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Optimization

min f (x), x = (x1, . . . , xn) ∈ Rn (1)

s.t. : g(x) ≤ 0 (2)

h(x) = 0 (3)

Can be converted to unconstrained optimization using:

Penalty method;

Lagrangian;

Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to walk
before we can run.
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Large Scale Global Optimization (LSGO)

How large is large?

The notation of large-scale is not fix.

Changes over time.

Differs from problem to problem.

The dimension at which existing methods start to fail.

State-of-the-art (EC)

Binary: ≈ 1 billion [a].

Integer (linear): ≈ 1 billion [b], [c].

Real: ≈ 1000-5000.

[a] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation
of distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577–584.

[b] Kalyanmoy Deb and Christie Myburgh. “Breaking the Billion-Variable Barrier in Real-World Optimization
Using a Customized Evolutionary Algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2016,
pp. 653–660.

[c] Kalyanmoy Deb and Christie Myburgh. “A population-based fast algorithm for a billion-dimensional resource
allocation problem with integer variables”. In: European Journal of Operational Research 261.2 (2017),
pp. 460–474.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 4 / 84807



Large Scale Global Optimization: Applications

Why large-scale optimization is important?

Growing applications in various fields.
◮ Target shape design optimization [a].
◮ Satellite layout design [b].
◮ Parameter estimation in large scale biological systems [c].
◮ Seismic waveform inversion [d].
◮ Parameter calibration of water distribution systems [e].
◮ Vehicle routing [f].

[a] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”.
In: Applied Soft Computing 48 (Nov. 2016), pp. 672–682.

[b] Hong-Fei Teng et al. “A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module
layout design”. In: IEEE transactions on evolutionary computation 14.3 (Dec. 2010), pp. 438–455.

[c] Shuhei Kimura et al. “Inference of S-system models of genetic networks using a cooperative coevolutionary
algorithm”. In: Bioinformatics 21.7 (Apr. 2005), pp. 1154–1163.

[d] Chao Wang and Jinghuai Gao. “High-dimensional waveform inversion with cooperative coevolutionary
differential evolution algorithm”. In: IEEE Geoscience and Remote Sensing Letters 9.2 (Mar. 2012), pp. 297–301.

[e] Yu Wang et al. “Two-stage based ensemble optimization framework for large-scale global optimization”. In:
European Journal of Operational Research 228.2 (2013), pp. 308–320.

[f] Yi Mei, Xiaodong Li, and Xin Yao. “Cooperative coevolution with route distance grouping for large-scale
capacitated arc routing problems”. In: IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 435–449.
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Large Scale Global Optimization: Research
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Large Scale Global Optimization: Research
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The Challenge of Large Scale Optimization

Why is it difficult?

Exponential growth in the size of search space (curse of
dimensionality).

Research Goal

Improving search quality (get to the optimal point).

Improving search efficiency (get there fast).
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Large Scale Global Optimization: Evolutionary Approaches

1 Initialization

2 Sampling and Variation Operators

3 Approximation and Surrogate Modeling

4 Local Search and Memetic Algorithms

5 Decomposition and Divide-and-Conquer

6 Parallelization (GPU, CPU)

7 Hybridization
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Initialization Methods

Study the importance of initialization methods [1] in large-scale
optimization.

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “A review of population initialization techniques for evolutionary
algorithms”. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE. 2014, pp. 2585–2592.
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Initialization Methods

Inconclusive evidence for or against initialization methods:
◮ Uniform design works worse than RNG, while good-lattice point and

opposition-based methods perform better [1].
◮ Another study showed that population size has a more significant effect

than the initialization [2].
◮ Achieving uniformity is difficult in high-dimensional spaces [3].
◮ Yet another study suggest comparing average performances may not

reveal the effect of initialization [4].

Shortcomings:
◮ It is difficult to isolate the effect of initialization.
◮ Different effect on different algorithms (mostly tested on DE).
◮ Numerous parameters to study.

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Initialization methods for large scale global optimization”. In: IEEE
Congress on Evolutionary Computation. IEEE. 2013, pp. 2750–2757.

[2] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Effects of population initialization on differential evolution for large
scale optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2014, pp. 2404–2411.

[3] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Why advanced population initialization techniques perform poorly in
high dimension?” In: SEAL. 2014, pp. 479–490.

[4] Eduardo Segredo et al. “On the comparison of initialisation strategies in differential evolution for large scale optimisation”.
In: Optimization Letters (2017), pp. 1–14.
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Sampling and Variation Operators

Opposition-based sampling [1]

Center-based sampling [2].

Quantum-behaved particle swarm [3].

Competitive Swarm Optimizer [4].

Social learning PSO [5].

Mutation operators [6], [7].

[1] Hui Wang, Zhijian Wu, and Shahryar Rahnamayan. “Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems”. In: Soft Computing 15.11 (2011), pp. 2127–2140.

[2] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. “Center-based initialization of cooperative co-evolutionary
algorithm for large-scale optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 3557–3565.

[3] Deyu Tang et al. “A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous
non-linear large scale problems”. In: Information Sciences 289 (2014), pp. 162–189.

[4] Ran Cheng and Yaochu Jin. “A competitive swarm optimizer for large scale optimization”. In: IEEE Transactions on
Cybernetics 45.2 (2015), pp. 191–204.

[5] Ran Cheng and Yaochu Jin. “A social learning particle swarm optimization algorithm for scalable optimization”. In:
Information Sciences 291 (2015), pp. 43–60.

[6] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and cross-cluster
mutation”. In: Applied Soft Computing 36 (2015), pp. 300–314.

[7] Ali Wagdy Mohamed and Abdulaziz S Almazyad. “Differential Evolution with Novel Mutation and Adaptive Crossover
Strategies for Solving Large Scale Global Optimization Problems”. In: Applied Computational Intelligence and Soft Computing
2017 (2017).
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Approximation Methods and Surrogate Modeling

High-Dimensional Model Representation (HDMR) [1].

Radial Basis Functions [2].

Kriging and Gradient-Enhanced Kriging Metamodels [3].

Piecewise Polynomial (Spline) [4].

[1] Enying Li, Hu Wang, and Fan Ye. “Two-level Multi-surrogate Assisted Optimization method for high dimensional nonlinear
problems”. In: Applied Soft Computing 46 (2016), pp. 26–36.

[2] Rommel G Regis. “Evolutionary programming for high-dimensional constrained expensive black-box optimization using
radial basis functions”. In: IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 326–347.

[3] Selvakumar Ulaganathan et al. “A hybrid sequential sampling based metamodelling approach for high dimensional
problems”. In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 1917–1923.

[4] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”. In: Applied
Soft Computing 48 (Nov. 2016), pp. 672–682.
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Local Search and Memetic Algorithms

Multiple Trajectory Search (MTS) [1].

Memetic algorithm with local search chaining [2].
◮ MA-SW-Chains [3].
◮ MA-SSW-Chains [4].

Multiple offspring sampling (MOS) [5], [6].

[1] Lin-Yu Tseng and Chun Chen. “Multiple trajectory search for large scale global optimization”. In: IEEE Congress on
Evolutionary Computation. IEEE. 2008, pp. 3052–3059.

[2] Daniel Molina, Manuel Lozano, and Francisco Herrera. “Memetic algorithm with local search chaining for large scale
continuous optimization problems”. In: IEEE Congress on Evolutionary Computation. IEEE. 2009, pp. 830–837.

[3] Daniel Molina, Manuel Lozano, and Francisco Herrera. “MA-SW-Chains: Memetic algorithm based on local search chains
for large scale continuous global optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2010, pp. 1–8.

[4] Daniel Molina et al. “Memetic algorithms based on local search chains for large scale continuous optimisation problems:
MA-SSW-Chains”. In: Soft Computing 15.11 (2011), pp. 2201–2220.

[5] Antonio LaTorre, Santiago Muelas, and José-Maŕıa Peña. “Multiple offspring sampling in large scale global optimization”.
In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–8.

[6] Antonio LaTorre, Santiago Muelas, and José-Maŕıa Peña. “A MOS-based dynamic memetic differential evolution algorithm
for continuous optimization: a scalability test”. In: Soft Computing 15.11 (2011), pp. 2187–2199.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 14 / 84

Parallelization

Algorithms capable of parallelization [1], [2].

GPU [3], [4].

CPU/OpenMP [5].

[1] Jing Tang, Meng Hiot Lim, and Yew Soon Ong. “Diversity-adaptive parallel memetic algorithm for solving large scale
combinatorial optimization problems”. In: Soft Computing 11.9 (2007), pp. 873–888.

[2] Hui Wang, Shahryar Rahnamayan, and Zhijian Wu. “Parallel differential evolution with self-adapting control parameters
and generalized opposition-based learning for solving high-dimensional optimization problems”. In: Journal of Parallel and
Distributed Computing 73.1 (2013), pp. 62–73.

[3] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation of
distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577–584.

[4] Alberto Cano and Carlos Garćıa-Mart́ınez. “100 Million dimensions large-scale global optimization using distributed GPU
computing”. In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 3566–3573.

[5] AJ Umbarkar. “OpenMP Genetic Algorithm for Continuous Nonlinear Large-Scale Optimization Problems”. In:
International Conference on Soft Computing for Problem Solving. Springer. 2016, pp. 203–214.
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Hybridization (The best of both worlds)

Rationale: benefiting from unique features of different optimizers.
◮ EDA+DE: [1].
◮ PSO+ABC: [2].
◮ Different DE variants: JADE+SaNSDE [3].
◮ PSO+ACO [4].
◮ Minimum Population Search+CMA-ES [5].

[1] Yu Wang, Bin Li, and Thomas Weise. “Estimation of distribution and differential evolution cooperation for large scale
economic load dispatch optimization of power systems”. In: Information Sciences 180.12 (2010), pp. 2405–2420.

[2] LN Vitorino, SF Ribeiro, and Carmelo JA Bastos-Filho. “A hybrid swarm intelligence optimizer based on particles and
artificial bees for high-dimensional search spaces”. In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–6.

[3] Sishi Ye et al. “A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization”. In: IEEE
Congress on Evolutionary Computation. IEEE. 2014, pp. 1277–1284.

[4] Wu Deng et al. “A novel two-stage hybrid swarm intelligence optimization algorithm and application”. In: Soft
Computing 16.10 (2012), pp. 1707–1722.

[5] Antonio Bolufé-Röhler, Sonia Fiol-González, and Stephen Chen. “A minimum population search hybrid for large scale
global optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2015, pp. 1958–1965.
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Decomposition Methods

Divide-and-conquer

Dimensionality reduction
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Variable Interaction, Linkage, Epistasis

What is variable interaction?

Genetics: two genes are said to interact with each other if they collectively
represent a feature at the phenotype level.

The extent to which the fitness of one gene can be suppressed by another gene.

The extent to which the value taken by one gene activates or deactivates the effect
of another gene.

Why variable interaction?

The effectiveness of optimization algorithms is affected by how much
they respect variable interaction.

Also applies to classic mathematical programming methods.
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Variable Interaction, Linkage, Epistasis

Illustrative Example

f (x , y) = x2 + λ1y
2

g(x , y) = x2 + λ1y
2 + λ2xy

Improvement Interval
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Definitions

Variable Interaction

A variable xi is separable or does not interact with any other variable iff:

arg min
x

f (x) =
(
arg min

xi

f (x), arg min
∀xj ,j 6=i

f (x)
)
,

where x = (x1, . . . , xn)
⊤ is a decision vector of n dimensions.

Partial Separability

A function f (x) is partially separable with m independent subcomponents iff:

arg min
x

f (x) =
(
arg min

x1

f (x1, . . . ), . . . , arg min
xm

f (. . . , xm)
)
,

x1, . . . , xm are disjoint sub-vectors of x, and 2 ≤ m ≤ n.

Note: a function is fully separable if sub-vectors x1, . . . , xm are 1-dimensional (i.e.,
m = n).
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Definitions

Full Nonseparability

A function f (x) is fully non-separable if every pair of its decision variables interact with
each other.

Additive Separability

A function is partially additively separable if it has the following general form:

f (x) =
m∑

i=1

fi (xi ) ,

where xi are mutually exclusive decision vectors of fi , x = (x1, . . . , xn)
⊤ is a global

decision vector of n dimensions, and m is the number of independent subcomponents.
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Effect of Variable Interaction

Sampling and Variation Operators:

GAs: inversion operator to promote tight linkage [1].
◮ Increasing the likelihood of placing linked genes close to each other to

avoid disruption by crossover.
◮ Rotation of the landscape has a detrimental effect on GA [2].

The need for rotationally invariance:
◮ Model Building Methods:

⋆ Estimation of Distribution Algorithms and Evolutionary Strategies:
Covariance Matrix Adaptation.

⋆ Bayesian Optimization: Bayesian Networks.

◮ DE’s crossover is not rotationally invariant.
◮ PSO is also affected by rotation [3].

[1] David E Goldberg, Robert Lingle, et al. “Alleles, loci, and the traveling salesman problem”. In: International Conference
on Genetic Algorithms and Their Applications. Vol. 154. 1985, pp. 154–159.

[2] Ralf Salomon. “Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey
of some theoretical and practical aspects of genetic algorithms”. In: BioSystems 39.3 (1996), pp. 263–278.

[3] Daniel N Wilke, Schalk Kok, and Albert A Groenwold. “Comparison of linear and classical velocity update rules in particle
swarm optimization: Notes on scale and frame invariance”. In: International journal for numerical methods in engineering 70.8
(2007), pp. 985–1008.
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Effect of Variable Interaction

1 Approximation and Surrogate Modelling:
◮ Should be able to capture variable interaction.
◮ Second order terms of HDMR.

2 Local Search and Memetic Algorithms:
◮ What subset of variables should be optimized in each iteration of local

search?
◮ Coordinate-wise search may not be effective. Memetics perform well on

separable functions! A coincidence?!

3 Decomposition and Divide-and-Conquer:
◮ Interacting variables should be placed in the same component.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 23 / 84

Linkage Learning and Exploiting Modularity

Implicit Methods:
◮ In EC:

⋆ Estimation of Distribution Algorithms
⋆ Bayesian Optimization: BOA, hBOA, Linkage Trees
⋆ Adaptive Encoding, CMA-ES

◮ Classic Optimization:
⋆ Quasi-Newton Methods: Approximation of the Hessian.

Explicit Methods:
◮ In EC:

⋆ Random Grouping
⋆ Statistical Correlation-Based Methods
⋆ Delta Grouping
⋆ Meta Modelling
⋆ Monotonicity Checking
⋆ Differential Grouping

◮ Classic Optimization
⋆ Block Coordinate Descent
⋆ Adaptive Coordinate Descent
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Implicit Methods

Scaling Up EDAs:
◮ Model Complexity Control [1].
◮ Random Matrix Projection [2].
◮ Use of mutual information [3].
◮ Cauchy-EDA [4].

Scaling up CMA-ES:
◮ CC-CMA-ES [5].
◮ LM-CMA [6].

[1] Weishan Dong et al. “Scaling up estimation of distribution algorithms for continuous optimization”. In: IEEE
Transactions on Evolutionary Computation 17.6 (2013), pp. 797–822.

[2] Ata Kabán, Jakramate Bootkrajang, and Robert John Durrant. “Toward large-scale continuous EDA: A random matrix
theory perspective”. In: Evolutionary Computation 24.2 (2016), pp. 255–291.

[3] Qi Xu, Momodou L Sanyang, and Ata Kabán. “Large scale continuous EDA using mutual information”. In: IEEE
Congress on Evolutionary Computation. IEEE. 2016, pp. 3718–3725.

[4] Momodou L Sanyang, Robert J Durrant, and Ata Kabán. “How effective is Cauchy-EDA in high dimensions?” In: IEEE
Congress on Evolutionary Computation. IEEE. 2016, pp. 3409–3416.

[5] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution”. In:
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350–357.

[6] Ilya Loshchilov. “LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization”. In: Evolutionary
Computation (2015).
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Scalability issues of EDAs

Accurate estimation requires a large sample size which grows
exponentially with the dimensionality of the problem [1].

A small sample results in poor estimation of the eigenvalues [2].

The cost of sampling from a multi-dimensional Gaussian distribution
increases cubically with the problem size [3].

[1] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. Springer series in
statistics Springer, Berlin, 2001.

[2] Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”. In: arXiv preprint arXiv:1011.3027
(2010).

[3] Weishan Dong and Xin Yao. “Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms”.
In: Information Sciences 178.15 (2008), pp. 3000–3023.
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Random Projection EDA
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Explicit Methods

A large problem can be subdivided into smaller and simpler problems.

Dates back to René Descartes (Discourse on Method).

Has been widely used in many areas:
◮ Computer Science: Sorting algorithms (quick sort, merge sort)
◮ Optimization: Large-scale linear programs (Dantzig)
◮ Politics: Divide and rule (In Perpetual Peace by Immanuel Kant: Divide et impera

is the third political maxims.)

Acknowledgement: the above image is obtained from: http://draininbrain.blogspot.com.au/

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 28 / 84813



Decomposition in EAs: Cooperative Co-evolution [1]

[1] Mitchell A. Potter and Kenneth A. De Jong. “A cooperative coevolutionary approach to function optimization”. In: Proc.
Int. Conf. Parallel Problem Solving from Nature. Vol. 2. 1994, pp. 249–257.
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CC is a Framework

CC as a scalability agent:

CC is not an optimizer.

Requires a component optimizer.

CC coordinates how the component optimizer is applied to
components.

A scalability agent.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 30 / 84

Challenges of CC

Main Questions
1 How to decompose the problem?

2 How to allocated resources?

3 How to coordinate?
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The Decomposition Challenge

How to decompose?

There are many possibilities.

Which decomposition is the best?

Optimal decomposition

It is governed by the interaction structure of decision variables.

An optimal decomposition is the one that minimizes the interaction
between components.
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Survey of Decomposition Methods
Uninformed Decomposition [1]

◮ n 1-dimensional components (the original CC)
◮ k s-dimensional components.

Random Grouping [2]

Statistical Correlation-Based Methods

Delta Grouping [3]

Meta Modelling [4]

Monotonicity Checking [5]

Differential Grouping [6]

[1] F. van den Bergh and Andries P Engelbrecht. “A cooperative approach to particle swarm optimization”. In: IEEE
Transactions on Evolutionary Computation 2.3 (June 2004), pp. 225–239.

[2] Zhenyu Yang, Ke Tang, and Xin Yao. “Large scale evolutionary optimization using cooperative coevolution”. In:
Information Sciences 178.15 (2008), pp. 2985–2999.

[3] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale
non-separable function optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2010, pp. 1–8.

[4] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. “Cooperative co-evolution with a new
decomposition method for large-scale optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2014,
pp. 1285–1292.

[5] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction learning”.
In: Parallel Problem Solving from Nature. Springer. 2010, pp. 300–309.

[6] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378–393.
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Illustrative Example (Canonical CC)

x1

x2 x5
x7

x6
x3

x4

Figure: Variable interaction of a hypothetical function.

n 1-dimensional components:
◮ C1: {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}
◮ C2: {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}
◮ ...
◮ Cc : {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}
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Illustrative Example (fixed k s-dimensional)

x1

x2 x5
x7

x6
x3

x4

Figure: Variable interaction of a hypothetical function.

k s-dimensional (k = 2, s = 4):
◮ C1: {x1, x2, x3, x4}, {x5, x6, x7}
◮ C2: {x1, x2, x3, x4}, {x5, x6, x7}
◮ ...
◮ Cc : {x1, x2, x3, x4}, {x5, x6, x7}
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Illustrative Example (Random Grouping)

x1

x2 x5
x7

x6
x3

x4

Figure: Variable interaction of a hypothetical function.

Random Grouping (k = 2, s = 4):
◮ C1: {x2, x3, x6, x5}, {x7, x1, x4}
◮ C2: {x3, x4, x1, x2}, {x6, x7, x5}
◮ ...
◮ Cc : {x1, x5, x6, x7}, {x2, x4, x3}
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Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables
x1, x2, ..., xv into one subcomponent for at least k cycles is:

P(X ≥ k) =
N∑

r=k

(
N

r

)(
1

mv−1

)r (
1− 1

mv−1

)N−r

(4)

where N is the number of cycles, v is the total number of interacting
variables, m is the number of subcomponents, and the random variable X
is the number of times that v interacting variables are grouped in one
subcomponent.
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Random Grouping

Example

Given n = 1000, m = 10, N = 50 and v = 4, we have:

P(X ≥ 1) = 1− P(X = 0) = 1−
(
1− 1

103

)50

= 0.0488

which means that over 50 cycles, the probability of assigning 4 interacting
variables into one subcomponent for at least 1 cycle is only 0.0488. As we
can see this probability is very small, and it will be even less if there are
more interacting variables.
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Figure: Increasing v , the number of interacting variables will significantly decrease
the probability of grouping them in one subcomponent, given n = 1000 and
m = 10.
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Illustrative Example (Informed with Fixed Groups)

x1

x2 x5
x7

x6
x3

x4

Figure: Variable interaction of a hypothetical function.

Delta Grouping (k = 2, s = 4):
◮ C1: {x1, x5, x2, x4}, {x3, x6, x7}
◮ C2: {x3, x5, x6, x7}, {x1, x2, x4}
◮ ...
◮ Cc : {x3, x6, x1, x4}, {x2, x5, x7}
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Delta Grouping

Improvement Interval
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Infomred Decompositions with Fixed Groups

Adaptive Variable Partitioning [1].

Delta Grouping [2].

Min/Max-Variance Decomposition (MiVD/MaVD) [3].
◮ Sorts the dimensions based on the diagonal elements of the covariance

matrix in CMA-ES.

Fitness Difference Partitioning [4], [5], [6].

[1] Tapabrata Ray and Xin Yao. “A cooperative coevolutionary algorithm with correlation based adaptive variable
partitioning”. In: IEEE Congress on Evolutionary Computation. IEEE. 2009, pp. 983–989.

[2] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale
non-separable function optimization”. In: IEEE Congress on Evolutionary Computation. IEEE. 2010, pp. 1–8.

[3] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution”. In:
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350–357.

[4] Eman Sayed, Daryl Essam, and Ruhul Sarker. “Dependency identification technique for large scale optimization problems”.
In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–8.

[5] Eman Sayed et al. “Decomposition-based evolutionary algorithm for large scale constrained problems”. In: Information
Sciences 316 (2015), pp. 457–486.

[6] Adan E Aguilar-Justo and Efrén Mezura-Montes. “Towards an improvement of variable interaction identification for
large-scale constrained problems”. In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 4167–4174.
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Infomred Decompositions with Variable Groups

Multilevel Grouping: MLCC [1], MLSoft [2].

Adaptive Variable Partitioning 2 [3].

4CDE [4].

Fuzzy Clustering [5].

[1] Zhenyu Yang, Ke Tang, and Xin Yao. “Multilevel cooperative coevolution for large scale optimization”. In: IEEE Congress
on Evolutionary Computation. IEEE. 2008, pp. 1663–1670.

[2] Mohammad Nabi Omidvar, Yi Mei, and Xiaodong Li. “Effective decomposition of large-scale separable continuous functions
for cooperative co-evolutionary algorithms”. In: IEEE Congress on Evolutionary Computation. IEEE. 2014, pp. 1305–1312.

[3] Hemant Kumar Singh and Tapabrata Ray. “Divide and conquer in coevolution: A difficult balancing act”. In:
Agent-Based Evolutionary Search. Springer, 2010, pp. 117–138.

[4] Yazmin Rojas and Ricardo Landa. “Towards the use of statistical information and differential evolution for large scale
global optimization”. In: International Conference on Electrical Engineering Computing Science and Automatic Control. IEEE.
2011, pp. 1–6.

[5] Jianchao Fan, Jun Wang, and Min Han. “Cooperative coevolution for large-scale optimization based on kernel fuzzy
clustering and variable trust region methods”. In: IEEE Transactions on Fuzzy Systems 22.4 (2014), pp. 829–839.
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Illustrative Example (Exact Methods)

x1

x2 x5
x7

x6
x3

x4

Figure: Variable interaction of a hypothetical function.

Differential Grouping and Variable Interaction Learning:
◮ C1: {x1, x2, x4}, {x3, x5, x6, x7}
◮ C2: {x1, x2, x4}, {x3, x5, x6, x7}
◮ ...
◮ Cc : {x1, x2, x4}, {x3, x5, x6, x7}
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Monotonicity Check

∃ x, x ′i , x ′j :f (x1, ..., xi , ..., xj , ..., xn) < f (x1, ..., x
′
i , ..., xj , ..., xn)∧

f (x1, ..., xi , ..., x
′
j , ..., xn) > f (x1, ..., x

′
i , ..., x

′
j , ..., xn)

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 46 / 84

Monotonicity Check (Algorithms)

Linkage Identification by Non-Monotonicity Detection [1]

Adaptive Coevolutionary Learning [2]

Variable Interaction Learning [3]

Variable Interdependence Learning [4]

Fast Variable Interdependence [5]

[1] Masaharu Munetomo and David E Goldberg. “Linkage identification by non-monotonicity detection for overlapping
functions”. In: Evolutionary Computation 7.4 (1999), pp. 377–398.

[2] Karsten Weicker and Nicole Weicker. “On the improvement of coevolutionary optimizers by learning variable
interdependencies”. In: IEEE Congress on Evolutionary Computation. Vol. 3. IEEE. 1999, pp. 1627–1632.

[3] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction learning”.
In: Parallel Problem Solving from Nature. Springer. 2010, pp. 300–309.

[4] Liang Sun et al. “A cooperative particle swarm optimizer with statistical variable interdependence learning”. In:
Information Sciences 186.1 (2012), pp. 20–39.

[5] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and cross-cluster
mutation”. In: Applied Soft Computing 36 (2015), pp. 300–314.
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Differential Grouping [1]

Theorem

Let f (x) be an additively separable function. ∀a, b1 6= b2, δ ∈ R, δ 6= 0, if
the following condition holds

∆δ,xp [f ](x)|xp=a,xq=b1 6= ∆δ,xp [f ](x)|xp=a,xq=b2 , (5)

then xp and xq are non-separable, where

∆δ,xp [f ](x) = f (. . . , xp + δ, . . . )− f (. . . , xp , . . . ), (6)

refers to the forward difference of f with respect to variable xp with
interval δ.

[1] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378–393.
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Separability ⇒ ∆1 = ∆2

Assuming:

f (x) =
m∑

i=1

fi(xi )

We prove that:
Separability ⇒ ∆1 = ∆2

By contraposition (P ⇒ Q ≡ ¬Q ⇒ ¬P):
∆1 6= ∆2 ⇒ non-separability

or
|∆1 −∆2| > ǫ ⇒ non-separability
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Deductive Reasoning

Strong Syllogism

A ⇒ B

A is true

∴ B is true

A ⇒ B

B is false

∴ A is false

Weak Syllogism

A ⇒ B

A is false

∴ B is less plausible

A ⇒ B

B is true

∴ A is more plausible
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Deductive Reasoning - Example

Strong Syllogism

Rain ⇒ Cloud

It is rainy

∴ It is cloudy

Rain ⇒ Cloud

It is not cloudy

∴ It is not rainy

Weak Syllogism

Rain ⇒ Cloud

It is not rainy

∴ Cloud becomes less likely

Rain ⇒ Cloud

It is cloudy

∴ Rain becomes more likely
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The Differential Grouping Algorithm

Detecting Non-separable Variables

|∆1 −∆2| > ǫ ⇒ non-separability

Detecting Separable Variables

|∆1 −∆2| ≤ ǫ ⇒ Separability (more plausible)
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Example

Consider the non-separable objective function f (x1, x2) = x21 + λx1x2 + x22 ,
λ 6= 0.

∂f (x1, x2)

∂x1
= 2x1 + λx2.

This clearly shows that the change in the global objective function with
respect to x1 is a function of x1 and x2. By applying the Theorem:

∆δ,x1[f ] =
[
(x1 + δ)2 + λ(x1 + δ)x2 + x22

]
−
[
x21 + λx1x2 + x22

]

= δ2 + 2δx1 + λx2δ.
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Differential Grouping vs CCVIL
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Figure: Detection of interacting variables using differential grouping and CCVIL
on different regions of a 2D Schwefel Problem 1.2.
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Differential Grouping Family of Algorithms

Linkage Identification by Non-linearity Check (LINC, LINC-R) [1]

Differential Grouping (DG) [2]

Global Differential Grouping (GDG) [3]

Improved Differential Grouping (IDG) [4]

eXtended Differential Grouping (XDG) [5]

Graph-based Differential Grouping (gDG) [6]

Fast Interaction Identification [7]
[1] Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama. “Linkage identification by nonlinearity check for real-coded

genetic algorithms”. In: Genetic and Evolutionary Computation–GECCO 2004. Springer. 2004, pp. 222–233.

[2] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378–393.

[3] Yi Mei et al. “Competitive Divide-and-Conquer Algorithm for Unconstrained Large Scale Black-Box Optimization”. In:
ACM Transaction on Mathematical Software 42.2 (June 2015), p. 13.

[4] Mohammad Nabi Omidvar et al. IDG: A Faster and More Accurate Differential Grouping Algorithm. Technical Report
CSR-15-04. University of Birmingham, School of Computer Science, Sept. 2015.

[5] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large scale global
optimization with direct and indirect variable interactions”. In: Genetic and Evolutionary Computation Conference. ACM.
2015, pp. 313–320.

[6] Yingbiao Ling, Haijian Li, and Bin Cao. “Cooperative co-evolution with graph-based differential grouping for large scale
global optimization”. In: International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. IEEE.
2016, pp. 95–102.

[7] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimization”. In:
Information Sciences 381 (2017), pp. 142–160.
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Shortcomings of Differential Grouping

Cannot detect the overlapping functions.

Slow if all interactions are to be checked.

Requires a threshold parameter (ǫ).

Can be sensitive to the choice of the threshold parameter (ǫ).
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Algorithm 1: DG2

(Λ,F, f̌, fbase, Γ) = ISM(f , n, x, x);

Θ = DSM(Λ,F, f̌, fbase, n);
(k , y1, . . . , yk) = ConnComp(Θ) ;
xsep = {}, g = 0;

for i = 1 → k do
if |yi | = 1 then

xsep = xsep ∪ yi ;
else

g = g + 1, xg = yi ;
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Differential Grouping 2

x1

x2

x3

1

3
2

(a, b, c) (a, b′, c)

(a′, b′, c)(a′, b, c)

(a, b, c ′)

(a′, b, c ′)

(a, b′, c ′)

Figure: Geometric representation of point generation in DG2 for a 3D function.

x1↔x2:∆
(1)

=f (a′, b, c)−f (a, b, c),∆(2)=f (a′, b′, c)−f (a, b′, c)

x1↔x3:∆
(1)

=f (a′, b, c)−f (a, b, c),∆(2)=f (a′, b, c ′)−f (a, b, c ′)

x2↔x3:∆
(1)

=f (a, b′, c)−f (a, b, c),∆(2)=f (a, b′, c ′)−f (a, b, c ′),
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Algorithm 2: ISM

Λ = 0n×n;
Fn×n = NaNn×n ; // matrix of all NaNs

f̌n×1 = NaNn×1 ; // vector of all NaNs

x(1) = x, fbase = f (x(1)), Γ = 1;
m = 1

2 (x+ x);
for i = 1 → n − 1 do

if ¬isnan(̌fi ) then
x(2) = x(1), x

(2)
i = mi ;

f̌i = f (x(2)), Γ = Γ + 1;

for j = i + 1 → n do
if ¬isnan(̌fi) then

x(3) = x(1), x(3)j = mj ;

f̌j = f (x(3)), Γ = Γ + 1;

x(4) = x(1), x
(4)
i = mi , x

(4)
j = mj ;

Fij = f (x(4)), Γ = Γ + 1;

∆(1) = f̌i − f (x(1));

∆(2) = Fij − f̌j ;

Λij = |∆(1) −∆(2)|;
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DG2: Accuracy

n = ±s × βe−p,

0 1 2 3 4 5 6 7

Figure: Non-uniform distribution of floating-point numbers for a hypothetical
system (β = 2, emin = −1, emax = 3, and p = 3). The vertical bars denote all the
representable numbers in this system.

Theorem

If x ∈ R lies in the range of F, then

fl(x) = x(1 + δ), |δ| < µM,

where µM is called the unit roundoff, which is equal to 1
2β

1−p .
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DG2: Accuracy

Theorem

Given a floating-point number system that satisfies IEEE 754such that
|δi | < µM. We have:

k∏

i=1

(1 + δi )
ei = 1 + θk , (7)

where
|θk | ≤

µM

1− nµM
:= γk , ei = ±1,

provided that kµM < 1.
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DG2: Accuracy

∆̂1= f (x)⊖ f (x′)=(f (x)− f (x′))(1 + δ1)=∆(1)(1 + δ1),

∆̂2= f (y) ⊖ f (y′)=(f (y)− f (y′))(1 + δ2)=∆(2)(1 + δ2),

λ̂ = |∆̂1 ⊖ ∆̂2| = |∆̂1 − ∆̂2|(1 + δ3)

=
∣∣f (x)(1 + δ1)(1 + δ3)− f (x′)(1 + δ1)(1 + δ3)

− f (y)(1 + δ2)(1 + δ3) + f (y′)(1 + δ2)(1 + δ3)
∣∣ .
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DG2: Accuracy

|λ− λ̂| ≤ γ2

∣∣∣
(
f (x) − f (x′)

)
−

(
f (y)− f (y′)

) ∣∣∣ (8)

= γ2

∣∣∣
(
f (x) + f (y′)

)
−

(
f (y) + f (x′)

) ∣∣∣

≤ γ2 ·max
{(

f (x) + f (y′)
)
,
(
f (y) + f (x′)

)}
:=einf .

Equation (8) is based on the assumption that the codomain of f is
non-negative, i.e., f : R → R+

0 . A more general form for f : R → R is as
follows:

einf = γ2
(
|f (x)| + |f (y′)|+ |f (y)| + |f (x′)|

)
. (9)
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DG2: Accuracy

|f (·)− f̂ (·)| ≤ γ√φf (·) := esup. (10)

esup = γ√n max{f (x), f (x′), f (y), f (y′)} (11)

ǫ =
η0

η0 + η1
einf +

η1
η0 + η1

esup, (12)
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Algorithm 3: Θ = DSM(Λ,F, f̌, fbase,n)

Θ = NaNn×n;
η1 = η2 = 0;
for i = 1 → n − 1 do

for j = i + 1 → n do
fmax = max{fbase,Fij , f̌i , f̌j};
einf = γ2 ·max{fbase + Fij , f̌i + f̌j};
esup = γ√n · fmax;
if Λij < einf then

Θi,j = 0; η0 = η0 + 1;

else if Λij > esup then
Θi,j = 1; η1 = η1 + 1;

for i = 1 → n − 1 do
for j = i + 1 → n do

fmax = max{fbase,Fij , f̌i , f̌j};
einf = γ2 ·max{fmathrmbase + Fij , f̌i + f̌j};
esup = γ√n · fmax;
if Θi,j 6= NaN then

ǫ = η0
η0+η1

· einf + η1
η0+η1

· esup;
if Λij > ǫ then

Θi,j = 1;

else
Θi,j = 0;
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Direct/Indirect Interactions

Indirect Interactions

In an objective function f (x), decision variables xi and xj interact directly
(denoted by xi ↔ xj) if

∃a :
∂f

∂xi∂xj

∣∣∣∣
x=a

6= 0,

decision variables xi and xj interact indirectly if

∂f

∂xi∂xj
= 0,

and there exists a set of decision variables {xk1, ..., xks} such that
xi ↔ xl1, ..., xks ↔ xj .
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Efficiency vs Accuracy
Saving budget at the expense of missing overlaps:

eXtended Differential Grouping [1].

Fast Interdependecy Identification [2].

1 2

3

45

6 1

2

3

4

5

6

Figure: The interaction structures represented by the two graphs cannot be
distinguished by XDG.

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large scale global
optimization with direct and indirect variable interactions”. In: Genetic and Evolutionary Computation Conference. ACM.
2015, pp. 313–320.

[2] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimization”. In:
Information Sciences 381 (2017), pp. 142–160.
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Benchmark Suites

CEC’2005 Benchmark Suite (non-modular)

CEC’2008 LSGO Benchmark Suite (non-modular)

CEC’2010 LSGO Benchmark Suite

CEC’2013 LSGO Benchmark Suite
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Challenges of CC

Main Questions
1 How to decompose the problem?

2 How to allocated resources?

3 How to coordinate?
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The Imbalance Problem

Non-uniform contribution of components.

Imbalanced Functions

f (x) =
m∑

i=1

wi fi (xi ), (13)

wi = 10sN (0,1),
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The Imbalance Problem (2)
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Contribution-Based Cooperative Co-evolution (CBCC)

Types of CC

CC: round-robin optimization of components.

CBCC: favors components with a higher contribution.
◮ Quantifies the contribution of components.
◮ Optimizes the one with the highest contribution.

How to Quantify the Contribution

For quantification of contributions a relatively accurate decomposition
is needed.

Changes in the objective value while other components are kept
constant.
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(b) Contribution-Based CC
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Contribution-Aware Algorithms

Contribution-Based Cooperative Co-evolution (CBCC) [1], [2].

Incremental Cooperative Coevolution [3]

Multilevel Framework for LSGO [4]

[1] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Smart use of computational resources based on contribution for
cooperative co-evolutionary algorithms”. In: Proc. of Genetic and Evolutionary Computation Conference. ACM, 2011,
pp. 1115–1122.

[2] Mohammad Nabi Omidvar et al. “CBCC3 – A Contribution-Based Cooperative Co-evolutionary Algorithm with Improved
Exploration/Exploitation Balance”. In: Proc. IEEE Congr. Evolutionary Computation. 2016, pp. 3541–3548.

[3] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Incremental cooperative coevolution for
large-scale global optimization”. In: Soft Computing (2016), pp. 1–20.

[4] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Multilevel framework for large-scale global
optimization”. In: Soft Computing (2016), pp. 1–30.
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Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:

Development of a benchmark [1].

Exploiting modularity using CC [2], [3], [4].

Analysis of the existing benchmarks [5].

[1] Ran Cheng et al. “Test problems for large-scale multiobjective and many-objective optimization”. In: IEEE Transactions
on Cybernetics (2016).

[2] Luis Miguel Antonio and Carlos A Coello Coello. “Use of cooperative coevolution for solving large scale multiobjective
optimization problems”. In: IEEE Congress on Evolutionary Computation. IEEE. 2013, pp. 2758–2765.

[3] Luis Miguel Antonio and Carlos A Coello Coello. “Decomposition-Based Approach for Solving Large Scale Multi-objective
Problems”. In: Parallel Problem Solving from Nature. Springer. 2016, pp. 525–534.

[4] Xiaoliang Ma et al. “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective
optimization problems with large-scale variables”. In: IEEE Transactions on Evolutionary Computation 20.2 (2016),
pp. 275–298.

[5] Ke Li et al. “Variable Interaction in Multi-objective Optimization Problems”. In: Parallel Problem Solving from Nature.
Springer International Publishing. 2016, pp. 399–409.
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Analysis of ZDT
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Figure: Variable interaction structures of the f2 function of ZDT test suite.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO 76 / 84825



Analysis of DTLZ1-DTLZ4

1 2

3

45

6

1 2

3

45

6

1 2

3

45

6

Figure: Variable interaction graphs of DTLZ1 to DTLZ4 .

Proposition 1

For DTLZ1 to DTLZ4, ∀fi , i ∈ {1, · · · ,m}, we divide the corresponding decision
variables into two non-overlapping sets: xI = (x1, · · · , xℓ)T , ℓ = m − 1 for i ∈ {1, 2}
while ℓ = m − i + 1 for i ∈ {3, · · · ,m}; and xII = (xm, · · · , xn)T . All members of xI not
only interact with each other, but also interact with those of xII ; all members of xII are
independent from each other.
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Analysis of DTLZ5-DTLZ7
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Figure: Variable interaction graphs of DTLZ5 and DTLZ6.

Proposition 2

For DTLZ5 and DTLZ6, ∀fi , i ∈ {1, · · · ,m}, we divide the corresponding decision
variables into two non-overlapping sets: xI = (x1, · · · , xℓ)T , ℓ = m − 1 for i ∈ {1, 2}
while ℓ = m − i + 1 for i ∈ {3, · · · ,m}; and xII = (xm, · · · , xn)T . For fi , where
i ∈ {1, · · · ,m − 1}, all members of xI and xII interact with each other; for fm, we have
the same interaction structure as DTLZ1-DTLZ4.

Proposition 3

All objective functions of DTLZ7 are fully separable.
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Some Future Directions (I)

What if the components have overlap?

Differential group is off-line and can be time-consuming. Is there a
more efficient method?

Do we need to get 100% accurate grouping? What is the relationship
between grouping accuracy and optimality achieved by a CC
algorithm?
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Some Future Directions (II)

CC for combinatorial optimization, e.g.,
◮ Y. Mei, X. Li and X. Yao, “Cooperative Co-evolution with Route

Distance Grouping for Large-Scale Capacitated Arc Routing Problems,”
IEEE Transactions on Evolutionary Computation, 18(3):435-449, June
2014.

However, every combinatorial optimization problem has its own
characteristics. We need to investigate CC for other combinatorial
optimization problems.
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Some Future Directions (III)

Learning variable interdependencies is a strength of estimation of
distribution algorithms (EDAs), e.g.,

◮ W. Dong, T. Chen, P. Tino and X. Yao, “Scaling Up Estimation of
Distribution Algorithms for Continuous Optimization,” IEEE
Transactions on Evolutionary Computation, 17(6):797-822, December
2013.

◮ A. Kaban, J. Bootkrajang and R.J. Durrant. “Towards Large Scale
Continuous EDA: A Random Matrix Theory Perspective.” Evolutionary
Computation

Interestingly, few work exists on scaling up EDAs.
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LSGO Resources

There is an IEEE Computational Intelligence Society (CIS) Task Force
on LSGO:

Upcoming LSGO Tutorials
◮ July 2017 GECCO (Berlin, Germany).
◮ November 2017 SEAL (Shenzhen, China).

LSGO Repository: http://www.cercia.ac.uk/projects/lsgo
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Questions

Thanks for your attention!
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