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Instructor
Mark Wineberg is an Associate Professor at the University of Guelph.  
  He has been actively researching the field of GEC since 

1993 while he was still a graduate student. Over the 
years he has published on various topics including: the 
intersection of GA and GP, enhancing the GA for 
improved behavior in dynamic environments through 
specialized multiple populations, and exploring the 
concept of distances and diversity in GA populations.  

  Prof. Wineberg also teaches an undergraduate course on 
computer simulation and modeling of discrete 
stochastic systems with an emphasis on proper 
statistical analysis, as well as a graduate course on 
experimental design and analysis for computer science, 
which is an outgrowth of the statistical analysis tutorial 
given at GECCO.
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Sampling From Two  
Normal Distributions
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Basic Statistical Tests

Part 1 - Point Estimation:  
Finding the Mean using  
Confidence Intervals

What Are We Interested In?

• For most statistical analysis for EC the question is 
• Is one way better than another way? 
• Statistically this translates into a statement about the 

difference between means:  “Is the difference between ‘my 
mean’ and ‘the other mean’ greater than zero?” 

• We will approach this question in 2 steps: 
1. What can we say about the true mean of a single distribution? 

• Called point estimation 
2. How can we compare the true means of two or more 

distributions?
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Sampling From Two 
Normal Distributions
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Basic Statistical Tests

Part 1 - Point Estimation: 
Finding the Mean using 
Confidence Intervals

What Are We Interested In?

• For most statistical analysis for EC the question is
• Is one way better than another way?
• Statistically this translates into a statement about the 

difference between means:  “Is the difference between ‘my 
mean’ and ‘the other mean’ greater than zero?”

• We will approach this question in 2 steps:
1. What can we say about the true mean of a single distribution?

• Called point estimation
2. How can we compare the true means of two or more 

distributions?

Confidence Intervals

-50 0 5-100 10018.1
[ ]

• The system has a true mean ... but where is it?
• Show a range within which the true mean (µ) likely lies

• Called the confidence interval
• Also provide the probability that µ lies with the CI

• Called the confidence level

Example:  
There is a 99% chance (the confidence level)
that µ lies in the interval [ -3 , 47 ]
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• Most common distribution used is the normal distribution 
• a.k.a.  Gaussian Distribution
• a.k.a   Bell Curve

Normal Distribution

~X N(µ, σ 2) pdf in R: dnorm(x,!μ,!σ)
cdf in R:!pnorm(x,!μ,!σ)

∝
1
ex

2fµ ,σ (x) =
1

σ 2π
e
−
(x−µ )2

2σ 2

• Most common distribution used is the normal distribution 
• a.k.a.  Gaussian Distribution
• a.k.a   Bell Curve

Standard Normal Distribution
~X N(0, 1) pdf in R: dnorm(x)

cdf in R:!pnorm(x)

Normal DistributionMost common distribution found in nature 
thanks to the Central Limit Theorem

∝
1
ex

2fµ ,σ (x) =
1

σ 2π
e
−
(x−µ )2

2σ 2

Distribution of the Average 
(of a normally distributed system)

The original distribution Average of 5 samples

Average of 25 samples Average of 100 samples

Distribution of the Average 
(of a normally distributed system)

Average of 5 samples

the variation of the ‘averages’ around the true mean 
is less than

 the variation of the original values around the true mean 

Variation around the average 
 

sX
2 =

1
n −1

(xi − x )
2

i=1

n

∑

The Sample Standard Deviation
 

sX =
1

n −1
(xi − x )

2

i=1

n

∑

The Standard Deviation
 

σ X = E((X − µX )
2

µX = µX

The average 
 

X = 1
n

xi
i=1

n

∑

The mean 
 

µX = pi ⋅ xi
i=1

n

∑
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Confidence Intervals

• Of course, we don’t know the true mean,    , or true standard 
deviation,   

• We do know the mean of the samples,    , the sample size, n, and 
the sample standard deviation, 

• If the source distribution is normally distributed, the shape as 
well as the size of the “finger” is known exactly!
• We can determine the odds that the true mean lies within a 

specified range of

Confidence Intervals

• First since     is normally distributed, we can turn it into a 
standard normal distribution
• subtract off the mean to zero it
• divide by the std deviation to give it a std deviation of 1

• also gives a variance of 1

Z =
X − µX

σ X

=
X − µX

σ X
n

 
Z 

X − µX

sX
=
X − µX

sX
n

Confidence Intervals

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Z =
X − µX

σ X

=
X − µX

σ X
n

But the denominator is no longer a scaler!

 
Z 

X − µX

sX
=
X − µX

sX
n

Confidence Intervals

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

But the denominator is no longer a scaler!
fk (x)∝

xk−1

ex
2 /2

Standard Deviation of the Normal Distribution: 
! ! The Chi Distribution

k = number of samples

from http://en.wikipedia.org/wiki/Chi_distribution
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Z  X − µX

sX
n

Confidence Intervals

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

This has a Student’s T distribution!

T = X − µX
sX
n

So we have a normal divided by a chi distribution

Confidence Intervals

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

So we have a normal divided by a chi distribution
This has a Student’s T distribution!

T =
X − µX

sX
=
X − µX

sX
n

fdf (x) ∝ 1+ x
2

df
⎛
⎝⎜

⎞
⎠⎟

−
df +1

2
≈

large x,df

1
xdf

Student’s T Distribution

df = n - 1

from http://en.wikipedia.org/wiki/T-distribution

Confidence Intervals

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

So we have a normal divided by a chi distribution
This has a Student’s T distribution!

T =
X − µX

sX
=
X − µX

sX
n f (x) ∝

large x

1
ex

2

Blue: Gaussian   
Red:  T with df = 1

Student’s T with various dfs

• Student T is “broader” than the Normal
• Student T goes to 0 much more slowly than the Normal

(has substantial probability of very large values)

fdf (x) ≈
large x,df

1
xdf

Student’s T  vs  Normal (Gaussian)

This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

n = 5
df = 4

Student T distribution

Confidence Intervals

[ ]Confidence Interval

CL = 0.95 95%
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This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

n = 5
df = 4

Student T distribution

Confidence Intervals
95% chance a randomly generated 

value from a T distribution 
will fall inside the CI (grey area)

t-value
α
2

α = 1−CL

–2.0 2.0

CL = 0.95
α
2

95%

This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

n = 5
df = 4

Student T distribution

Confidence Intervals
95% chance a randomly generated 

value from a T distribution 
will fall inside the CI (grey area)

t-value

–2.0 2.0

CL = 0.95 95%

α = 0.05

0.025 0.025

This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

n = 5
df = 4

Student T distribution

Confidence Intervals

• The confidence interval expands 
as the confidence level increases

t-value

Confidence Level → 99%

i.e  it is more likely that a t-value 
      (e.g. the true mean) will fall within 
      a larger CI than a smaller one

• The confidence interval expands 
as the confidence level increases

α = 0.01
CL = 0.99 99%

–4.6 4.6 This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Student T distribution

Confidence Intervals

t-value

CL = 0.99 99%

α = 0.01
Samples → 55

–2.7 2.7

• The confidence interval contracts 
as the number of samples increases

• The confidence interval expands 
as the confidence level increases

i.e. more samples produces 
 a smaller CI at the same CL

n = 55
df = 54
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This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Student T distribution

Confidence Intervals

t-value

99%

In general the CI can be 
represented as ... ±tα, df

Calculating the cut off            values 
using Excel:    =TINV(α, n - 1)
using R: ! -qt(1-α/2, n - 1)

tα , n−1

But how do we know 
what the CI values are?

This creates CIs for the T distribution with a mean of 0

–tα, df +tα, df This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Confidence Intervals

This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Confidence Intervals

Student T distribution

t-value

CL = 0.99 99%

α = 0.01

n = 55
df = 54

–tα, df +tα, df

≤≤
µX − X

sX
n

+tα, df–tα, df

This has a Student’s T distribution!
So we have a normal divided by a chi distribution

T =
X − µX

sX
=
X − µX

sX
n

• Want to find µ the true mean in terms of the average
• But we have not one but two unknowns - σ is also unknown
• One equation - two unknowns - not good!!!
• Trick - divide by the known sample standard deviation s instead of σ 

Confidence Intervals

Student T distribution

t-value

CL = 0.99 99%

α = 0.01

n = 55
df = 54

–tα, df +tα, df

Confidence Interval

X − tα ,df
sX
n ≤ µX ≤ X + tα ,df

sX
n

Rearranging terms 
    to isolate µX
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Estimating the Mean:
Confidence Intervals Around the Average

• Confidence Intervals can be written in 3 equivalent ways

Error Bounds

Confidence Intervals

µX = X ± tα
2 , n−1

sX
n

X − tα
2 , n−1

sX
n
≤ µX ≤ X + tα

2 , n−1

sX
n

µX ∈ X − tα
2 , n−1

sX
n
, X + tα

2 , n−1

sX
n

⎡
⎣⎢

⎤
⎦⎥

Estimating the Mean:
Confidence Intervals Around the Average

Example: 
• An experimenter runs a New Evolutionary  Algorithm on a TSP
• At the end of each run, the smallest length tour 

that had been found during the run was recorded
• NEA is run 50 times on the same TSP problem
• On average NEA found solutions with a tour length of 272 
• The standard deviation of these tours is 87
• We want to compute a Confidence Interval using a 99% Confidence level

Estimating the Mean:
Confidence Intervals Around the Average

• From the problem we know that the average NEA run produced tours of

with a 99% C.L.

so the ±t cutoff value is
using Excel/R we see that TINV(0.01, 49) = -qt(0.995, 49) = 2.68

We know that

• Also from the problem n = 50 and α = (1 - 0.99) = 0.01

that had

and so

i.e. there is only a 1% chance 
that the true mean lies outside 
the confidence interval formed 
around average 

µX = X ± tα
2 , n−1

sX
n

t 0.01
2 , 49

µX = 272 ± 2.68 87
50

= 272 ± 33

Basic Statistical Tests

Part 2 - Comparisons: 
 Non-Overlapping Confidence 
 Intervals and the Student’s T Test
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Using Confidence Intervals to 
Determine Whether My Way is Better

If we have two different EC systems how can we tell if one is better 
than the other?

Trivial method:  Find confidence intervals around both means

• If the CIs don't overlap 
• Then it is a rare occurrence when the two systems do have identical means
• The system with the better mean can be said to be better on average with a 

probability better than the Confidence Level
• If the CIs do overlap

• Can't say that the two systems are different with this technique
• Either:

1. The two systems are equivalent
2. We haven't sampled enough to discriminate between the two

Confidence Interval Example

-75 0 7510.5-9.7

µ σ
+10 10
-10 10

n X sX Lower Uppe
r100 10.5 10.0 3.3 7.2 13.8

100 -9.7 10.1 3.3 -13.1 -6.4

[ ]
[ ]

95% Confidence Level

Confidence Interval Example

-75 0 757.9-2.5

µ σ
+10 50
-10 50

n X sX Lower Uppe
r100 7.9 47.1 9.2 -1.3 17.1

100 -2.5 52.1 10.2 -12.7 7.7

[ ]
[ ]

95% Confidence Level

Improving the Sensitivity: 
The Student t Test

• The Student t Test is the basic test used in statistics
• Idea: Gain sensitivity by looking at the difference between the 

means of the two systems
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The Student t Test
Where the normalized difference falls on the t distribution determines whether 

difference expected if both systems were actually performing the same

99%

0 2.68-2.68

• Normalized difference called the t value

• Distribution again differs for different 
sample sizes

• Degrees of Freedom is now
 = (n – 1) + (n – 1)  = 2n – 2

• t test either succeeds or fails
• t value greater than cutoff for a 

given C.L. or not

Based on 50 runs
α = 0.01

99%

0

99%

0

2.68-2.68

2.68-2.68

The Student t Test: p-values

0

• The cut-off values produces a binary 
decision: true or false

• loses information
• Better to report the probability that two 

systems are different
• This is the complement of the probability 

that they are the same
• 1 – Pr(T < t score)
• Called the p-value

Based on 50 runs

0.5

0.15

0 2.4

0 1.1

0.01

t Test Step by Step

1. Compute the 2 averages X1 and X2

2. Compute standard deviations s1 and s2

3. Compute degrees of freedom: n1 + n2 – 2 = 2n – 2

4. Calculate T statistic:

5. Compute the p-value
• p-value = the area under the t distribution outside [-T, T]
• In Excel:  =TDIST(T, 2*n - 2, 2)

• The final “2” in Excel means “two-sided”

• In R:   > 2*pt(-T, 2*n - 2)

Variance Assumptions
and the T Test

σ1 = σ2 = σ  and n1 = n2 = n

σ1 = σ2 = σ  but n1 ≠ n2

In Excel: =ttest(A1:A50, B1:B50, 2, 2)
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Variance Assumptions
and the T Test

σ1  ≠ σ2  and n1 ≠ n2

called the Welch’s T test

Approximate variance 
not pooled

In Excel: =ttest(A1:A50, B1:B50, 2, 3)

t.test(): Welch’s vs Student’s

slightly modified for legibility

> t.test(OEA, NEA)
	 Welch Two Sample t-test
data:  OEA and NEA 
t = -2.2549, 	 df = 152.68, 	 p-value = 0.02556
alternative hypothesis: 
	 	 true difference in means is not equal to 0 
95 percent confidence interval:
 -4.7621535 		 -0.3143734 
 average of OEA  	 	 average of NEA
5.119665  	 	 	 7.657929 

n = 80 for both OEA and NEA

t.test(): Welch’s vs Student’s

slightly modified for legibility

n = 80 for both OEA and NEA
> t.test(OEA, NEA, var.equal=TRUE)	
	 Two Sample t-test
data:  OEA and NEA 
t = -2.2549, 	 df = 158, 	 	 p-value = 0.02551
alternative hypothesis: 
	 	 true difference in means is not equal to 0 
95 percent confidence interval:
 -4.7615555 		 -0.3149714 
 average of OEA  	 	 average of NEA 
5.119665  	 	 	 7.657929 

Tests on Non-Normally 
Distributed Random Variables

Non-Parametric Statistics
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When The Normality Fails

• Everything so far has depended on the assumption of normality 
which in turn depends on the Central Limit Theorem holding
• But this is not always true
• In in many areas of CS it rarely holds

• Problems occur when
• …you have a non-zero probability of obtaining infinity

• Mean and standard deviation are infinite!
• …the sample average depends highly on a few scores

• When the mean of your distribution is not measuring what you want, 
consider using the median instead (rank-based statistics)

• …you don’t know how fast your sample series converges to normal
• if your sample average distribution converges very slowly than the number 

of samples may be insufficient to  assume normality

So what should we do?

First test for normality
• Many such tests
• Recommended

• Normal Probability Plot 
(QQ plot: sorted data vs Normal quantiles)

• Lilliefors test (variant of the KS test)

So what should we do?

There are 3 basic remedial measures:
1. Transforming data to make them normally distributed

• also called data re-expression
• traditional approach (required before the advent of fast computers)

2. Resampling techniques
3. Non-parametric statistics

Non-Parametric Statistics

• Basic Idea
• Sort the data and then rank them
• Use Ranks instead of actual values to perform statstics

• Also known as 
• order statistics, 
• ordinal statistics 
• rank statistics

• Measures how interspersed the samples are from the 2 treatments
• If the result is “alternating” it is assumed that there is no difference

• Can’t be affected by outliers (extrememly large or small values)
• Just the highest or lowest rank 
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Non-Parametric Tests

• Reason behind the appropriateness of non-parametric tests
• Both the sum of ranks and average of ranks will be approximately 

normally distributed 
• because of the Central Limit Theorem, 
• as long as we have 5 or more samples 

• result is independent of the underlying distribution
• Ranked T-test

• Perform a t test on the ranks of the values 
• instead of the values themselves

• 2 other techniques with similar results are commonly seen
• Wilcoxon’s Rank-Sum test
• Mann-Whitney U test
• All are effectively equivalent

A 0.03
A 0.91

A 0.64

A 0.99

A 0.64

A 0.16

A 0.16

A 0.91

A 0.16

A 0.27

B 0.64

B 0.08

B 0.16

B 0.27

B 0.02

B 0.01

B 0.16

B 0.03

B 0.03

B 0.64
Ranked Example

Two data sets
combined 

into a single
array

A 0.99 1
A 0.91 2

A 0.91 3

A 0.64 4

A 0.64 5

B 0.64 6

B 0.64 7

A 0.27 8

B 0.27 9

A 0.16 10

A 0.16 11

A 0.16 12

B 0.16 13

B 0.16 14

B 0.08 15

A 0.03 16

B 0.03 17

B 0.03 18

B 0.02 19

B 0.01 20

Give each data element 
its corresponding rank

ranks

Sort

Ranked Example

Replace tied ranks 
with average tied ranks

ranks

t1 2.5
t2 5.5

t3 8.5

t4 12

t5 17

Average tied ranks
together

A 0.99 1
A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

B 0.64 5.5

B 0.64 5.5

A 0.27 8.5

B 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

B 0.16 12

B 0.16 12

B 0.08 15

A 0.03 17

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

t1

t1

t2

t2

t2

t2

t3

t3

t4

t4

t4

t4

t4

t5

t5

t5

Ranked Example

Perform t test on Ranks

ranks

Arank Brank

avg 7.85 13.15
stdDev 5.28 5.33

Ranked t Test

2.37

2.23 
p-value 0.038

n = 10

tR score

A 0.99 1
A 0.91 2.5

A 0.91 2.5

A 0.64 5.5

A 0.64 5.5

A 0.27 8.5

A 0.16 12

A 0.16 12

A 0.16 12

A 0.03 17

B 0.64 5.5

B 0.64 5.5

B 0.27 8.5

B 0.16 12

B 0.16 12

B 0.08 15

B 0.03 17

B 0.03 17

B 0.02 19

B 0.01 20

Resort by treatment

618



A Non-Parametric ‘Mean’: 
The Median

• Average of a data set that is not normally distributed 
produces a value that behaves non-intuitively
• Especially if the probability distribution is skewed

• Large values in ‘tail’ can dominate
• Average tends to reflect the typical value of the “worst” data

not the typical value of the data in general

• Instead use the Median
• 50th percentile
• Counting from 1, it is the value in the 

• If n is even, (n+1)/2 will be between 2 positions, 
average the values at that position

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative 
upper tail probability of α/2
• b will have a value near n/2

• The lower percentile l =

• The upper percentile u = 1 – l
  
• Confidence Interval is [valuel,valueu]

• i.e. 
• With a confidence level of 

A Confidence Interval Around 
the Median: Thompson-Savur

• Find the b the binomial value that has a cumulative 
upper tail probability of α/2
• b will have a value near n/2

• The lower percentile l =

• The upper percentile u = 1 – l
  
• Confidence Interval is [valuel,valueu]

• i.e. 
• With a confidence level of 

However: Thompson-Savur is not common

Usually a Box-Plot is used to show where the “mass” 
of the data points are (based on interquartile range)

Box-Plot has the advantage of finding potential 
outliers

Box Plot: Example
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Thompson-Savur: Example

R:> boxplot(NEA)
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Thompson-Savur: Example

R:> boxplot(NEA)
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Thompson-Savur: Example

R:> boxplot(NEA)
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R:> boxplot(OEA)

Effect Size and Repetitions
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Does My Difference Matter?

• Okay, so your results are significantly better than the 
published results.  So what?
• Statistics can answer, “is it better?”, but not “does it matter?”

• You perform 100 000 runs of your classifier and
100 000 runs of the reference classifier
• You get a t score of 31.6!  !
• The p-score is reported by Excel as 0!  (Actually 2.0x10-219)
• But…your way classifies data at 91.0% accuracy, whereas the 

reference technique classifies at 90.8% accuracy.
• Not much difference!

• Especially if your technique is much slower than the reference way

Measuring Effect Size

• One statistic for effect size:  Cohen’s d'
• d' is computed by

 
• Measures the difference between means in terms of 

the pooled standard deviation
• Cohen suggests that 0.25 is a small difference; 0.50 is 

a medium-sized difference; 0.75 is a large difference
• For our example, d' is 0.10

• Essentially an insignificant difference

• Problem:  we did too many runs!

Repetitions

• What is the number of repetitions needed to see 
if there is a difference between two means or 
between two medians?
• Depends on the underlying distributions

• But underlying distributions are unknown

• Rule of thumb for t-tests…
• Perform a minimum of 30 repetitions for each system
• Performing 50 to 100 repetitions is usually better

ANOVA: Analysis of Variance

Part 1a: Multi-Level Analysis
 Basic Concept

621



More Than 2 Levels
• Preceding stats to be used for simple experiment designs
• More sophisticated stats needs to be done if:

• Comparing multiple systems instead of just 2 systems
• E.g. comparing the effect on a Genetic Algorithm of using 

no mutation, low, medium and high levels of mutation

• We say there are 4 levels of the mutation variable

• Need                 possible comparisons to test all pairs of levels

• Called a ‘multi-level’ analysis

4
2

⎛
⎝⎜

⎞
⎠⎟
= 6

no xover xover = 1pt xover = 2pt xover = 3pt xover = 4pt
4.3 8.8 5.0 6.3 5.4
3.7 7.7 5.3 6.6 5.9
4.7 8.3 5.1 7.2 5.4
3.7 8.1 5.2 7.4 5.4
4.2 8.1 5.5 7.4 6.2
3.6 8.0 4.9 7.3 6.7

avg fitness 4.02 8.13 5.09 7.02 5.76
std dev 0.451 0.313 0.424 0.478 0.471

Analysis of Variance (ANOVA)

avg fitness 4.02 8.13 5.09 7.02 5.76

Fitness
Values

all pairwise T test

Question:
Do crossover settings make a difference at all?

Comparing Variances

• Up to now we have been comparing means
• Student’s T test (difference between means)

• From here on we will be comparing variances
• This is why it is called “Analysis of Variance”
• Remember - compare the ratio of variances 

•  see if it equals 1
• distribution known: F distribution

The F Test

From Wikipedia: http://en.wikipedia.org/wiki/F_distribution

p-valueF*

F* =
sX1
2

sX2
2
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ANOVA: Discrete Levels
Average of Y (no model)
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ANOVA: Discrete Levels

s2 = 1
n −1

(yi − y )
2∑

Variance of Y (no model)
represented as a std deviation

nT = 100total reps:

0

2.0

4.0

6.0

8.0

10.0

ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

Add average for each level
a model of the behavior of the system

SStotal
nT −1

r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

SStotal
nT −1

Subtract the level average from each level
leaving the residuals (errors)

r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

Compute the Variance of the Residuals

MSerrorMStotal

r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

 1MSerror

MStotal

Compare the two variances 
using the “F test”

F* =r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

MSerror

MStotal

Problem: Variances must be 
independent for the F test

F* =r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

MSerror

MStotal

Problem: Variances must be 
independent for the F test

F* =r = 5levels:
n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

MSerror

Problem: Variances must be 
independent for the F test

F* = (SStotal − SSerror) / (dftotal − dferror)
r = 5levels:

n = 20reps per level:

nT = 100total reps:
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ANOVA: Discrete Levels

no 1pt 2pt 3pt 4pt

MSerror

Problem: Variances must be 
independent for the F test

F* = MSmodel

If test fail: (advanced technique)
use weighted least squares regression using
- indicator variables for the different levels 

         as the weight as the weight for the ith level
- Generalized ANOVA using regression

Assumption: 
variance for every level is the same and equals

Test for equivalent variances:
modified Levene’s test (more powerful F test)

σ 2

r = 5levels:
n = 20reps per level:

nT = 100total reps:

ANOVA table for example

Source df SS  MS F-ratio Prob
const 1 3592.9 3592.9 13967  ≤ 0.0001
xover 4 210.9 52.7 204.94  ≤ 0.0001
Error 95 24.4 0.257  
Total 99 235.3   

F test (From Excel)
F* = MSmodel

MSerror
= 52.7
0.257

= 204.94 fdist(204.94, 4, 95) = 8.19E-46

from DataDesk
Non-parametric ANOVA

• Again, what happens if Y (or actually ε) is not normally 
distributed?

• Various non-parametric techniques
• Kruskal-Wallis first such test

• However, even simpler technique
• Like Spearman’s correlation coefficient and non-parametric regression, 

replace the Yi values with their corresponding ranks
• Perform ANOVA on ranked values as usual

• A slightly more accurate version is called the Friedman test
• Same as above, except 

• the F distribution is replaced by the Chi-Squared distribution 
(DofF = r – 1) for large n or r (n > 15 or r > 4) 

•  a special purpose distribution for small n or r
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ANOVA: Analysis of Variance

Part 1b: Multi-Level Analysis
 Pairwise Comparisons
 Post-Hoc Analysis

Pairwise Comparisons 
between Factor-Level Means

• What if we want to know more detailed information?
• Which of the means is the significantly different one?
• Are there more than one significantly different mean?
• If so, what are the pair-wise differences and are they 

statistically significant?

Pairwise Comparisons 
between Factor-Level Means

• This is determined by a series of pair-wise T tests

• However, commonly uses pooled information from the 
model for the variance to provide greater accuracy

• Called standard error

t value = X1 − X2
sX1
2

n1
+
sX2
2

n2

Xi − Xj

MSE
n1

+ MSE
n2

comparing level i with level j 
across the ANOVA modeloriginal T test comparison

t value =

Pairwise Comparisons 
between Factor-Level Means

• This is determined by a series of pair-wise T tests

• However, commonly uses pooled information from the 
model for the variance to provide greater accuracy

• Called standard error

t value = X1 − X2
sX1
2

n1
+
sX2
2

n2

Xi − Xj

MSE
n1

+ MSE
n2

comparing level i with level j 
across the ANOVA modeloriginal T test comparison

t value =

Assumption: variances for each factor level is the same (     )  
                     which is best estimated  by the MSE 

σ 2
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Multiple Levels: 
Post-hoc Analysis

• For 4 levels of mutation there are 6 comparisons possible
• Each one of the comparison holds at a 95% C.L. independent 

of the other comparisons
• If all comparisons are to hold at once the odds are 

0.95 x 0.95 x 0.95 x … x 0.95 = (0.95)6 = 0.735
• So in practice we only have 73.5% C.L

• Wrong 1/4 of the time

• For 7 levels of mutation there are 21 comparisons 
possible
• C.L. =  (0.95)21 = 0.341

• Chances are better than half that at least one of the decisions may be 
wrong!

The Bonferroni Correction
• To correct, choose a smaller α

• Where m is the number of comparisons
• So for 95% CL use α = 0.025/6 = 0.004167
• For a Z test the critical value changes from 1.96 to 2.64

• You should apply the Bonferroni (etc.) correction:
• To t tests (t tests and ranked t tests)
• To Confidence Intervals and Error Bounds
• Whenever you mean "all the significant results we found hold at once"

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.15 -27.5 18 3.6E-15
n - 3 -3.18 0.16 -20.5 18 6.3E-13
2 - 1 -3.04 0.16 -20.2 18 8.4E-13
3 - 2 2.16 0.17 13.7 18 5.5E-10
4 - 1 -2.09 0.17 -12.7 18 2.0E-09
n - 4 -1.95 0.17 -11.4 18 1.1E-08
4 - 3 -1.22 0.18 -7.1 18 1.3E-05
n - 2 -1.00 0.16 -6.3 18 5.8E-05
4 - 2 0.95 0.16 5.6 18 2.6E-04
3 - 1 -0.86 0.15 -5.6 18 2.6E-04

Regular Pair-wise T test (with Bonf. Correction)

Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.16 -25.2 95 7.7E-43
n - 3 -3.18 0.16 -19.8 95 1.7E-34
2 - 1 -3.04 0.16 -19.0 95 4.8E-33
3 - 2 2.16 0.16 13.6 95 6.0E-23
4 - 1 -2.09 0.16 -13.0 95 7.5E-22
n - 4 -1.95 0.16 -12.2 95 4.4E-20
4 - 3 -1.22 0.16 -7.6 95 1.8E-10
n - 2 -1.00 0.16 -6.2 95 1.2E-07
4 - 2 0.95 0.16 5.9 95 4.8E-07
3 - 1 -0.86 0.16 -5.4 95 5.1E-06

ANOVA Pair-wise T test (with Bonf. Correction)
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Pairwise Comparisons 
between Factor-Level Means

 Diff std. err. t-value df p-value
n - 1 -4.04 0.16 -25.2 95 7.7E-43
n - 3 -3.18 0.16 -19.8 95 1.7E-34
2 - 1 -3.04 0.16 -19.0 95 4.8E-33
3 - 2 2.16 0.16 13.6 95 6.0E-23
4 - 1 -2.09 0.16 -13.0 95 7.5E-22
n - 4 -1.95 0.16 -12.2 95 4.4E-20
4 - 3 -1.22 0.16 -7.6 95 1.8E-10
n - 2 -1.00 0.16 -6.2 95 1.2E-07
4 - 2 0.95 0.16 5.9 95 4.8E-07
3 - 1 -0.86 0.16 -5.4 95 5.1E-06

ANOVA Pair-wise T test (with Bonf. Correction)

stdError = MSerror
ni

+ MSerror
nj

= 2 ⋅MSerror
n

= 2*0.257
20

= 0.1604

df = nT − r = rn − r = 5*20 − 5
= 95

t - value = Diff
stdError

Diff = Yi• −Yj•

p-value = m * tdist(t-value, df, two-sided)
= 10 * tdist(t-value, 95, 2)

Student-T with Bonf. Correction

Other Post-Hoc Corrections

• Holm -Sidak (really Bonferroni done “right”)
• Order the p-values from smallest to largest
• Compare the smallest p-value to α/k (regular Bonferroni)
• If that p-value is less than α/k, then accept that alternative hypothesis 
• Now look at the next smallest p-value at  α / (k − 1)
• Continue until the p-value is not smaller than the modified value
• At that point, stop and accept all the rest as null hypotheses

Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons 

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be apriori

Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons 

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be apriori
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Other Post-Hoc Corrections

• Tukey 
• Used when comparing all pair-wise differences 

• produces narrower confidence intervals 
than Bonferonni in this situation 

• usual situation when trying to order results
• e.g. comparing 5 different EC systems
• Found out that EC3 > EC2 | EC5 > EC1 > EC4

• Note: Although there are 4 comparison symbols above, 
there are really 6 comparisons 

• actually there are 5C2 = 10 implicit comparisons 
• because we did not know 

how many comparisons there would be apriori

Note: 
! Pair-wise statistical comparisons form a partial order
! Consequently best represented as a DAG not a list

E.g.: ! EC3 | EC2 | EC5 | EC1 | EC4

 Yet (EC3 > EC5 , EC1 , EC4), (EC2 > EC1 , EC4) and (EC5 > EC4)

EC3

EC2

EC1

EC4

EC5

]

]

]
]

Other Post-Hoc Corrections

• Tukey
• Same as T test except uses the q distribution instead of the t distribution

• q(1 - α, r, nT - r) value is the cut off value 
where the difference observed would be less than this value 
 with a probability of 1 - α 
if r values are sampled from a normal distribution N(0,1) 

• DofF = nT - r 
• q distribution is called the studentized range distribution

• q “broader” than t, 
• q is not as “broad” as t after Bonferroni correction

• q distribution is not in Excel, 
but it is in most other stats packages including R

Other Post-Hoc Corrections

• Tukey
• Same as T test except uses the q distribution instead of the t distribution

• q(1 - α, r, nT - r) value is the cut off value 
where the difference observed would be less than this value 
 with a probability of 1 - α 
if r values are sampled from a normal distribution N(0,1) 

• DofF = nT - r 
• q distribution is called the studentized range distribution

• q “broader” than t, 
• q is not as “broad” as t after Bonferroni correction

• q distribution is not in Excel, 
but it is in most other stats packages including R

If the computed standardized difference is larger than q, 
where q is the largest distance one would expect from a normal distribution, 
then the difference is statistically real (with confidence level 1 - α)

Other Post-Hoc Corrections

• Many others
• Scheffé 

• used when comparing pairs, and triples and quadruples etc., not just 
pairs

• many many others
• Duncan's multiple range test
• The Nemenyi test
• The Bonferroni–Dunn test 
• Newman-Keuls post-hoc analysis
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ANOVA: Analysis of Variance

Part 2: Multi-Factor ANOVA
 Main Effects 
 Interaction Effects

Multiple Factors: 
Factorial Design

E.g. if we have 2 EC systems, new and standard (New and Std)
and we want to see their behavior under 
• crossover and no crossover (x and x)
• 3 different selection pressures (p1, p2 and p3)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
S new new new new new new std std std std std std

X x x x x x x x x x x x x

P p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Multiple Factors: 
Factorial Design

E.g. if we have 2 EC systems, new and standard (New and Std)
and we want to see their behavior under 
• crossover and no crossover (x and x)
• 3 different selection pressures (p1, p2 and p3)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
S new new new new new new std std std std std std

X x x x x x x x x x x x x

P p1 p2 p3 p1 p2 p3 p1 p2 p3 p1 p2 p3

Statistical Terminology
factor: dependent variable (not-stochastic)

• S, X, P
levels: values that the factors can equal

• S has 2 levels: new, std
• P has 3 levels: p1, p2, p3

treatment: an instantiation where each factor 
is set to a particular level

• S = std; X = x; P = p2

Two Factor Analysis

• What do we want to know?
• Whether the new system is better than the old system 

overall?
• Whether the performance is better using crossover or 

without?
• But probably also…

• The new system is better than the old system 
given that crossover is used

• The old system is better than the new system 
given that crossover is not used

• This is called an interaction
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Two Factor Analysis

• What do we want to know?
• Factor A main effect
• Factor B main effect
• But probably also…

• Factor A and Factor B levels interact
• Called an interaction term 

• Linear Model
• Y = A + B + AB + ε

error term

Multi-Factor ANOVA:
Results Report

Source df SS  MS F-ratio p-value
Const 1 16970 16970 12930  ≤ 0.0001
S 1 113 113 86.5  ≤ 0.0001
X 1 775 775 591.0  ≤ 0.0001
P 2 939 469.5 357.7  ≤ 0.0001 
S*X 1 4.05 4.05 3.1 0.0809
S*P 2 307 153.5 116.8  ≤ 0.0001
X*P 2 0.570 0.285 0.217 0.8049
S*X*P 2 0.308 0.154 0.117 0.8892
Error 168 220.5 1.312  
Total 179 2360.12

nT = 180

n = 15

a = 2
b = 2
c = 3

Part 3

Regression 
by means of Least Squares

Linear Regression
Fitness (F)

60

150

120

90

3 Fi = 72 + εF

Factor in  Population Size

E(εF ) = 0
V(εF ) = σ F

2
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Linear Regression

Population Size (p)
250 500 750 1000

Fitness (F)

60

150

120

90

3 Fi = 0.12pi + ε

Factor in  Population Size

E(ε) = 0
V(ε) = σ 2V(ε) = σ 2

Factor in  Population Size

Linear Regression

x

Y

Yi = f (xi )+ ε

E(ε) = 0
V(ε) = σ 2V(ε) = σ 2

18

Modeling Response Behavior: 
Treating X as a factor

• Simplest model - linear relationship

Yi = β0 +β1xi +ε
f (xi ) = β0 + β1xiYi = f (xi )+ ε with

Two parameters β0 and β1 
define the function

0

0.5000

1.0000

1.5000

2.0000

0 0.2500 0.5000 0.7500 1.0000

Linear Regression 
by Means of Least Squares

• Idea: 
• From sample pairs {(Y1, x1), (Y2, x2), … , (Yn, xn)} 

determine b0, b1
• Estimates of the two unknowns β0, β1

Ŷi = b0 + b1xiYi = β0 +β1xi +ε

• chosen such that the sum of squared errors is minimized
• i.e. find the model that has 

 the smallest (least) total squared error
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• Idea: 
• From sample pairs {(Y1, x1), (Y2, x2), … , (Yn, xn)} 

determine b0, b1
• Estimates of the two unknowns β0, β1

Linear Regression 
by Means of Least Squares

Ŷi = b0 + b1xiYi = β0 +β1xi +ε

• chosen such that the sum of squared errors is minimized
• i.e. find the model that has 

 the smallest (least) total squared error

Sum of Squared Errors
SSE = ei

2∑

Error
ei = Yi − Ŷ

Error
ei = Yi − b0 − b1xi

Squared Error
ei
2 = (Yi − b0 − b1xi )

2

Find the linear function

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Linear Regression 
by Means of Least Squares

Fn

0

0.8

1.6

0 0.45 0.90

error

e1
e3

e7

e8

e9
e10

Linear Regression 
by Means of Least Squares

Poor choice

Fn

Sum of squared error
is large

0

0.8

1.6

0 0.45 0.90
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Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Fn

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Sum of squared error
reduced

Fn

Better

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Fn

Linear Regression 
by Means of Least Squares

0

0.8

1.6

0 0.45 0.90

Fn

Best

Minimized
Sum of squared error
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• Determine 

•  Find b0, b1 such that

• Use calculus (minimum finding)
• Take partial derivatives wrt b0 and b1

• set to zero
• two equations, two unknowns ... solve

Ŷi = b0 + b1Xi

min ei
2

i=1

n

∑ =min (Yi −b0 −b1xi )
2

i=1

n

∑

Linear Regression 
by Means of Least Squares

Ŷi = b0 + b1Xi• Determine 

•  Solution

Linear Regression 
by Means of Least Squares

b1 =
(xi − x )(Y −Yi )

i=1

n

∑

(xi − x )
2

i=1

n

∑
= cov(x,Y )

var(x)
=
Sxy
Sx
2

b0 =Y −b1x

b0 (Y intercept)  is also a random variable

b1 (Slope)   is a random variable 
                     i.e has a probability distribution

• linear combinations of normally distributed 
 random variables are normally distributed

• so ... 35

What are the distributions 
of b1 and b0?

b1 can be rewritten as

b1 = kiYi
i=1

n

∑

• since the xi are constant 
b1 is a linear combination of Yi’s

ki =
(xi − x )
(xi − x )

2∑where

b0 =Y −b1xand

• linear combinations of normally distributed 
 random variables are normally distributed

• so ... 35

What are the distributions 
of b1 and b0?

b1 can be rewritten as

b1 = kiYi
i=1

n

∑

• since the xi are constant 
b1 is a linear combination of Yi’s

ki =
(xi − x )
(xi − x )

2∑whereif Y is normally distributed, 
 b1 is normally distributed

same for  b0b0 =Y −b1xand
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37

Expectation and Variance 
of b1 and b0

E(b0 ) = β0

b1 and b0 can be thought of as sample means

E(b1) = β1

sb1
2 = MSerror

nSx
2V (b1) =

σY
2

nSx
2 ⇒

V (b0 ) = 1+ x
2

Sx
2

⎛
⎝⎜

⎞
⎠⎟
σY
2

n
⇒ sb0

2 = 1+ x
2

Sx
2

⎛
⎝⎜

⎞
⎠⎟
MSerror
n

and they have associated variances

x

Y

x

Y

Confidence Interval 
around the Slope
±tα ,n−2sb0β1 = b1

±tα ,n−2sb1β0 = b0

Confidence Interval 
around the Intercept

x

Y

x

Y

Confidence Bands

x

Y

x

Y

kα ,n,X = 2Fα /2,2,n−2
MSE
nSX

2

⎡

⎣
⎢

⎤

⎦
⎥

1/2

Ŷ = b1x + b0 ± kα ,n,X SX
2 + (x − X)2⎡⎣ ⎤⎦

1/2
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43

T test to see if a the slope is 
statistically significant

• To see if the slope b1 is statistically different from 0 
• use the T test

• and find the corresponding p-value
• because we we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b1 − 0)
Sb1

= b1
Sb1

43

T test to see if a y intercept is 
statistically significant

• To see if the regression line goes through the origin
check if b0 is statistically different from 0

• use the T test

• and find the corresponding p-value
• again because we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b0 − 0)
Sb0

= b0
Sb0

43

T test to see if a y intercept is 
statistically significant

• To see if the regression line goes through the origin
check if b0 is statistically different from 0

• use the T test

• and find the corresponding p-value
• again because we originally estimated 2 parameters use

 
 df = n – 2 – 1 = n – 3

T = (b0 − 0)
Sb0

= b0
Sb0

These confidence intervals and tests 
are very important to perform. 

Yet they are not commonly done!

Part 4

Multi-factor and Polynomial 
Regression
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• General model for one factor

• General model for multiple factors
• Note: still not a multivariate analysis – error term still additive to the 

(now multiple) factors – factors themselves not stochastic

Yi = f (xi )+ ε
random variable

random variable
where E(ε) = 0

represents the true 
distribution of Y

non-random variable

Multifactor Regression

 Yi = f (x1, i , x2, i ,, xk , i )+ ε

40

Multifactor Regression
• Assume linear combination of factors … simplest fn 

• Just 
• take the partial derivative of the squared error function for 

each parameter
• Set each derivative to zero to find the maximum
• Solve the set of linear equations

• k unknown parameters, k equations

 Yi = β0 + β1x1, i + β2x2, i ++ βk xk , i + ε

 Ŷi = b0 + b1x1, i + b2x2, i ++ bkxk , i⇒

43

T test to see if a factor is 
statistically significant

• Each factor bi has known estimated variance
• Found analogously to b1 and b0

• To see if the factor is meaningful, 
see if bi is statistically different from 0 
• using the T test

• find the corresponding p-value
• because we are estimating k parameters use df = n – k – 1

T = (bi − 0)
Sbi

= bi
Sbi

This is very important to compute!!! Yet not commonly provided. 44

Polynomial Regression
• One trick is to set x2 = x2, x3 = x3, etc.

• This can be done since each factor is not a random variable, 
just a regular variable

• Since it is known that any function can be formed through a 
linear combination of polynomial variables (a power series), 
we can now regress against any function!!
• We must know the function to regress against

• Again called the model
• Must check to see if each term is statistically significant

• Use T test from previous slide
• If a term is not significant, eliminate it from the model and apply least 

squares again on simpler model
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Polynomial Regression E.g.

0

0.3750

0.7500

1.1250

1.5000

0 0.2500 0.5000 0.7500 1.0000

Use multiple factor least squares 
using const, x, x2, x3, x4 as factors R squared = 70.2%     R squared (adjusted) = 70.1%

s =  0.1466  with  1000 - 5 = 995  degrees of freedom 

Source" " Sum of Squares" df" Mean Square" F-ratio
Regression" 50.4708" " 4" 12.6177" " 587
Residual" 21.3783" " 995"  0.0215"
" " " "
Variable"" Coefficient" s.e. of Coeff" t-ratio" p-value
Constant"  0.515460" 0.0236" "  21.9"  ≤ 0.0001
X" " -2.27114"" 0.3210" " -7.07"  ≤ 0.0001
X^2" "  8.87396"" 1.303" "  6.81"  ≤ 0.0001
X^3" " -6.94563"" 1.968" " -3.53"  0.0004
X^4" "  0.331472" 0.9828" "  0.337"  0.7360

Polynomial Regression E.g.

R squared = 70.2%     R squared (adjusted) = 70.1%
s =  0.1466  with  1000 - 5 = 995  degrees of freedom 

Source" " Sum of Squares" df" Mean Square" F-ratio
Regression" 50.4708" " 4" 12.6177" " 587
Residual" 21.3783" " 995"  0.0215"
" " " "
Variable"" Coefficient" s.e. of Coeff" t-ratio" p-value
Constant"  0.515460" 0.0236" "  21.9"  ≤ 0.0001
X" " -2.27114"" 0.3210" " -7.07"  ≤ 0.0001
X^2" "  8.87396"" 1.303" "  6.81"  ≤ 0.0001
X^3" " -6.94563"" 1.968" " -3.53"  0.0004
X^4" "  0.331472" 0.9828" "  0.337"  0.7360

Polynomial Regression E.g.

X^4 is not statistically significant 
… reduce the number of terms by one

R squared = 70.2%     R squared (adjusted) = 70.2%
s =  0.1465  with  1000 - 4 = 996  degrees of freedom 

Source" " Sum of Squares" df" Mean Square" F-ratio
Regression" 50.4684" " 3" 16.8228" " 784
Residual" 21.3807" " 996" 0.021467"
" " " "
Variable"" Coefficient" s.e. of Coeff" t-ratio" p-value
Constant"  0.510755" 0.0190" "  26.9"  ≤ 0.0001
X" " -2.17801"" 0.1636" " -13.3"  ≤ 0.0001
X^2" "  8.45358"" 0.3813" "  22.2"  ≤ 0.0001
X^3" " -6.28741"" 0.2515" " -25.0"  ≤ 0.0001

Polynomial Regression E.g.
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R squared = 70.2%     R squared (adjusted) = 70.2%
s =  0.1465  with  1000 - 4 = 996  degrees of freedom 

Source" " Sum of Squares" df" Mean Square" F-ratio
Regression" 50.4684" " 3" 16.8228" " 784
Residual" 21.3807" " 996" 0.021467"
" " " "
Variable"" Coefficient" s.e. of Coeff" t-ratio" p-value
Constant"  0.510755" 0.0190" "  26.9"  ≤ 0.0001
X" " -2.17801"" 0.1636" " -13.3"  ≤ 0.0001
X^2" "  8.45358"" 0.3813" "  22.2"  ≤ 0.0001
X^3" " -6.28741"" 0.2515" " -25.0"  ≤ 0.0001

Polynomial Regression E.g.

All factors statistically significant 
… regression function is a cubic polynomial

0

0.3750

0.7500

1.1250

1.5000

0 0.2500 0.5000 0.7500 1.0000

Polynomial Regression E.g.
Y = −6.29x3 + 8.45x2 − 2.18x + 0.51

Actual model used to generate the data: Y = −6.x3 + 8x2 − 2x + 0.5 + ε

References: Books

• Mathematical statistics with applications
• Dennis D. Wackerly, William Mendenhall, Richard L. Scheaffer.
• Boston : Duxbury Press, (6th Ed.)
• Introductory material - probability distributions, simple sample statistics 
• Easy to understand concrete proofs and examples - good exercises

• Applied linear statistical models
• Michael H. Kutner, Christopher J. Nachtsheim, John Neter, William Li
• Boston: McGraw-Hill Irwin, 2005. (5th Ed.)
• Advanced Regression techniques, ANOVA, and GLM

• Nonparametric statistical methods 
• Myles Hollander and Douglas A. Wolfe.
• New York: Wiley, 1973
• Classic nonparametric statistics textbook (very practical)

Online Resources

• Websites
• Wikipedia (various pages)

• http://en.wikipedia.com 
• HyperStat Online

• http://davidmlane.com/hyperstat
• Mathworld

• http://mathworld.wolfram.com/
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