Evolutionary Large-Scale Global Optimization

An Introduction

Mohammad Nabi Omidvar¹ Xiaodong Li²

¹School of Computer Science University of Birmingham m.omidvar@cs.bahm.ac.uk

²School of Science RMIT University, Melbourne, Australia xiaodong.li@rmit.edu.au

Outline

- 2 Approaches to Large-Scale Optimization
- ③ Variable Interaction: Definitions and Importance
- Interaction Learning: Exploiting Modularity
- **5** Conclusion

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). GECCO'17 Companion, July 15-19, 2017, Berlin, Germany ACM 978-1-4503-4939-0/17/07. http://dx.doi.org/10.1145/3067695.3067706

6 Questions

Optimization

Mohammad Nabi Omidvar, Xiaodong Li

min
$$f(\mathbf{x}), \ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$
 (1)

$$s.t.: \mathbf{g}(\mathbf{x}) \leq 0$$
 (2)

$$\mathbf{h}(\mathbf{x}) = 0 \tag{3}$$

Can be converted to unconstrained optimization using:

- Penalty method;
- Lagrangian;
- Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to walk before we can run.

Large Scale Global Optimization (LSGO)

How large is large?

Mohammad Nabi Omidvar, Xiaodong Li

- The notation of large-scale is not fix.
- Changes over time.
- Differs from problem to problem.
- The dimension at which existing methods start to fail.

State-of-the-art (EC)

- Binary: ≈ 1 billion [a].
- Integer (linear): ≈ 1 billion [b], [c].
- Real: \approx 1000-5000.

[a] Kumara Sastry, David E Goldberg, and Xavier Llora. "Towards billion-bit optimization via a parallel estimation of distribution algorithm". In: *Genetic and Evolutionary Computation Conference*. ACM. 2007, pp. 577–584.

[c] Kalyanmoy Deb and Christie Myburgh. "A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables". In: *European Journal of Operational Research* 261.2 (2017), pp. 460–474.

[[]b] Kalyanmoy Deb and Christie Myburgh. "Breaking the Billion-Variable Barrier in Real-World Optimization Using a Customized Evolutionary Algorithm". In: *Genetic and Evolutionary Computation Conference*. ACM. 2016, pp. 653–660.

Large Scale Global Optimization: Applications

Why large-scale optimization is important?

- Growing applications in various fields.
 - Target shape design optimization [a].
 - Satellite layout design [b].
 - Parameter estimation in large scale biological systems [c].
 - Seismic waveform inversion [d].
 - Parameter calibration of water distribution systems [e].
 - Vehicle routing [f].

[a] Zhenyu Yang et al. "Target shape design optimization by evolving B-splines with cooperative coevolution". In: Applied Soft Computing 48 (Nov. 2016), pp. 672-682.

[b] Hong-Fei Teng et al. "A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module layout design". In: IEEE transactions on evolutionary computation 14.3 (Dec. 2010), pp. 438-455.

[c] Shuhei Kimura et al. "Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm". In: Bioinformatics 21.7 (Apr. 2005), pp. 1154-1163.

[d] Chao Wang and Jinghuai Gao. "High-dimensional waveform inversion with cooperative coevolutionary differential evolution algorithm". In: IEEE Geoscience and Remote Sensing Letters 9.2 (Mar. 2012), pp. 297-301.

[e] Yu Wang et al. "Two-stage based ensemble optimization framework for large-scale global optimization". In: European Journal of Operational Research 228.2 (2013), pp. 308-320.

[f] Yi Mei, Xiaodong Li, and Xin Yao. "Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems". In: IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 435-449.

Mohammad Nabi Omidvar, Xiaodong Li

Large Scale Global Optimization: Research

Scopus

5 / 84

Large Scale Global Optimization: Research

The Challenge of Large Scale Optimization

Why is it difficult?

• Exponential growth in the size of search space (curse of dimensionality).

Research Goal

- Improving search quality (get to the optimal point).
- Improving search efficiency (get there fast).

Large Scale Global Optimization: Evolutionary Approaches Initialization Methods

- Initialization
- Sampling and Variation Operators
- Approximation and Surrogate Modeling
- Local Search and Memetic Algorithms
- Decomposition and Divide-and-Conquer
- Parallelization (GPU, CPU)
- Hybridization

• Study the importance of initialization methods [1] in large-scale optimization.

Initialization Methods

Mohammad Nabi Omidvar, Xiaodong Li

- Inconclusive evidence for or against initialization methods:
 - Uniform design works worse than RNG, while good-lattice point and opposition-based methods perform better [1].
 - Another study showed that population size has a more significant effect than the initialization [2].
 - Achieving uniformity is difficult in high-dimensional spaces [3].
 - Yet another study suggest comparing average performances may not reveal the effect of initialization [4].
- Shortcomings:
 - It is difficult to isolate the effect of initialization.
 - Different effect on different algorithms (mostly tested on DE).
 - Numerous parameters to study.

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. "Initialization methods for large scale global optimization". In: Congress on Evolutionary Computation. IEEE. 2013, pp. 2750–2757.

[2] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. "Effects of population initialization on differential evolution for scale optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2014, pp. 2404–2411.

[3] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. "Why advanced population initialization techniques perform particle high dimension?" In: SEAL. 2014, pp. 479–490.

[4] Eduardo Segredo et al. "On the comparison of initialisation strategies in differential evolution for large scale opernisation In: Optimization Letters (2017), pp. 1–14.

Sampling and Variation Operators

- Opposition-based sampling [1]
- Center-based sampling [2].
- Quantum-behaved particle swarm [3].
- Competitive Swarm Optimizer [4].
- Social learning PSO [5].
- Mutation operators [6], [7].

[1] Hui Wang, Zhijian Wu, and Shahryar Rahnamayan. "Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems". In: *Soft Computing* 15.11 (2011), pp. 2127–2140.

[2] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. "Center-based initialization of cooperative co-evolutionary algorithm for large-scale optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2016, pp. 3557–3565.

[3] Deyu Tang et al. "A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems". In: *Information Sciences* 289 (2014), pp. 162–189.

[4] Ran Cheng and Yaochu Jin. "A competitive swarm optimizer for large scale optimization". In: *IEEE Transactions on Cybernetics* 45.2 (2015), pp. 191–204.

[5] Ran Cheng and Yaochu Jin. "A social learning particle swarm optimization algorithm for scalable optimization". Information Sciences 291 (2015), pp. 43–60.

[6] Hongwei Ge et al. "Cooperative differential evolution with fast variable interdependence learning and **GEOLO** mutation". In: Applied Soft Computing 36 (2015), pp. 300–314.

[7] Ali Wagdy Mohamed and Abdulaziz S Almazyad. "Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems". In: *Applied Computational Intelligence and Sol* Computing 2017 (2017).

Approximation Methods and Surrogate Modeling

- High-Dimensional Model Representation (HDMR) [1].
- Radial Basis Functions [2].
- Kriging and Gradient-Enhanced Kriging Metamodels [3].
- Piecewise Polynomial (Spline) [4].

Local Search and Memetic Algorithms

- Multiple Trajectory Search (MTS) [1].
- Memetic algorithm with local search chaining [2].
 - ▶ MA-SW-Chains [3].
 - MA-SSW-Chains [4].
- Multiple offspring sampling (MOS) [5], [6].

[1] Lin-Yu Tseng and Chun Chen. "Multiple trajectory search for large scale global optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2008, pp. 3052–3059.

[2] Daniel Molina, Manuel Lozano, and Francisco Herrera. "Memetic algorithm with local search chaining for large scale continuous optimization problems". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2009, pp. 830–837.

[3] Daniel Molina, Manuel Lozano, and Francisco Herrera. "MA-SW-Chains: Memetic algor	rithm based on local search chains
for large scale continuous global optimization". In: IEEE Congress on Evolutionary Compute	ation. IEEE. 2010, pp. 1-8
[4] Daniel Molina et al. "Memetic algorithms based on local search chains for large scale co	ntinuous optimisation problems;
MA-SSW-Chains". In: Soft Computing 15.11 (2011), pp. 2201–2220.	GECCO

```
[5] Antonio LaTorre, Santiago Muelas, and José-María Peña. "Multiple offspring sampling in large scale global optimization.
In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–8.
```

[6] Antonio LaTorre, Santiago Muelas, and José-María Peña. "A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test". In: Soft Computing 15.11 (2011), pp. 2187–2199.

[1] Enying Li, Hu Wang, and Fan Ye. "Two-level Multi-surrogate Assisted Optimization method for high dimensional monlinear problems". In: Applied Soft Computing 46 (2016), pp. 26–36.

[2] Rommel G Regis. "Evolutionary programming for high-dimensional constrained expensive black-box optimization radial basis functions". In: *IEEE Transactions on Evolutionary Computation* 18.3 (2014), pp. 326–347.
 [3] Selvakumar Ulaganathan et al. "A hybrid sequential sampling based metamodelling approach for high dimensional problems". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2016, pp. 1917–1923.

[4] Zhenyu Yang et al. "Target shape design optimization by evolving B-splines with cooperative coevolution". Appli Soft Computing 48 (Nov. 2016), pp. 672–682.

Parallelization

Mohammad Nabi Omidvar, Xiaodong Li

Hybridization (The best of both worlds)

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

- Rationale: benefiting from unique features of different optimizers.
 - ▶ EDA+DE: [1].

13 / 84

- ▶ PSO+ABC: [2].
- Different DE variants: JADE+SaNSDE [3].
- ▶ PSO+ACO [4].
- Minimum Population Search+CMA-ES [5].

- Algorithms capable of parallelization [1], [2].
- GPU [3], [4].
- CPU/OpenMP [5].

[3] Kumara Sastry, David E Goldberg, and Xavier Llora. "Towards billion-bit optimization via a parallel estimation addistribution algorithm". In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577–584.

[4] Alberto Cano and Carlos García-Martínez. "100 Million dimensions large-scale global optimization using distribut computing". In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 3566–3573.

[5] AJ Umbarkar. "OpenMP Genetic Algorithm for Continuous Nonlinear Large-Scale Optimization Problems" International Conference on Soft Computing for Problem Solving. Springer. 2016, pp. 203–214. [2] LN Vitorino, SF Ribeiro, and Carmelo JA Bastos-Filho. "A hybrid swarm intelligence optimizer based on particles and artificial bees for high-dimensional search spaces". In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1

[3] Sishi Ye et al. "A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization". Congress on Evolutionary Computation. IEEE. 2014, pp. 1277–1284.

[4] Wu Deng et al. "A novel two-stage hybrid swarm intelligence optimization algorithm and application". In: *Computing* 16.10 (2012), pp. 1707–1722.

[5] Antonio Bolufé-Röhler, Sonia Fiol-González, and Stephen Chen. "A minimum population search hybrid for large sca global optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2015, pp. 1958–1965.

^[1] Jing Tang, Meng Hiot Lim, and Yew Soon Ong. "Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems". In: *Soft Computing* 11.9 (2007), pp. 873–888.

^[2] Hui Wang, Shahryar Rahnamayan, and Zhijian Wu. "Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems". In: *Journal of Parallel and Distributed Computing* 73.1 (2013), pp. 62–73.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

^[1] Yu Wang, Bin Li, and Thomas Weise. "Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems". In: *Information Sciences* 180.12 (2010), pp. 2405–2420.

Decomposition Methods

- Divide-and-conquer
- Dimensionality reduction

Variable Interaction, Linkage, Epistasis

What is variable interaction?

- Genetics: two genes are said to interact with each other if they collectively represent a feature at the phenotype level.
- The extent to which the fitness of one gene can be suppressed by another gene.
- The extent to which the value taken by one gene activates or deactivates the effect of another gene.

Why variable interaction?

- The effectiveness of optimization algorithms is affected by how much they respect variable interaction.
- Also applies to classic mathematical programming methods.

Decomposition and CC for

18 / 84

Mohammad Nabi Omidvar, Xiaodong Li

Variable Interaction, Linkage, Epistasis

Illustrative Example

- $f(x,y) = x^2 + \lambda_1 y^2$
- $g(x,y) = x^2 + \lambda_1 y^2 + \lambda_2 x y$

Definitions

Variable Interaction

Mohammad Nabi Omidvar, Xiaodong Li

A variable x_i is separable or does not interact with any other variable iff:

$$\arg\min_{\mathbf{x}} f(\mathbf{x}) = \left(\arg\min_{x_i} f(\mathbf{x}), \arg\min_{\forall x_j, j \neq i} f(\mathbf{x})\right),$$

where $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ is a decision vector of *n* dimensions.

Partial Separability

A function $f(\mathbf{x})$ is partially separable with *m* independent subcomponents iff:

$$\arg\min_{\mathbf{x}} f(\mathbf{x}) = \left(\arg\min_{\mathbf{x}_1} f(\mathbf{x}_1, \dots), \dots, \arg\min_{\mathbf{x}_m} f(\dots, \mathbf{x}_m)\right),$$

 $\mathbf{x}_1, \ldots, \mathbf{x}_m$ are disjoint sub-vectors of \mathbf{x} , and $2 \le m \le n$.

Note: a function is fully separable if sub-vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$ are 1-dimensional (i.e., m = n).

Definitions

Full Nonseparability

A function $f(\mathbf{x})$ is fully non-separable if every pair of its decision variables interact with each other.

Additive Separability

A function is *partially additively separable* if it has the following general form:

$$f(\mathbf{x}) = \sum_{i=1}^m f_i(\mathbf{x}_i)$$

where \mathbf{x}_i are mutually exclusive decision vectors of f_i , $\mathbf{x} = (x_1, \dots, x_n)^{\top}$ is a global decision vector of n dimensions, and m is the number of independent subcomponents.

21 / 84

Effect of Variable Interaction

Sampling and Variation Operators:

- GAs: inversion operator to promote tight linkage [1].
 - Increasing the likelihood of placing linked genes close to each other to avoid disruption by crossover.
 - ▶ Rotation of the landscape has a detrimental effect on GA [2].
- The need for rotationally invariance:
 - Model Building Methods:
 - ★ Estimation of Distribution Algorithms and Evolutionary Strategies: Covariance Matrix Adaptation.
 - * Bayesian Optimization: Bayesian Networks.
 - DE's crossover is not rotationally invariant.
 - PSO is also affected by rotation [3].

[1] David E Goldberg, Robert Lingle, et al. "Alleles, loci, and the traveling salesman problem". In: International Conference on Genetic Algorithms and Their Applications. Vol. 154. 1985, pp. 154–159.

[2] Ralf Salomon. "Re-evaluating genetic algorithm performance under coordinate rotation of benchmark **GEGCO** of some theoretical and practical aspects of genetic algorithms". In: *BioSystems* 39.3 (1996), pp. 263–278.

[3] Daniel N Wilke, Schalk Kok, and Albert A Groenwold. "Comparison of linear and classical velocity update uses in particle swarm optimization: Notes on scale and frame invariance". In: International journal for numerical methods in encourse regime 70.8 (2007), pp. 985–1008.

Mohammad Nabi Omidvar, Xiaodong Li

Decomposition and CC for LS

Effect of Variable Interaction

- Approximation and Surrogate Modelling:
 - Should be able to capture variable interaction.
 - Second order terms of HDMR.
- **2** Local Search and Memetic Algorithms:
 - What subset of variables should be optimized in each iteration of local search?
 - Coordinate-wise search may not be effective. Memetics perform well on separable functions! A coincidence?!
- Occomposition and Divide-and-Conquer:
 - Interacting variables should be placed in the same component.

GECCO

Linkage Learning and Exploiting Modularity

- Implicit Methods:
 - ► In EC:

Mohammad Nabi Omidvar, Xiaodong Li

- Estimation of Distribution Algorithms
- ★ Bayesian Optimization: BOA, hBOA, Linkage Trees
- ★ Adaptive Encoding, CMA-ES
- Classic Optimization:
 - ★ Quasi-Newton Methods: Approximation of the Hessian.
- Explicit Methods:
 - In EC:
 - ★ Random Grouping
 - ★ Statistical Correlation-Based Methods
 - ★ Delta Grouping
 - ★ Meta Modelling
 - ★ Monotonicity Checking
 - ★ Differential Grouping
 - Classic Optimization
 - ★ Block Coordinate Descent
 - ★ Adaptive Coordinate Descent

Implicit Methods

- Scaling Up EDAs:
 - Model Complexity Control [1].
 - Random Matrix Projection [2].
 - Use of mutual information [3].
 - ► Cauchy-EDA [4].

• Scaling up CMA-ES:

- ► CC-CMA-ES [5].
- ▶ LM-CMA [6].

[1] Weishan Dong et al. "Scaling up estimation of distribution algorithms for continuous optimization". In: IEEE Transactions on Evolutionary Computation 17.6 (2013), pp. 797–822.

- [2] Ata Kabán, Jakramate Bootkrajang, and Robert John Durrant. "Toward large-scale continuous EDA: A random matrix theory perspective". In: *Evolutionary Computation* 24.2 (2016), pp. 255–291.
- [3] Qi Xu, Momodou L Sanyang, and Ata Kabán. "Large scale continuous EDA using mutual information". In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 3718–3725.

[4] Momodou L Sanyang, Robert J Durrant, and Ata Kabán. "How effective is Cauchy-EDA in high dimensions?" Congress on Evolutionary Computation. IEEE. 2016, pp. 3409–3416.

[5] Jinpeng Liu and Ke Tang. "Scaling up covariance matrix adaptation evolution strategy using cooperative coevolut International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350–357

[6] Ilya Loshchilov. "LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization". In: Evolution (2015).

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Random Projection EDA

Scalability issues of EDAs

- Accurate estimation requires a large sample size which grows exponentially with the dimensionality of the problem [1].
- A small sample results in poor estimation of the eigenvalues [2].
- The cost of sampling from a multi-dimensional Gaussian distribution increases cubically with the problem size [3].

Explicit Methods

25 / 84

- A large problem can be subdivided into smaller and simpler problems.
- Dates back to René Descartes (Discourse on Method).
- Has been widely used in many areas:
 - Computer Science: Sorting algorithms (quick sort, merge sort)
 - Optimization: Large-scale linear programs (Dantzig)
 - Politics: Divide and rule (In Perpetual Peace by Immanuel Kant: Divide et impera is the third political maxims.)

Acknowledgement: the above image is obtained from: http://draininbrain.blogspot.com.au/

Decomposition in EAs: Cooperative Co-evolution [1]

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Challenges of CC

CC as a scalability agent:

CC is a Framework

- CC is not an optimizer.
- Requires a component optimizer.
- CC coordinates how the component optimizer is applied to

Decomposition and

30 / 84

The Decomposition Challenge

Main Questions

- How to decompose the problem?
- A How to allocated resources?
- B How to coordinate?

How to decompose?

Mohammad Nabi Omidvar, Xiaodong Li

- There are many possibilities.
- Which decomposition is the best?

Optimal decomposition

- It is governed by the interaction structure of decision variables.
- An optimal decomposition is the one that minimizes the interaction between components.

Survey of Decomposition Methods

- Uninformed Decomposition [1]
 - n 1-dimensional components (the original CC)
 - k s-dimensional components.
- Random Grouping [2]
- Statistical Correlation-Based Methods
- Delta Grouping [3]
- Meta Modelling [4]

Mohammad Nabi Omidvar, Xiaodong Li

- Monotonicity Checking [5]
- Differential Grouping [6]

[1] F. van den Bergh and Andries P Engelbrecht. "A cooperative approach to particle swarm optimization". In: IEEE Transactions on Evolutionary Computation 2.3 (June 2004), pp. 225-239.

[2] Zhenyu Yang, Ke Tang, and Xin Yao. "Large scale evolutionary optimization using cooperative coevolution". In: Information Sciences 178.15 (2008), pp. 2985-2999.

[3] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. "Cooperative co-evolution with delta grouping for large scale non-separable function optimization". In: IEEE Congress on Evolutionary Computation. IEEE. 2010, pp. 1-8.

[4] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. "Cooperative co-evolution with a new decomposition method for large-scale optimization". In: IEEE Congress on Evolutionary Computation. IEEE. 2014 pp. 1285-1292. GECCO

[5] Wenxiang Chen et al. "Large-scale global optimization using cooperative coevolution with variable interaction lea In: Parallel Problem Solving from Nature. Springer. 2010, pp. 300-309.

[6] Mohammad Nabi Omidvar et al. "Cooperative co-evolution with differential grouping for large scale optimization IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378–393.

Decomposition and CC for LSGO

Illustrative Example (fixed k s-dimensional)

Figure: Variable interaction of a hypothetical function.

- k s-dimensional (k = 2, s = 4):
 - $C_1: \{x_1, x_2, x_3, x_4\}, \{x_5, x_6, x_7\}$
 - C_2 : { x_1, x_2, x_3, x_4 }, { x_5, x_6, x_7 }

 - $C_c: \{x_1, x_2, x_3, x_4\}, \{x_5, x_6, x_7\}$

Illustrative Example (Canonical CC)

Figure: Variable interaction of a hypothetical function.

• *n* 1-dimensional components:

Mohammad Nabi Omidvar, Xiaodong Li

- C_1 : $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$
- C_2 : $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$ ► ...
- C_c : $\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$

Illustrative Example (Random Grouping)

Figure: Variable interaction of a hypothetical function.

- Random Grouping (k = 2, s = 4):
 - $C_1: \{x_2, x_3, x_6, x_5\}, \{x_7, x_1, x_4\}$
 - C_2 : { x_3, x_4, x_1, x_2 }, { x_6, x_7, x_5 }
 - $C_c: \{x_1, x_5, x_6, x_7\}, \{x_2, x_4, x_3\}$

Random Grouping

Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables $x_1, x_2, ..., x_v$ into one subcomponent for at least k cycles is:

$$P(X \ge k) = \sum_{r=k}^{N} {N \choose r} \left(\frac{1}{m^{\nu-1}}\right)^r \left(1 - \frac{1}{m^{\nu-1}}\right)^{N-r}$$
(4)

where N is the number of cycles, v is the total number of interacting variables, m is the number of subcomponents, and the random variable X is the number of times that v interacting variables are grouped in one subcomponent.

Example

Given n = 1000, m = 10, N = 50 and v = 4, we have:

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \left(1 - \frac{1}{10^3}\right)^{50} = 0.0488$$

which means that over 50 cycles, the probability of assigning 4 interacting variables into one subcomponent for at least 1 cycle is only 0.0488. As we can see this probability is very small, and it will be even less if there are more interacting variables.

Illustrative Example (Informed with Fixed Groups)

Figure: Variable interaction of a hypothetical function.

- Delta Grouping (k = 2, s = 4):
 - C_1 : { x_1, x_5, x_2, x_4 }, { x_3, x_6, x_7 }
 - C_2 : { x_3, x_5, x_6, x_7 }, { x_1, x_2, x_4 }
 - **۱**...

Mohammad Nabi Omidvar, Xiaodong Li

• $C_c: \{x_3, x_6, x_1, x_4\}, \{x_2, x_5, x_7\}$

Infomred Decompositions with Fixed Groups

Decompo

- Adaptive Variable Partitioning [1].
- Delta Grouping [2].
- Min/Max-Variance Decomposition (MiVD/MaVD) [3].
 - Sorts the dimensions based on the diagonal elements of the covariance matrix in CMA-ES.
- Fitness Difference Partitioning [4], [5], [6].

[1] Tapabrata Ray and Xin Yao. "A cooperative coevolutionary algorithm with correlation based adaptive variable partitioning". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2009, pp. 983–989.

[2] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. "Cooperative co-evolution with delta grouping for large scale non-separable function optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2010, pp. 1–8.

[3] Jinpeng Liu and Ke Tang. "Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution". International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350–357.

[4] Eman Sayed, Daryl Essam, and Ruhul Sarker. "Dependency identification technique for large scale optimization." In: IEEE Congress on Evolutionary Computation. IEEE. 2012, pp. 1–8.

[5] Eman Sayed et al. "Decomposition-based evolutionary algorithm for large scale constrained problems". In Sciences 316 (2015), pp. 457–486.

[6] Adan E Aguilar-Justo and Efrén Mezura-Montes. "Towards an improvement of variable interaction identification for large-scale constrained problems". In: IEEE Congress on Evolutionary Computation. IEEE. 2016, pp. 4167–4174. Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Delta Grouping

Infomred Decompositions with Variable Groups

- Multilevel Grouping: MLCC [1], MLSoft [2].
- Adaptive Variable Partitioning 2 [3].
- 4CDE [4].
- Fuzzy Clustering [5].

[1] Zhenyu Yang, Ke Tang, and Xin Yao. "Multilevel cooperative coevolution for large scale optimization". In: *IEEE Congress on Evolutionary Computation*. IEEE. 2008, pp. 1663–1670.

[3] Hemant Kumar Singh and Tapabrata Ray. "Divide and conquer in coevolution: A difficult balancing act". In: Agent-Based Evolutionary Search. Springer, 2010, pp. 117–138.

[4] Yazmin Rojas and Ricardo Landa. "Towards the use of statistical information and differential evolution **GEGEO** global optimization". In: International Conference on Electrical Engineering Computing Science and Automatic Cont 2011, pp. 1–6.

[5] Jianchao Fan, Jun Wang, and Min Han. "Cooperative coevolution for large-scale optimization based on kerne razzy clustering and variable trust region methods". In: *IEEE Transactions on Fuzzy Systems* 22.4 (2014), pp. 829–839.

^[2] Mohammad Nabi Omidvar, Yi Mei, and Xiaodong Li. "Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms". In: IEEE Congress on Evolutionary Computation. IEEE. 2014, pp. 1305–1312.

Illustrative Example (Exact Methods)

Figure: Variable interaction of a hypothetical function.

- Differential Grouping and Variable Interaction Learning:
 - $C_1: \{x_1, x_2, x_4\}, \{x_3, x_5, x_6, x_7\}$
 - C_2 : { x_1, x_2, x_4 }, { x_3, x_5, x_6, x_7 }
 - ▶ ...

Mohammad Nabi Omidvar, Xiaodong Li

• $C_c: \{x_1, x_2, x_4\}, \{x_3, x_5, x_6, x_7\}$

Monotonicity Check (Algorithms)

- Linkage Identification by Non-Monotonicity Detection [1]
- Adaptive Coevolutionary Learning [2]
- Variable Interaction Learning [3]
- Variable Interdependence Learning [4]
- Fast Variable Interdependence [5]

[1] Masaharu Munetomo and David E Goldberg. "Linkage identification by non-monotonicity detection for overlapping functions". In: *Evolutionary Computation* 7.4 (1999), pp. 377–398.

[2] Karsten Weicker and Nicole Weicker. "On the improvement of coevolutionary optimizers by learning variable interdependencies". In: *IEEE Congress on Evolutionary Computation*. Vol. 3. IEEE. 1999, pp. 1627–1632.

- [3] Wenxiang Chen et al. "Large-scale global optimization using cooperative coevolution with variable interaction later interaction later
- [4] Liang Sun et al. "A cooperative particle swarm optimizer with statistical variable interdependence learning" Information Sciences 186.1 (2012), pp. 20–39.
- [5] Hongwei Ge et al. "Cooperative differential evolution with fast variable interdependence learning and cross-club mutation". In: Applied Soft Computing 36 (2015), pp. 300–314.

Monotonicity Check

$$\exists \mathbf{x}, x'_i, x'_j : f(x_1, ..., x_i, ..., x_j, ..., x_n) < f(x_1, ..., x'_i, ..., x_j, ..., x_n) \land f(x_1, ..., x_i, ..., x'_j, ..., x_n) > f(x_1, ..., x'_i, ..., x'_j, ..., x_n)$$

45 / 84 Mohammad Nabi Omidvar, Xiaodong Li Decompositio

46 / 84

Differential Grouping [1]

Theorem

Let $f(\mathbf{x})$ be an additively separable function. $\forall a, b_1 \neq b_2, \delta \in \mathbb{R}, \delta \neq 0$, if the following condition holds

$$\Delta_{\delta,x_p}[f](\mathbf{x})|_{x_p=a,x_q=b_1} \neq \Delta_{\delta,x_p}[f](\mathbf{x})|_{x_p=a,x_q=b_2},$$
(5)

then x_p and x_q are non-separable, where

$$\Delta_{\delta,x_p}[f](\mathbf{x}) = f(\ldots,x_p+\delta,\ldots) - f(\ldots,x_p,\ldots), \tag{6}$$

refers to the forward difference of f with respect to variable x_p with interval δ .

^[1] Mohammad Nabi Omidvar et al. "Cooperative co-evolution with differential grouping for large scale optimization". IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378–393.

$${\sf Separability} \Rightarrow \Delta_1 = \Delta_2$$

Deductive Reasoning

Assuming:

$$f(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}_i)$$

We prove that:

Mohammad Nabi Omidvar, Xiaodong Li

$$\mathsf{Separability} \ \Rightarrow \Delta_1 = \Delta_2$$

By contraposition $(P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P)$: $\Delta_1 \neq \Delta_2 \Rightarrow$ non-separability

or

 $|\Delta_1 - \Delta_2| > \epsilon \Rightarrow$ non-separability

Decomposition and CC for LSGC

Deductive Reasoning - Example

The Differential Grouping Algorithm

Strong Syllogism	Weak Syllogism	
● Rain ⇒ Cloud It is rainy ∴ It is cloudy	● Rain ⇒ Cloud It is not rainy ∴ Cloud becomes less likely	Detecting Non-separable Variables $ \Delta_1 - \Delta_2 > \epsilon \Rightarrow \text{ non-separability}$ Detecting Separable Variables
٥	٥	$ \Delta_1 - \Delta_2 \leq \epsilon \Rightarrow$ Separability (more plausible)
$Rain \Rightarrow Cloud$	$Rain \Rightarrow Cloud$	
It is not cloudy	It is cloudy	
∴ It is not rainy	∴ Rain becomes more likely	GECCO

Differential Grouping vs CCVIL

Example

Consider the non-separable objective function $f(x_1, x_2) = x_1^2 + \lambda x_1 x_2 + x_2^2$ $\lambda \neq 0.$

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + \lambda x_2.$$

This clearly shows that the change in the global objective function with respect to x_1 is a function of x_1 and x_2 . By applying the Theorem:

$$\Delta_{\delta,x_1}[f] = \left[(x_1 + \delta)^2 + \lambda (x_1 + \delta) x_2 + x_2^2 \right] - \left[x_1^2 + \lambda x_1 x_2 + x_2^2 \right] \\ = \overline{\delta^2 + 2\delta x_1 + \lambda x_2 \delta}.$$

on different regions of a 2D Schwefel Problem 1.2.

Mohammad Nabi Omidvar, Xiaodong Li

Differential Grouping Family of Algorithms

- Linkage Identification by Non-linearity Check (LINC, LINC-R) [1]
- Differential Grouping (DG) [2]
- Global Differential Grouping (GDG) [3]
- Improved Differential Grouping (IDG) [4]
- eXtended Differential Grouping (XDG) [5]
- Graph-based Differential Grouping (gDG) [6]
- Fast Interaction Identification [7]

[1] Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama. "Linkage identification by nonlinearity check for real-coded genetic algorithms". In: Genetic and Evolutionary Computation-GECCO 2004. Springer. 2004, pp. 222-233.

[2] Mohammad Nabi Omidvar et al. "Cooperative co-evolution with differential grouping for large scale optimization". In: IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.

[3] Yi Mei et al. "Competitive Divide-and-Conquer Algorithm for Unconstrained Large Scale Black-Box Optimization". In: ACM Transaction on Mathematical Software 42.2 (June 2015), p. 13.

[4] Mohammad Nabi Omidvar et al. IDG: A Faster and More Accurate Differential Grouping Algorithm. Technical Report CSR-15-04. University of Birmingham, School of Computer Science, Sept. 2015.

[5] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. "Extended differential grouping for large scale global optimization with direct and indirect variable interactions". In: Genetic and Evolutionary Computation Conference 2015, pp. 313-320.

[6] Yingbiao Ling, Haijian Li, and Bin Cao. "Cooperative co-evolution with graph-based differential group and the field of the second sec global optimization". In: International Conference on Natural Computation, Fuzzy Systems and Knowledge 2016, pp. 95-102.

[7] Xiao-Min Hu et al. "Cooperation coevolution with fast interdependency identification for large scale optimization Information Sciences 381 (2017), pp. 142-160.

Shortcomings of Differential Grouping

Mohammad Nabi Omidvar, Xiaodong Li

- Cannot detect the overlapping functions.
- Slow if all interactions are to be checked.
- Requires a threshold parameter (ϵ) .
- Can be sensitive to the choice of the threshold parameter (ϵ) .

Differential Grouping 2

Algorithm 1: DG2

Figure: Geometric representation of point generation in DG2 for a 3D function. $x_1 \leftrightarrow x_2$: $\Delta^{(1)} = f(a', b, c) - f(a, b, c), \Delta^{(2)} = f(a', b', c) - f(a, b', c)$

$x_{1} \leftrightarrow x_{3}: \Delta^{(1)} = f(a', b, c) - f(a, b, c), \Delta^{(2)} = f(a', b, c') - f(a, b, c') \\ x_{2} \leftrightarrow x_{3}: \Delta^{(1)} = f(a, b', c) - f(a, b, c), \Delta^{(2)} = f(a, b', c') - f(a, b, c), A^{(2)} = f(a, b', c') - f(a, b', c') - f(a, b', c), A^{(2)} = f(a, b', c') - f(a, b', c), A^{(2)} = f(a, b', c') - f(a, b', c') - f(a, b', c), A^{(2)} = f(a, b', c') - f(a, b', c), A^{(2)} = f(a, b', c') - f(a, b', c), A^{(2)} = f(a, b', c), A^{(2)} = f(a, b', c), A^{(2)} =$

Algorithm 2: ISM

Mohammad Nabi Omidvar, Xiaodong Li

 $\mathbf{\Lambda} = \mathbf{0}_{n \times n};$ $\mathbf{F}_{n \times n} = \operatorname{NaN}_{n \times n}$; $\mathbf{\check{f}}_{n\times 1} = \operatorname{NaN}_{n\times 1} ;$ $\mathbf{x}^{(1)} = \underline{\mathbf{x}}, \ f_{\text{base}} = f(\mathbf{x}^{(1)}), \ \Gamma = 1;$ $\mathbf{m} = \frac{1}{2}(\mathbf{\overline{x}} + \mathbf{\underline{x}});$ for $i = 1 \rightarrow n - 1$ do if $\neg isnan(\mathbf{\tilde{f}}_i)$ then $\mathbf{x}^{(2)} = \mathbf{x}^{(1)}, \, \mathbf{x}^{(2)}_{i} = \mathbf{m}_{i};$ $\check{\mathbf{f}}_i = f(\mathbf{x}^{(2)}), \ \Gamma = \Gamma + 1;$ for $i = i + 1 \rightarrow n$ do if $\neg isnan(\mathbf{\check{f}}_i)$ then $\mathbf{x}^{(3)} = \mathbf{x}^{(1)}, \ \mathbf{x}^{(3)}_i = \mathbf{m}_i;$ $\check{\mathbf{f}}_{j} = f(\mathbf{x}^{(3)}), \ \Gamma = \Gamma + 1;$ $\mathbf{x}^{(4)} = \mathbf{x}^{(1)}, \ \mathbf{x}^{(4)}_i = \mathbf{m}_i, \ \mathbf{x}^{(4)}_j = \mathbf{m}_j;$ $\mathbf{F}_{ii} = f(\mathbf{x}^{(4)}), \ \Gamma = \Gamma + 1;$ $\Delta^{(1)} = \check{\mathbf{f}}_i - f(\mathbf{x}^{(1)})$: $\Delta^{(2)} = \mathbf{F}_{ii} - \mathbf{\check{f}}_{i};$ $\mathbf{\Lambda}_{ii} = |\Delta^{(1)} - \Delta^{(2)}|;$

// matrix of all NaNs // vector of all NaNs

DG2: Accuracy

Mohammad Nabi Omidvar, Xiaodong Li

$$n=\pm s\times\beta^{e-p},$$

Decomposition and CC for LSG

Figure: Non-uniform distribution of floating-point numbers for a hypothetical system ($\beta = 2, e_{\min} = -1, e_{\max} = 3$, and p = 3). The vertical bars denote all the representable numbers in this system.

Theorem

If $x \in \mathbb{R}$ lies in the range of \mathbb{F} , then

 $fl(x) = x(1+\delta), \quad |\delta| < \mu_{\mathrm{M}},$

where $\mu_{\rm M}$ is called the unit roundoff, which is equal to $\frac{1}{2}\beta^{1-p}$.

Decomposition and CC for

DG2: Accuracy

DG2: Accuracy

DG2: Accuracy

DG2: Accuracy

$$\begin{aligned} |\lambda - \hat{\lambda}| &\leq \gamma_2 \left| \left(f(\mathbf{x}) - f(\mathbf{x}') \right) - \left(f(\mathbf{y}) - f(\mathbf{y}') \right) \right| \\ &= \gamma_2 \left| \left(f(\mathbf{x}) + f(\mathbf{y}') \right) - \left(f(\mathbf{y}) + f(\mathbf{x}') \right) \right| \\ &\leq \gamma_2 \cdot \max \left\{ \left(f(\mathbf{x}) + f(\mathbf{y}') \right), \left(f(\mathbf{y}) + f(\mathbf{x}') \right) \right\} := e_{\inf}. \end{aligned}$$
(8)

Equation (8) is based on the assumption that the codomain of f is non-negative, i.e., $f : \mathbb{R} \to \mathbb{R}_0^+$. A more general form for $f : \mathbb{R} \to \mathbb{R}$ is as follows:

$$e_{\inf} = \gamma_2 \big(|f(\mathbf{x})| + |f(\mathbf{y}')| + |f(\mathbf{y})| + |f(\mathbf{x}')| \big).$$

$$|f(\cdot) - \hat{f}(\cdot)| \le \gamma_{\sqrt{\phi}} f(\cdot) := e_{\sup}.$$
(10)

$$e_{\sup} = \gamma_{\sqrt{n}} \max\{f(\mathbf{x}), f(\mathbf{y}), f(\mathbf{y}), f(\mathbf{y}')\}$$
(11)

$$\epsilon = \frac{\eta_0}{\eta_0 + \eta_1} e_{\inf} + \frac{\eta_1}{\eta_0 + \eta_1} e_{\sup}, \qquad (12)$$

Algorithm 3: $\Theta = DSM(\Lambda, F, \check{f}, f_{base, n})$ $\Theta = \operatorname{NaN}_{n \times n};$ $\eta_1 = \eta_2 = 0;$ for $i = 1 \rightarrow n - 1$ do for $i = i + 1 \rightarrow n$ do $f_{\text{max}} = \max\{f_{\text{base}}, \mathbf{F}_{ij}, \mathbf{\check{f}}_i, \mathbf{\check{f}}_j\};$ $e_{inf} = \gamma_2 \cdot \max\{f_{base} + \mathbf{F}_{ij}, \mathbf{\check{f}}_i + \mathbf{\check{f}}_j\};$ $e_{\sup} = \gamma_{\sqrt{n}} \cdot f_{\max};$ if $\Lambda_{ii} < e_{inf}$ then $\Theta_{i,j} = 0; \ \eta_0 = \eta_0 + 1;$ else if $\Lambda_{ij} > e_{sup}$ then $\Theta_{i,j} = 1; \ \eta_1 = \eta_1 + 1;$ for $i = 1 \rightarrow n - 1$ do for $i = i + 1 \rightarrow n$ do $f_{\text{max}} = \max\{f_{\text{base}}, \mathbf{F}_{ij}, \mathbf{\check{f}}_i, \mathbf{\check{f}}_j\};$ $\mathbf{e}_{inf} = \gamma_2 \cdot \max\{f_{mathrmbase} + \mathbf{F}_{ij}, \mathbf{\check{f}}_i + \mathbf{\check{f}}_j\};$ $e_{\sup} = \gamma_{\sqrt{n}} \cdot f_{\max};$ if $\Theta_{i,j} \neq NaN$ then $\epsilon = \frac{\eta_0}{\eta_0 + \eta_1} \cdot \mathbf{e}_{\inf} + \frac{\eta_1}{\eta_0 + \eta_1} \cdot \mathbf{e}_{\sup};$ if $\Lambda_{ij} > \epsilon$ then $\Theta_{i,j} = 1;$ else $\Theta_{i,i} = 0;$

Direct/Indirect Interactions

Indirect Interactions

In an objective function $f(\mathbf{x})$, decision variables x_i and x_i interact directly (denoted by $x_i \leftrightarrow x_i$) if

$$\exists \mathbf{a}: \left. \frac{\partial f}{\partial x_i \partial x_j} \right|_{\mathbf{x}=\mathbf{a}} \neq \mathbf{0},$$

decision variables x_i and x_i interact *indirectly* if

$$\frac{\partial f}{\partial x_i \partial x_j} = 0,$$

65 / 84

and there exists a set of decision variables $\{x_{k1}, ..., x_{ks}\}$ such that $x_i \leftrightarrow x_{l1}, ..., x_{ks} \leftrightarrow x_i$.

<u>Mohammad Na</u>bi Omidvar, Xiaodong Li

Efficiency vs Accuracy

Saving budget at the expense of missing overlaps:

- eXtended Differential Grouping [1].
- Fast Interdependecy Identification [2].

Figure: The interaction structures represented by the two graphs cannot be distinguished by XDG.

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. "Extended differential grouping for large states optimization with direct and indirect variable interactions". In: Genetic and Evolutionary Computation Con 2015, pp. 313-320.

Benchmark Suites

Mohammad Nabi Omidvar, Xiaodong Li

- CEC'2005 Benchmark Suite (non-modular)
- CEC'2008 LSGO Benchmark Suite (non-modular)
- CEC'2010 LSGO Benchmark Suite
- CEC'2013 LSGO Benchmark Suite

^[2] Xiao-Min Hu et al. "Cooperation coevolution with fast interdependency identification for large scale optimization Information Sciences 381 (2017), pp. 142-160.

Main Questions

The Imbalance Problem

• Non-uniform contribution of components.

Imbalanced Functions

Mohammad Nabi Omidvar Xiaodong Li

 $f(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x}_i), \qquad (13)$ $w_i = 10^{s\mathcal{N}(0,1)},$

70 / 84

GECCO

69 / 84

Mohammad Nabi Omidvar, Xiaodong Li

inposition and CC for ESC

The Imbalance Problem (2)

How to decompose the problem?

A How to allocated resources?

Bow to coordinate?

Contribution-Based Cooperative Co-evolution (CBCC)

Types of CC

- CC: round-robin optimization of components.
- CBCC: favors components with a higher contribution.
 - Quantifies the contribution of components.
 - Optimizes the one with the highest contribution.

How to Quantify the Contribution

- For quantification of contributions a relatively accurate decomposition is needed.
- Changes in the objective value while other components are kept constant.

Contribution-Aware Algorithms

Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:

- Development of a benchmark [1].
- Exploiting modularity using CC [2], [3], [4].
- Analysis of the existing benchmarks [5].

[3] Luis Miguel Antonio and Carlos A Coello Coello. "Decomposition-Based Approach for Solving Large Scale Multi-o Problems". In: Parallel Problem Solving from Nature. Springer. 2016, pp. 525-534.

[4] Xiaoliang Ma et al. "A multiobjective evolutionary algorithm based on decision variable analyses for material optimization problems with large-scale variables". In: IEEE Transactions on Evolutionary Computation 20.2 pp. 275-298.

[5] Ke Li et al. "Variable Interaction in Multi-objective Optimization Problems". Springer International Publishing. 2016, pp. 399-409.

Figure: Variable interaction structures of the f_2 function of ZDT test suite.

Analysis of ZDT

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 0 1 1 1 1 1 1 0 1

X1 X2 X3 X4 X5 X6

1 1 1 1

^[1] Ran Cheng et al. "Test problems for large-scale multiobjective and many-objective optimization". In: IEEE Transactions on Cybernetics (2016).

^[2] Luis Miguel Antonio and Carlos A Coello Coello. "Use of cooperative coevolution for solving large scale multiobjective optimization problems" In: IEEE Congress on Evolutionary Computation. IEEE. 2013, pp. 2758–2765.

Analysis of DTLZ1-DTLZ4

Figure: Variable interaction graphs of DTLZ1 to DTLZ4 .

Proposition 1

For DTLZ1 to DTLZ4, $\forall f_i, i \in \{1, \dots, m\}$, we divide the corresponding decision variables into two non-overlapping sets: $\mathbf{x}_I = (x_1, \dots, x_\ell)^T$, $\ell = m - 1$ for $i \in \{1, 2\}$ while $\ell = m - i + 1$ for $i \in \{3, \dots, m\}$; and $\mathbf{x}_{II} = (x_m, \dots, x_n)^T$. All members of \mathbf{x}_I not only interact with each other, but also interact with those of \mathbf{x}_{II} ; all members of \mathbf{x}_{II} are independent from each other.

Analysis of DTLZ5-DTLZ7

Figure: Variable interaction graphs of DTLZ5 and DTLZ6.

Proposition 2

For DTLZ5 and DTLZ6, $\forall f_i, i \in \{1, \dots, m\}$, we divide the corresponding decision
variables into two non-overlapping sets: $\mathbf{x}_i = (x_1, \cdots, x_\ell)^T$, $\ell = m - 1$ for $i \in \{1, 2\}$
while $\ell = m - i + 1$ for $i \in \{3, \dots, m\}$; and $\mathbf{x}_{II} = (x_m, \dots, x_n)^T$. For f_i , where
$i \in \{1, \dots, m-1\}$, all members of \mathbf{x}_i and \mathbf{x}_{ii} interact with each other; for f_m , we have
the same interaction structure as DTLZ1-DTLZ4.

Decomposition and CC for LSGO

Proposition 3

All objective functions of DTLZ7 are fully separable.

Some Future Directions (I)

Mohammad Nabi Omidvar, Xiaodong Li

Some Future Directions (II)

Mohammad Nabi Omidvar, Xiaodong Li

- What if the components have overlap?
- Differential group is off-line and can be time-consuming. Is there a more efficient method?
- Do we need to get 100% accurate grouping? What is the relationship between grouping accuracy and optimality achieved by a CC algorithm?
- CC for combinatorial optimization, e.g.,
 - Y. Mei, X. Li and X. Yao, "Cooperative Co-evolution with Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems," IEEE Transactions on Evolutionary Computation, 18(3):435-449, June 2014.
- However, every combinatorial optimization problem has its own characteristics. We need to investigate CC for other combinatorial optimization problems.

Some Future Directions (III)

LSGO Resources

- Learning variable interdependencies is a strength of estimation of distribution algorithms (EDAs), e.g.,
 - W. Dong, T. Chen, P. Tino and X. Yao, "Scaling Up Estimation of Distribution Algorithms for Continuous Optimization," IEEE Transactions on Evolutionary Computation, 17(6):797-822, December 2013.
 - A. Kaban, J. Bootkrajang and R.J. Durrant. "Towards Large Scale Continuous EDA: A Random Matrix Theory Perspective." Evolutionary Computation
- Interestingly, few work exists on scaling up EDAs.

- There is an IEEE Computational Intelligence Society (CIS) Task Force on LSGO:
- Upcoming LSGO Tutorials
 - July 2017 GECCO (Berlin, Germany).
 - November 2017 SEAL (Shenzhen, China).
- LSGO Repository: http://www.cercia.ac.uk/projects/lsgo

Mohammad Nabi Omidvar, Xiaodong LiDecomposition and CC for LSGO81 / 84Mohammad Nabi Omidvar, Xiaodong LiDecomposition and CC for LSGO82 / 84AcknowledgementQuestions

Thanks for your attention!

qo qo q q?

Thanks goes to

- Professor Xin Yao and EPSRC (grant nos. EP/K001523/1 and EP/J017515/1) for supporting this tutorial.
- Dr. Ata Kaban and Dr. Momodou L. Sanyang for allowing us to use some figures from their publications.

