ logµ) [drift analysis]).

◮ Progress by crossover is at most n1/2+ǫ w.o.p. (Chernoff
Bounds when ones are n/2).

◮ If µ ≤ n1/2−ǫ a bit has converged to 0 before optimum is
found w.o.p.

Diversity

Xt: # individuals with 1 in some fixed position at time t

Assume uniform selection (and no mutation). Then:

◮ The probability crossover produces an individual with 1 in the
fixed position is (Xt = k):

◮
k
µ
· k
µ
+ 2 · 1

2
· k(µ−k)

µ2 = k
µ

◮ {Xt} ≈ B(µ, k/µ)  E(Xt | Xt−1 = k) = k
(martingale)

◮ But random fluctuations  absorbing state 0 or µ due to the
variance

Compare fitness-prop. and uniform selection:

◮ Basically no difference for small population bandwidth
(difference of best and worst OneMax-value in pop.)

◮ E(Xt | Xt−1 = k) = k ± 1/(7µ)

Result

Let µ ≤ n1/8−ǫ for an arbitrarily small constant ǫ > 0. Then
with probability 1− 2−Ω(nǫ/9), the SGA on OneMax does not
create individuals with more than (1 + c)n

2
or less than (1− c)n

2
one-bits, for arbitrarily small constant c > 0, within the first
2n

ǫ/10
generations. In particular, it does not reach the optimum

then.

Overall Proof Structure

Small
diversity

Small
bandw.

fitness-
prop.
≈ uni-
form

Drift n
2

init.

Not a loop, but in each step only exponentially small failure prob.
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Steady-state (µ+1) GA

Definition ((µ+1) GA)

P0 ← µ individuals, uniformly at random from {0, 1}n
for t = 1, 2, . . . until termination condition do

Select x and y from Pt unif. at random with replacement
Obtain z by applying uniform crossover to x and y with p = 1/2
Mutate each position in z independently with p = c/n
Select one element from P with lowest fitness and remove it.

Crossover allows faster escape from local optima
Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto,

Sudholt, and Sutton [2016]

Expected Runtimes (k > 2)

◮ (µ+1) EA with pm = 1/n: Θ(nk) (i.e., no crossover);

◮ (µ+1) GA with pm = 1/n: O(nk−1 logn) [µ = Θ(n)];

◮ (µ+1) GA with pm = (1 + δ)/n is O(nk−1) [µ = Θ(logn)].

The interplay between mutation and crossover can create diversity on the
top of the plateau; Then crossover + mutation can take advantage of the
diversity to jump more quickly.

Summary
◮ Runtime analysis of evolutionary algorithms

◮ mathematically rigorous statements about EA performance
◮ most previous results on simple EAs, such as (1+1) EA
◮ special techniques developed for population-based EAs

◮ Level-based method Corus et al. [2014]
◮ EAs analysed from the perspective of EDAs
◮ Upper bounds on expected optimisation time
◮ Example applications include crossover and noise

◮ Negative drift theorem Lehre [2011a]
◮ reproductive rate vs selective pressure
◮ exponential lower bounds
◮ mutation-selection balance

◮ Diversity + Bandwidth analysis for fitness proportional
selection
◮ analysis of crossover
◮ low selection pressure
◮ exponential lower bounds

◮ Speed-up via crossover for steady state GAs to escape local
optima
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