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General Idea of

Exploratory

Landscape Analysis
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General Idea of ELA

algorithm selection problem1

 find the individually best suited algorithm for an unseen
optimization problem

1Rice, J. (1976). The Algorithm Selection Problem. In Advances in Computers
(pp. 65-118).
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General Idea of ELA

Exploratory Landscape Analysis (ELA):

we aim at finding the right algorithm

but also at improving problem or algorithm/problem dependency
understanding

basic idea (exploratory!): we start with
very simple features without clear purpose

match existing high-level features (expert knowledge) with our
ELA features

currently: mostly continuous (black-box) (global) optimization,
but also in other domains (e.g. TSP)
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General Idea of ELA
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Mersmann, O., Preuss, M. & Trautmann, H. (2010). Benchmarking Evolutionary Algorithms:
Towards Exploratory Landscape Analysis. In Proceedings of PPSN XI (pp. 71 - 80).
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General Idea of ELA

we do not know functional relationships when designing features

but we can match them to high-level characteristics
(multimodality, funnel structure, etc.) of optimization problems

this enables recognizing important problem properties quickly

based on initial design of samples xi1, . . . , xiD and their
corresponding fitness value yi , i = 1, . . . , n

given an evaluated initial design (initial population?), most ELA
features are for free

there are already several different feature sets
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General Idea of ELA

What is the difference to Fitness Landscape Analysis (FLA)?

basic idea is similar: extract knowledge on problems in order to
select proper algorithm

however, our viewpoint is always set-based: no single feature has
to explain anything on its own, the combination is important

we heavily rely on Machine Learning for composing good feature
sets

additionally, we strive for (very) small sample sizes, in the range
of initial generation samples (100D points and less)
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Block 1 - Part I

A Brief Introduction into

the FLACCO-GUI
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Block 1 - Part II

ELA for Single-Objective

Global Optimization Problems
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Block 1 - Part II: Single-Objective Global Opt.

General Cell Mapping Features
Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,
Bischl, B. & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape
Analysis. In Proceedings of EVOLVE 2014 (pp. 115 – 131).
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Block 1 - Part II: Single-Objective Global Opt.

Barrier Tree Features
Hernández, C., Schütze, O., Emmerich, M. T. M., & Xiong, F. R. (2014). Barrier Tree for
Continuous Landscapes by Means of Generalized Cell Mapping. In Proceedings of EVOLVE
2014.
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Block 1 - Part II: Single-Objective Global Opt.

Cell Mapping Features
Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,
Bischl, B. & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape
Analysis. In Proceedings of EVOLVE 2014 (pp. 115 - 131).

better points worse points
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Block 1 - Part II: Single-Objective Global Opt.

Information Content Features
Muñoz, M. A., Kirley, M., Halgamuge, S. K. (2015). Exploratory Landscape Analysis of
Continuous Space Optimization Problems using Information Content. In IEEE Transactions on
Evolutionary Computation (pp. 74 – 87).
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Block 1 - Part II: Single-Objective Global Opt.

Dispersion Features
Lunacek, M. & Whitley, D. (2006). The Dispersion Metric and the CMA Evolution Strategy. In
Proceedings of GECCO 2006 (pp. 477 – 484).

Length Scale Features
Morgan, R. & Gallagher M. (2015). Analyzing and Characterising Optimization Problems Using
Length Scale. In Soft Computing (pp. 1 – 18).

Ruggedness Features
Malan, K. M. & Engelbrecht, A. P. (2013). Ruggedness, Funnels and Gradients in Fitness
Landscapes and the Effect on PSO Performance. In Proceedings of CEC 2013 (pp. 963 – 970).
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Block 1 - Part II: Single-Objective Global Opt.

Fitness Distance Correlation Features
Jones, T. & Forrest, S. (1995). Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms. In Proceedings of ICGA 1995 (pp. 184 – 192).

Violation Landscape Features
Malan, K. M., Oberholzer, J. F. & Engelbrecht, A. P. (1995). Characterising Constrained
Continuous Optimisation Problems. In CEC 2015 (pp. 1351 – 1358).

Hill Climbing Features
Abell, T., Malitsky, Y. & Tierney, K. (2013). Features for Exploiting Black-Box Optimization
Problem Structure. In Proceedings of LION 2013 (pp. 30 – 36).
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Block 1 - Part II: Single-Objective Global Opt.

Nearest Better Clustering Features
Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2015). Detecting Funnel Structures by
Means of Exploratory Landscape Analysis. In Proceedings of GECCO 2015 (pp. 265 – 272).

Meta-Model & NBC Features  Funnel Detection
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Block 1 - Part II: Single-Objective Global Opt.
Funnel Detection

funnel: local optima are located near to each other and pile up
to an “upside-down mountain”

knowledge about underlying global structure, i.e., funnels, helps
selecting the right algorithm

(a) funnel (b) non-funnel (“random”)

Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2016). Low-Budget Exploratory
Landscape Analysis on Multiple Peaks Models. In Proceedings of GECCO 2016 (pp. 229-236)
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Block 1 - Part II: Single-Objective Global Opt.
Funnel Detection

different algorithm candidates for either category

wide variety within the classes “funnel” and “non-funnel”

(a) funnel (b) non-funnel (“random”)

Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2016). Low-Budget Exploratory
Landscape Analysis on Multiple Peaks Models. In Proceedings of GECCO 2016 (pp. 229-236)
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Block 1 - Part II: Single-Objective Global Opt.
Funnel Detection

detailed results in our GECCO 2016 paper

used MPM22 to generate a set of 4,000 training instances

initial designs of size 50×D observations (small!)

trained four classifiers (random forest, rpart, kknn and ksvm)

only used a total of 8 Meta-Model and NBC features

validated results on BBOB and subset of problems from
CEC-2013 niching competition

2multiple peaks model 2 generator, available in python (optproblems0.9, Wessing, S.) and
R (smoof, Bossek, J.)
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Block 1 - Part II: Single-Objective Global Opt.
Funnel Detection
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Kerschke, P., Preuss, M., Wessing, S. & Trautmann H. (2016). Low-Budget Exploratory
Landscape Analysis on Multiple Peaks Models. In Proceedings of GECCO 2016 (pp. 229-236)
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Block 1 - Part III

Introduction into

FLACCO and its GUI
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Block 1 - Part III: FLACCO and its GUI

flacco: Feature-Based Landscape Analysis of Continuous and
Constraint Optimization Problems

unified interface for multiple (single-objective) sets of
configurable features

stable release on CRAN3 / developers version on GitHub4

multiple vizualisation techniques (partially shown on these slides)

tracks # of function evaluations and run time - per feature set

3Stable Release: https://cran.r-project.org/package=flacco
4Developers Version: https://github.com/kerschke/flacco
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Block 1 - Part III: FLACCO and its GUI

Tutorial: http://kerschke.github.io/flacco-tutorial/site/

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 24 / 79
767

https://cran.r-project.org/package=flacco
https://github.com/kerschke/flacco
http://kerschke.github.io/flacco-tutorial/site/


Block 1 - Part III: FLACCO and its GUI

flacco also comes with a GUI, which provides many
functionalities of the package itself

the GUI can be started (within R) using the commands below:

> # first, install "flacco" from CRAN

> install.packages("flacco", dependencies = TRUE)

>

> # then, load the package and start the app

> library(flacco)

> runFlaccoGUI()

alternatively, one can completely avoid the usage of R and use
the online version of the GUI, which can be found here:
https://flaccogui.shinyapps.io/flaccogui
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Block 1 - Part III: FLACCO and its GUI

https://flaccogui.shinyapps.io/flaccogui/

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 26 / 79

Block 1 - Part III: FLACCO and its GUI

https://flaccogui.shinyapps.io/flaccogui/
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Block 1 - Part III: FLACCO and its GUI

Further information on flacco and/or its GUI can be found here:

GECCO 2017 workshop paper:
Hanster, C. & Kerschke, P. (2017). flaccogui: Exploratory Landscape Analysis for

Everyone. In Proceedings of GECCO 2017.

presentation at the EvoSoft-Workshop at GECCO 2017:
http://dev.heuristiclab.com/trac.fcgi/wiki/EvoSoft

CEC 2016 paper:
Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory

Landscape Analysis with Applications to Multi-Objective Optimization Problems. In

Proceedings of CEC 2016.
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Block 1 - Part IV

Live-Session Using

FLACCO and its GUI
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Block 2

ELA for Single-Objective

Multimodal

Optimization Problems
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Block 2: Single-Objective Multimodal Optimization
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Block 2: Single-Objective Multimodal Optimization

core difference: we are looking for solution sets, not for one
optimal solution

sample definition:
“In a multimodal optimization task, the main purpose is to find
multiple optimal solutions (global and local), so that the user
can have a better knowledge about different optimal solutions in
the search space and as and when needed, the current solution
may be switched to another suitable optimum solution.”
(from Deb, Saha: Multimodal Optimization Using a
Bi-Objective Evolutionary Algorithm, ECJ, 2012)

many things are fuzzy here
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Block 2: Single-Objective Multimodal Optimization

different aims possible

currently most important (competitions): multiglobal
= find all search space points that are globally optimal

two main algorithmic approaches:

parallel, large populations

sequential, coordinated restarts

several components that may be used: archives, clustering
methods, methods for obtaining well distributed samples

ELA could be helpful for selecting components/methods
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Block 2: Single-Objective Multimodal Optimization

funnel detection is important, because many methods need to
partition space into basins

for two-stage methods, we know that restart organization
does not make much sense for global optimization

but it does for multimodal optimization (because we have to
look “everywhere”, Preuss: Multimodal Optimization by Means
of Evolutionary Algorithms, Springer 2015)
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Block 2: Single-Objective Multimodal Optimization

how do t2 and t3 depend on organizing restarts well?

Figure: left: t2 (time to global optimum), right: t3 (time until all basins
have been visited) for unequal basin sizes (1:10) and moderately well
working (p = 0.5) basin identification
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Block 2: Single-Objective Multimodal Optimization

So what do we need ELA to do for us?

having an idea of how many basins are there would be great

knowing how homogenous basin sizes are is important

but even if we do not understand everything, it would be good
to properly match algorithms/components to problems

there is little activity in this direction: get active!
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Block 3 - Part I

ELA for Multi-Objective

“Global”

Optimization Problems
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Block 3 - Part I: Multi-Objective “Global” Opt.

source: lmarti.github.io
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Block 3 - Part I: Multi-Objective “Global” Opt.

in single-objective optimization, ELA has shown to be useful for
describing the problem landscape based on a small initial design

currently, there exist almost no landscape features for
continuous multi-objective optimization problems

first approaches5,6 towards ELA in the multi-objective setting

5Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory
Landscape Analysis with Applications to Multi-Objective Optimization Problems. In
Proceedings of CEC 2016.

6Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., &
Emmerich, M. (2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In
Proceedings of PPSN 2016 (pp. 962-972)
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Block 3 - Part I: Multi-Objective “Global” Opt.

DTLZ1 to DTLZ77 and ZDT1 to ZDT68 (without ZDT5)

 120 instances (12 functions with 10 replicates each)

initial designs: 100×D samples with D = 3

considered 131 artificially designed “interaction-features”:

all 15 feature sets except for GCM and Barrier Trees

aggregated objectives (objective 1 / objective 2) per feature

discarded runtimes, as well as all features that contained infinite
or non-defined values

7Deb, K., Thiele, L., Laumanns, M. & Zitzler, E. (2001). Scalable Multi-Objective
Optimization Test Problems. In Proceedings of CEC 2002 (pp. 825 - 830)

8Zitzler, E., Deb, K. & Thiele (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. In Journal of Evolutionary Computation (pp. 173 - 195)

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 40 / 79
771

lmarti.github.io


Block 3 - Part I: Multi-Objective “Global” Opt.
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Block 3 - Part I: Multi-Objective “Global” Opt.
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Block 3 - Part I: Multi-Objective “Global” Opt.

the objective spaces of the 12 MOPs show some similarities
across the problems, e.g.

DTLZ2 ≈ DTLZ4

ZDT4 ≈ DTLZ5 ≈ ZDT1

the objective space of DTLZ7 looks very different to all the
others

Do the features meet our expectations
and group the MOPs accordingly?
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Block 3 - Part I: Multi-Objective “Global” Opt.
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Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory Landscape
Analysis with Applications to Multi-Objective Optimization Problems. In: Proceedings of CEC
2016.
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Block 3 - Part I: Multi-Objective “Global” Opt.

DTLZ1DTLZ2DTLZ3

DTLZ4

DTLZ5DTLZ6

DTLZ7
ZDT1

ZDT2ZDT3
ZDT4

ZDT6

−15

−10

−5

0

5

10

−15 −10 −5 0 5 10

PC1

P
C

2

cluster

●

●

●

●

●

1

2

3

4

5

Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory Landscape
Analysis with Applications to Multi-Objective Optimization Problems. In: Proceedings of CEC
2016.
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Block 3 - Part I: Multi-Objective “Global” Opt.

Why do the features group the MOPs differently?

many features are based on the decision space

remember: many algorithms also act in the decision space
(e.g., mutation / recombination within EAs)

did not use any sophisticated features (just the feature-wise
ratios between the objectives)

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 46 / 79

Block 3 - Part I: Multi-Objective “Global” Opt.

We need something to characterize and/or distinguish the
multi-objective landscapes!

1 start with a “white-box”-approach and “measure” some (rather
obvious) characteristics

2 once we know which of the characteristics might be useful, we
can (and should!) develop landscape features that measure the
information of these characteristics
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Block 3 - Part II

ELA for Multi-Objective

Multimodal

Optimization Problems
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Single-Objective
Optimization

Multi-Objective
Optimization
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Block 3 - Part II: Multi-Objective Multimodal Opt.

definition of multimodality for multi-objective problems within
our PPSN paper from 2016:
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., &

Emmerich, M. (2016). Towards Analyzing Multimodality of Multiobjective Landscapes.

In: Proceedings of PPSN XIV, Edinburgh, Scotland, pp. 962–972 (Best Paper Award).

visualized multimodality on a set of simple, but configurable
problems  bi-objective mixed-sphere problems
(using an adaptation of the MPM2-generator9)

9multiple peaks model 2 generator, available in python (optproblems0.9, Wessing, S.) and
R (smoof, Bossek, J.)
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Mixed-Sphere Problems

X1

X
2

X1

X
2
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Mixed-Sphere Problems
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Characteristics 6= Features

characteristics use knowledge of the entire landscape (white-box)

features are based on a small (!) sample of points from the
problem
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Measuring the Multimodality

possible characteristics:

1 percentage of counts of
global to local Pareto fronts

2 percentage of lengths of
global to local Pareto fronts

3 (1) for connected fronts

4 (2) for connected fronts

5 ... Y1

Y
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1

1 + 1 + 1
=

1

3
≈ 0.33

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 55 / 79

Block 3 - Part II: Multi-Objective Multimodal Opt.
Measuring the Multimodality

possible characteristics:

1 percentage of counts of
global to local Pareto fronts

2 percentage of lengths of
global to local Pareto fronts

3 (1) for connected fronts

4 (2) for connected fronts
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Y
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1.19

1.07

0.19

1.19

1.19 + 1.07 + 0.19
=

1.19

2.45
≈ 0.49
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Measuring the Multimodality

possible characteristics:

1 percentage of counts of
global to local Pareto fronts

2 percentage of lengths of
global to local Pareto fronts

3 (1) for connected fronts

4 (2) for connected fronts
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Y
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1 + 1

1 + 1 + 1
=

2

3
≈ 0.67
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Measuring the Multimodality

possible characteristics:

1 percentage of counts of
global to local Pareto fronts

2 percentage of lengths of
global to local Pareto fronts

3 (1) for connected fronts

4 (2) for connected fronts

5 ... Y1
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1.19

1.07

0.19

1.19 + 1.07

1.19 + 1.07 + 0.19
=

2.26

2.45
≈ 0.92
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Quite simple for small problems. But what happens if the
problems become (just a little bit) more multimodal?
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Block 3 - Part II: Multi-Objective Multimodal Opt.
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Block 3 - Part II: Multi-Objective Multimodal Opt.
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Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M.
(2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of
PPSN 2016 (pp. 962-972)
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Why is it necessary / useful to know the multimodality?

optimizers behave differently:

a general optimizer rather detects the local fronts

a global optimizer tries to find the global Pareto front(s)
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Naive Stochastic Local Search (SLS) Algorithm:

Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M.
(2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of
PPSN 2016 (pp. 962-972)
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Block 3 - Part II: Multi-Objective Multimodal Opt.

Hypervolume Indicator Gradient Ascent Multi-Objective
Optimization (HIGA-MO) Algorithm:

Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., & Emmerich, M.
(2016). Towards Analyzing Multimodality of Multiobjective Landscapes. In Proceedings of
PPSN 2016 (pp. 962-972)
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Basin of Attraction

Single-Objective
Optimization

Multi-Objective
Optimization
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

1. Combined Gradient

length of combined gradient ←→ cone of dominance
move to next cell ⇐⇒ ||v|| > ε

Kerschke, P. & Grimme, C. (2017). An Expedition to Multimodal Multi-Objective Optimization
Landscapes. In Proceedings of EMO 2017 (pp. 329-343)
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

2. Gradient Field
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

3. Direction for Next Step

Kerschke, P. & Grimme, C. (2017). An Expedition to Multimodal Multi-Objective Optimization
Landscapes. In Proceedings of EMO 2017 (pp. 329-343)
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

4. Cumulated Gradient Paths

0

1.2
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4.2 + 1.9
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

5. Heatmap of Cumulated Gradient Paths
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

5. Heatmap of Cumulated Gradient Paths
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

basin of attraction

(joint vs. disconnected)
local efficient sets

multi-objective ball

discontinuities & ridges
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 73 / 79

Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction – DTLZ & ZDT

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
DTLZ1

X1

X2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
ZDT1

X1

X2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
DTLZ2

X1

X2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
ZDT2

X1

X2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
DTLZ6

X1

X2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
ZDT3

X1

X2

Tutorial @GECCO 2017 Exploratory Landscape Analysis Berlin, July 15 - 19, 2017 75 / 79

Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction – Bi-Objective BBOB
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Block 3 - Part II: Multi-Objective Multimodal Opt.
Visualizing the Basins of Attraction – 3 Objectives
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Closing
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Closing

enhance flacco with more ELA features

how can we find the smallest most informative feature set?

by how much can we still reduce the size of the initial designs
without losing (too much) information?!

where can we find representative real-world problems /
appropriate benchmarks?

can we transfer landscape features from / to different domains?

use ELA features for improved algorithm selection and/or
configuration on different benchmarks (e.g., BBOB)
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