
Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Non-Static Parameter Choices

in Evolutionary Computation

Carola Doerr

CNRS and Université Pierre et Marie Curie, Paris, France

http://gecco-2017.sigevo.org/

1

Permission to make digital or hard copies of part or all of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '17 Companion, July 15-19, 2017, Berlin, Germany

ACM 978-1-4503-4939-0/17/07.

http://dx.doi.org/10.1145/3067695.3067707

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Link to the Latest Version, BibTeX Entry

 I will almost surely update these slides before the tutorial in July

 You can find the latest version of this tutorial online at

http://www-ia.lip6.fr/~doerr/GECCO17tutorial.pdf

 You can cite this tutorial (thanks in advance ;)) as follows

 Carola Doerr: Non-Static Parameter Choices in Evolutionary

Computation. GECCO (Companion). ACM, 2017

 BibTeX entry:

@inproceedings{Doerr17tutorial,

author = {Carola Doerr},

title = {Non-Static Parameter Choices in Evolutionary Computation},

booktitle = {Genetic and Evolutionary Computation Conference, {GECCO}

2017, Berlin, Germany, July 15-19, 2017, Companion Material Proceedings},

pages = {tbd},

year = {2017},

url = {http://doi.acm.org/10.1145/3067695.3067707},

doi = {10.1145/3067695.3067707}

publisher = {ACM}}

2

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Instructor: Carola Doerr
 Carola Doerr, née Winzen, is a permanent researcher with

the CNRS and Pierre et Marie Curie University (Paris 6).

 Carola’s main research interest is in the theory of randomized

search heuristics, both in the design of efficient algorithms

as well as in lower bounds for such general-purpose

optimization techniques. After contributing to the revival of

black-box complexity, a theory-guided approach to explore the

limitations of heuristic search algorithms, she recently started a

series of works aimed at exploiting insights from the theory of evolutionary

computation to design more efficient EAs, in particular such with a non-static

choice of parameters.

 Carola has been co-chair of the theory track at GECCO 2015 and 2017 and served as

tutorial chair at PPSN 2016. She is editor of two special issues in Algorithmica. From 2014

to 2016 she has been a co-organizer of the women@GECCO workshop series.

 She studied mathematics at Kiel University (Diploma in 2007) and computer science at the

Max Planck Institute for Informatics and Saarland University (PhD in 2011). Her PhD

studies were supported by a Google Europe Fellowship in Randomized Algorithms.

Carola’s thesis has been awarded the Otto Hahn Medal of the Max Planck Society. From

Dec. 2007 to Nov. 2009, Carola Doerr has worked as a business consultant for McKinsey

& Company. She was a post-doc at the Université 7 in Paris and the Max Planck Institute

for Informatics in Saarbrücken.

3 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

What We Will Discuss Today

1. (Almost) all EAs depend on a number of parameters

2. Choosing the right parameters of an EA is an important task

3. Choosing the right parameters of an EA is a difficult task

4. Parameter Tuning vs. Parameter Control:

why it is (almost) always better to use non-static parameters

5. Parameter Control Mechanisms

1. Which parameters should be updated?

2. Which effects should trigger an update?

3. How should we update the parameters and how do we classify the

different update schemes in EC?

4

736

http://www-ia.lip6.fr/~doerr/GECCO17tutorial.pdf

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

A Word of Warning: Scope (1/2)

 The performance of an EA depends on

 the components of the EA

 the operators in use

 the representation of the problem/

the model of the fitness function

and the interactions among these!

 We won’t discuss how to chose

 the “best” algorithm for your problem

 nor how to find a good fitness function to model your problem

 we will take the algorithm(s) and problem(s) as given and ask

ourselves how to find, for this given setting, good parameter values

5 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

A Word of Warning: Scope (2/2)

 In 110 minutes, I cannot offer you an exhaustive literature review.

You can find very good surveys here (see reference list for details)

 Eiben, Hinterding, Michalewicz, IEEE TEC, 1999 [EHM99]

 Eiben, Michalewicz, Schoenauer, Smith, 2007 [EMSS07]

 Karafotias, Hoogendoorn, Eiben, IEEE TEC, 2015 [KHE15]

 Those of you who are interested in runtime analysis works on non-

static parameter choices can take the survey in Section 6.1 in Doerr,

Doerr: Optimal Static and Self-Adjusting Parameter Choices for the

(1+(𝜆, 𝜆)) Genetic Algorithm [DD17] as a starting point for further

investigations

 I have decided to discuss in-depth a few mechanisms that should give

you a flavor of what has been done and what is possible (and how to

get there!)

 We will mostly focus on discrete optimization

 in continuous optimization, adaptive parameter choices are standard

 similar mechanisms are used in continuous optimization, often (but

not always) originating from a similar source of inspiration

6

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Main Goal of this Tutorial

To inspire (and enable)

you to use and

to experiment with

non-static parameter

choices

7 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Modus Operandi

 I have prepared a slide presentation but this should not stop you from

starting discussions or commenting on the content of this tutorial the

more you get involved, the more we can learn from each other (and the

more fun it is for all of us)

 There will be a short learning control at the end of the tutorial

 no worries, I won’t collect exam sheets ;)

 enables you to check if you have understood the main messages

and ideas presented in this tutorial

 During the tutorial, you will be asked to share in your experience with

non-static parameter choices

 Don’t hesitate to ask questions during the tutorial !!!

 if I am using a phrase that you don’t know, it is likely that someone

else in the room does not know it either

 Same holds if I am unable to get my message across

8

737

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Feedback

 This is the first time that I am presenting this tutorial at GECCO

 any feedback (positive and negative!) is highly welcome !

 kindly take notes if you want to comment on or suggest something

 which parts did you (not) like?

 was the speed accurate?

 is there anything that you would like to see changed?

 I am also very interested to hear more about related literature. So if

you know of any works that should be cited in this tutorial, please let

me know!

9 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 1:

Choosing the Right Parameters is

an Important but Difficult Task

10

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simplified EA Blueprint

 To simplify our discussions, we will use the following blueprint to model

evolutionary algorithms

 All content applies, nevertheless, also to more complex or other black-

box algorithms

11

Initialization of the population:
Sample search points X = 𝑥1, … , 𝑥𝜇

Variation:
Create 𝜆 offspring by recombining and mutating search points from 𝑋

Selection:
Update population 𝑋

Stop?
Output best search

point(s) seen

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

(Almost) All EAs are Parametrized

 Here is a “typical” evolutionary algorithm, a (𝜇 + 𝜆) EA with crossover

 There are quite a few parameters that need to be decided upon

 One of the most important questions in EC: how to choose these parameters???

12

Initialization:
Sample at random 𝑥1, … , 𝑥𝜇 ∈ 0,1 𝑛

Variation: For i = 1,… , 𝜆 do
with prob. 𝑐 do: 𝑦𝑖 ←crossover(𝑥𝑗 , 𝑥𝑘) for 𝑗, 𝑘 ∈ 𝑛 chosen at random

then/otherwise: set 𝑦𝑖 ←mutate(𝑥𝑗) for randomly selected 𝑗 ∈ [𝑛]

Selection:

From 𝑥1, … , 𝑥𝜇, 𝑦1, … , 𝑦𝜆 select 𝜇 search points of largest fitness

Stop?
Output best seen
search point(s)

738

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Relevance of Good Parameter Choices

 The very early days of EC:

“EAs are robust problem solvers”

 no need to tune parameters!

 However, it was soon realized that this hope does not (and, in fact,

cannot, as the “no free lunch” theorems tell us) materialize. It is today

widely acknowledged that the parameter values have a decisive

influence on the performance of an EA.

 Big open question (to date!): How to find good parameter values?

13 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

How to Find Good Parameter Values? (1/3)

 “Sports” of the 70s/80s in EC: Finding good parameter values

 good = “globally good”, i.e., for a broad range of problems

 Examples: De Jong [DJ75], Grefenstette [Gre86] give

recommendations for parameters such as population size, mutation

and crossover probabilities, selection strategies, etc.

 these recommendations are independent of problem class,

problem size, … (absolute values)

 Mühlenbein [Müh92] and others suggest 1/𝑛 as mutation rate for

problems of lengths 𝑛 (relative values)

 Note: we know today that this choice indeed works well for a

broad range of problems, cf. discussion below. However, it is

widely acknowledged today, that problem size is not the only

feature that matters.

14

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

How to Find Good Parameter Values? (2/3)

 “Modern view” of parameter selection: no globally optimal parameters exist

 the right choice of parameter values crucially depends on the problem

that we face and the algorithm that we employ

 Result: whenever we face a new problem, or employ a new algorithm,

we need to ask ourselves how to set the parameters

 Very often, some (often many !) preliminary experiments are conducted

to find reasonable parameter values

 This parameter tuning quite often is a difficult task (see next slide)

 In recent years, there is a substantial amount of EA literature on how to

find good (static) parameter values, so-called parameter tuning

mechanisms (see below for discussion and references)

 Similar situation in the theory of EC: typical research question concerns

the performance of a given algorithm with respect to some fixed set of

parameters.

 The bulk of EC papers (with a focus on discrete optimization problems)

falls into this category of analyzing performance with respect to some

fixed set of parameters! (How about your latest GECCO paper?)

15 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Difficulty of Finding Good Parameter Choices

1. Even if we find “optimal” parameter values for one problem, these may

(!, don’t have to) be much different for similarly-looking problems (which

is the basis for so-called parameter choice by analogy)

2. Small changes in one parameter can (!, don’t have to) cause huge

performance gaps

 Many empirical works on this matter exist (again, check this year’s

GECCO talks to see if/how much effort has been put into finding the

right parameters)

 Those of you interested in theoretical results can find in [DoerrJS+13]
[Doerr, Jansen, Sudholt, Winzen, Zarges: Mutation Rate Matters Even When

Optimizing Monotonic Functions. Evolutionary Computation, 2013] or [LS16]

[Lengler, Steger: Drift analysis and evolutionary algorithms revisited, arXiv]

examples where changing the mutation rate by a small constant

factor changes the expected running time from a small polynomial

(e.g., 𝑂(𝑛 log𝑛)) to super-polynomial/exponential

16

739

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

How to Find Good Parameter Values? (3/3)

 What I am trying to advocate with this tutorial:

“New (?) modern view”: the best parameter choices are non-static !

 Instead of (or at least in addition to) parameter tuning, we should learn

1. that the best parameter values depend on the current state of the

optimization process and thus change over time

2. that there are some simple ways to enable our algorithms to figure

out good parameter values themselves

17 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 2:

Parameter Tuning vs. Parameter

Control: why it is (almost) always

better to use non-static parameters

18

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Why Use Non-Static Parameters?

VERY intuitive motivation:

1. Different stages of the optimization process require different parameter

values!

 Example:

 beginning = “exploration phase”

 large mutation rate/small selective

pressure to make large jumps and

discover different areas of the search space

 end = “exploitation phase”

 small mutation rates/high selective pressure to focus the search

2. No need for the user to identify good parameter values

 Parameter tuning takes time and is quite complex (tuning 1 parameter

is difficult already, but the operators also interact with each other,

tuning 2 or more parameters typically requires non-sequential

optimization, which is a difficult task)

 Hope is that the algorithm identifies good parameter values itself

19 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Your Experience with

Non-Static Parameter Values

1. Have you already experimented with non-static parameter values?

1. What was your motivation?

2. How did you do this?

3. What did go well, what did not go well?

2. If you haven’t experimented with this idea, why not?

(e.g., never crossed my mind, not convinced by the motivation, no time

to work on this, my algorithm doesn’t have any parameters,…)

20

740

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 3:

Parameter Control – Introduction

21 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Main Questions in Parameter Control

1. What is adapted? (and who is affected: 1 individual vs. whole population)
1. Population size

2. Mutation rate, Crossover probability

3. Selection pressure

4. Fitness function (e.g., penalty terms for constraints)

5. Representation

6. …

2. What is the basis/evidence for the update?
1. number of fitness evaluations performed or time elapsed

2. progress, e.g., in terms of absolute or relative fitness values

3. diversity measures

4. …

3. How do we update the parameter(s):
1. deterministic rule: time-dependent, feedback-free

2. self-adaptive rule: treat parameter optimization as a complex optimization

problem, use EAs to find good values

3. adaptive: use feedback from the optimization process and plug it into some

update mechanism determining the direction and/or the magnitude of change

4. ….
22

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Classification Scheme of [EHM99]

 Many attempts to find unifying taxonomy for parameter choices exist (cf.

page 168 in [KHE15] for a survey)

 To date, the most popular classification scheme is that of Eiben,

Hinterding, Michalewicz [EHM99] (we will discuss it in detail below)

 Important open problem:

 to establish a more fine-grained classification scheme, based on a

solid mathematical framework

 ideally, same terminology

 for discrete and continuous optimization

 in theoretical and empirical research streams

it should reflect the main differences in the recent approaches on

parameter control mechanisms

23 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Classification Scheme of [EHM99]

24

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices
- offline optimization

- dynamic parameter choices
- online optimization

parameters encoded
in the genome

no feedback from
optimization process

update rules depend on
optimization process

741

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Sketching the Classification Scheme of [EHM99]

Parameter Tuning

 “Oldschool” (yes, I know that this is provocative and not 100% correct…) parameter

selection: parameter tuning

do some preliminary experiments to find good values for the

parameters in question

 Note: a lot of research exists on analyzing ways to tune

parameters in a smart, efficient, and effective way. Albeit being a

highly relevant topic, we won’t touch this question here.

The interested reader can find a survey on parameter tuning

mechanisms for evolutionary algorithms in [ES11,Smi12]

 the bulk of EA literature falls into this category!

(hopefully, this tutorial contributes to changing this)

 Is the situation better in theoretical EC research?

 Not so much better, see next slide

25 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Sketching the Classification Scheme of [EHM99]

Parameter Tuning
Similar situation in theoretical EA research: most research in the EA theory

community is dedicated to EAs with static parameter settings

 Example: long series of work to find the optimal mutation rate for the

(1+1) EA optimizing linear functions, (temporarily?) cumulating in the

work of Witt [Wit13] confirming that the often-recommended choice of

1/𝑛 is indeed optimal among all static choices

 Quote from the abstract: “As a consequence, the standard mutation

probability 𝑝 = 1/𝑛 is optimal for all linear functions, and the (1+1) EA is

found to be an optimal mutation-based algorithm.” [Wit13]

 After this tutorial, you will agree that such statements have to be taken

with care as they often (as in this and many similar cases) refer only to

optimality among all static parameter choices !

 Main reasons for this situation:

 ignorance of non-static parameter choices

 difficulty of analyzing EAs with non-static parameters, cf. also

[DDY16b] for difficulties of identifying optimal mutation strengths for

the simple OneMax function

26

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Sketching the Classification Scheme of [EHM99]

 First level of differentiation: discriminate between parameter tuning and

parameter control

27

parameter setting

parameter controlparameter tuning

- fixed parameter choices
- offline optimization

- dynamic parameter choices
- online optimization

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Parameter Control Idea 1: Updates should follow a similar pattern

 Most popular example: exploration first, then exploitation

 mutation rate: large in the beginning, smaller towards the end

 selection strength: more generous in the beginning, higher selection

pressure in the end

 to stimulate or enforce this behavior, we can change the parameters

based on the time elapsed (number of generations, fitness evaluations,

wall-clock time, etc.)

 Simple examples:

 cooling schedule of the selective pressure (“temperature”) in

Boltzmann selection of Simulated Annealing

 start with mutation rate 𝑝 = 1/2, decrease 𝑝 after 10,000 fitness

evaluations

 after each 1,000 iterations, draw a random mutation probability

28

Sketching the Classification Scheme of [EHM99]

Deterministic Parameter Control

742

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Parameter Control Idea 1: Updates should follow a similar pattern

 Most popular example: exploration first, then exploitation

 mutation rate: large in the beginning, smaller towards the end

 selection strength: more generous in the beginning, higher selection

pressure in the end

 to stimulate or enforce this behavior, we can change the parameters

based on the time elapsed (number of generations, fitness evaluations,

wall-clock time, etc.)

 Simple examples:

 cooling schedule of the selective pressure (“temperature”) in

Boltzmann selection of Simulated Annealing

 start with mutation rate 𝑝 = 1/2, decrease 𝑝 after 10,000 fitness

evaluations

 after each 1,000 iterations, draw a random mutation probability

29

Sketching the Classification Scheme of [EHM99]

Deterministic Parameter Control

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Remarks on “Deterministic” Update Schemes

 Already Eiben, Hinterding, and Michalewicz noted in their work [EHM99] that the

term “deterministic” is sub-optimal (update rules may be random as in the third

example on the previous slide)

 More suitable terms could be

 “time-dependent”, “scheduled” update scheme, or

 “feedback-free”, “progress-independent” update scheme

but in lack of a widely acknowledged alternative, “deterministic update rule” is

still the predominantly used term

 The crucial feature here is that there is no feedback from the optimization

process, so the update rule is determined in advance, before the actual run of the

algorithm

(Note: when random decisions are involved, then it would be possible to run the

experiments determining the parameter value before the EA is started)

 Note that finding the optimal deterministic update rules requires tuning, i.e., while

they bypass the disadvantage of the non-flexible static parameter values, they do

not allow the algorithm to identify the good parameter values by itself

30

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Examples for Deterministic Parameter Choices (1/2)

 Some selected theory works:

 Hesser and Männer (PPSN’90) [HM90] suggested the following rule for the

mutation strength of a GA with population size 𝜆 for OneMax:

𝑝𝑚 𝑡 ≔

𝛼

𝛽
exp −

𝛾𝑡

2

𝜆 𝑛
where 𝛼, 𝛽, 𝛾 are constants

 Jansen Wegener [JW06]: mutation rate changes in every iteration

 𝑝𝑡 𝑛 ≔ 2𝑖/𝑛 where 𝑖 ≡ 𝑡 − 1 mod log 𝑛 − 1

+/- very frequent changes non-stable algorithm

- worse performance on simple functions like OneMax, linear functions,

LeadingOnes, etc.

+ examples where better performance than any static choice can be proven

 Doerr, Doerr, Kötzing (GECCO 2016) [DDK16b]: in every iteration, a random

step size is used for a multi-valued OneMax-type problem (problem will be

discussed in more detail in the next section, along with a self-adjusting

parameter choice)

 Note: non-static parameter values, but static probability distribution used

here!

31 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Examples for Deterministic Parameter Choices (2/2)

 Random Variation of the Population Size GA (RVPS) by Costa, Tavares,

and Rosa [CTR99]

 size of the actual population is changed every N fitness evaluations,

for a given N (according to some monotonous rule)

 Both shrinking and increasing the population size are considered

 Saw-tooth like population size growth considered by

 Koumousis and Katsaras in [KK06] (TEC 2006): linear decrease of

population size with eventual re-initialization of the population size by

adding randomly selected individuals

 Hu, Harding, Banzaf [HHB10]: inverse saw-tooth like population sizes

32

743

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Sketching the Classification Scheme of [EHM99]

Self-Adjusting Parameter Control

 Parameter Control Idea 2:

Finding good parameter values is difficult

+ EAs are good problem solvers

= Use an EA to determine parameter values

 Many different ways to do this. Examples (sketched, much room for

creativity here !):

1. Create a new population of parameter values, choose from this

parameter values, possibly apply variation to them, and employ

them in your EA, select based on progress made

2. append to the solution candidates a string which encodes the

parameter value, first mutate the parameter value part, then use

this parameter to change the search point, selection as usual

33

1 1 0 1 0 0 1 11 1 0 0 1 1…

search point parameter value

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Sketching the Classification Scheme of [EHM99]

Self-Adjusting Parameter Control

 Parameter Control Idea 2:

Finding good parameter values is difficult

+ EAs are good problem solvers

= Use an EA to determine parameter values

34

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Examples for Self-Adaptive Parameter Choices

 We won’t discuss this in much detail, but if you are interested in such

mechanisms, you can start your investigations with the following works

 Bäck PPSN’92 [Bäc92] and follow-up works: extends the

chromosome by 20 bits. Mutation works as follows:

1. Decoding the 20 bits to the individual’s own mut. rate 𝑝𝑚

2. Mutating the bits encoding 𝑝𝑚 with mutation probability 𝑝𝑚

3. Decoding these changed bits to 𝑝′𝑚

4. Mutating the bits that encode the solution with mutation

probability 𝑝′𝑚

 Dang, Lehre (PPSN’16) [DL16]: theoretical work on a self-adaptive

choice of the mutation strength in a non-elitist population

35 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

 Parameter Control Idea 3:

 use feedback from the optimization process to change the

parameters according to some pre-described rule

 Relevant feedback includes:

 success-based rules: presence/absence of progress

(Example: “if the iteration was successful, increase mutation rate, and

decrease it otherwise”)

 fitness-based update rules: magnitude of parameter change depends

on the magnitude of the progress or the fitness of the current-best

search point(s)

(Example: fitness- or ranking-based mutation rates)

36

Sketching the Classification Scheme of [EHM99]

Adaptive Parameter Control

744

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

 Parameter Control Idea 3:

 use feedback from the optimization process to change the

parameters according to some pre-described rule

 In my opinion, adaptive control mechanisms are the most promising

direction for future work. The remainder of this tutorial therefore focusses

on such update mechanisms

 Note: no formal definition exists to distinguish between self-adaptive and

adaptive parameter control mechanisms. As a rule of thumb, self-

adaptive mechanisms are those in which the parameter value is encoded

in the genome and undergo variation and selection

37

Sketching the Classification Scheme of [EHM99]

Adaptive Parameter Control

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Classification Scheme of [EHM99]

38

parameter setting

parameter controlparameter tuning

self-adaptiveadaptivedeterministic

- fixed parameter choices
- offline optimization

- dynamic parameter choices
- online optimization

parameters encoded
in the genome

no feedback from
optimization process

update rules depend on
optimization process

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Discussion of the Classification Scheme

 The classification scheme of [EHM99] is the most widely accepted one

 While historically there has been quite some work on deterministic and

self-adaptive update rules, today the most commonly applied rules are

adaptive

 These adaptive rules can be much different in flavor, as we shall see

below

 As mentioned earlier, after 18 years of existence, it may be the right time

for a new classification scheme

 In [DD15a] (GECCO’15) we suggested to distinguish between

 functionally-dependent adaptive schemes: parameters are in

functional dependence of current population. That is, only the current

state matters, not the process to achieve this state

 self-adjusting adaptive schemes: parameters depend on success of

previous iterations

 Other discriminations are much needed (see discussions below) but

haven’t been established to date

39 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 4:

Examples for Parameter Control

Mechanisms

40

745

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Reminder: Main Questions in Parameter Control

1. What is adapted? (and who is affected: 1 individual vs. whole population)
1. Population size

2. Mutation rate, Crossover probability

3. Selection pressure

4. Fitness function (e.g., penalty terms for constraints)

5. Representation

6. …

2. What is the basis/evidence for the update?
1. number of fitness evaluations performed or time elapsed

2. progress, e.g., in terms of absolute or relative fitness values

3. diversity measures

4. …

3. How do we update the parameter(s):
1. deterministic rule: time-dependent, feedback-free

2. self-adaptive rule: treat parameter optimization as a complex optimization

problem, use EAs to find good values

3. adaptive: use feedback from the optimization process and plug it into some

update mechanism determining the direction and/or the magnitude of change

4. ….

41

Focus of this tutorial

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 4a:

Simple Success-Based

Update Rules

42

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Main Message of this Section

 Non-static parameter update schemes don’t have to be complicated!

 Quite simple ideas and mechanisms can do the job

43 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules (1/2)

 Rechenberg’s 1/5th success rule [Rec73]:

 main idea: the optimal success rate of an ES should be around 1/5

(based on considerations wrt sphere function and corridor landscape)

 If (observed success rate > 1/5) increase mutation rate

If (observed success rate < 1/5) decrease mutation rate

 similar rules have been proposed by Schumer, Steiglitz 68 [SS68] and

Devroye [Dev72]

 Intuition:

 when success is too likely to happen, we seem to be in an easy part of

the optimization problem

 let’s try to make more progress per step

 corresponds to making larger jumps, i.e., larger mutation rates

 when success is happening too seldom, we could be approaching the

optimum and should focus our search smaller jumps are sought

decrease mutation rate

44

746

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules (2/2)

 Rechenberg’s 1/5th success rule:

If (observed success rate > 1/5) increase mutation rate

If (observed success rate < 1/5) decrease mutation rate

 Main question: how should we update the mutation rate?

 One quite simple idea:

Simple success-based (multiplicative) parameter update mechanism:

If (iteration successful) multiply mutation rate by a constant C>1

If (iteration not successful) multiply mutation rate by a constant c<1

 Note 1: there is also justification to do this the other way around, i.e.,

If (iteration successful) multiply mutation rate by a constant c<1

If (iteration not successful) multiply mutation rate by a constant C>1

(think of jump functions or other functions with a local optimum from which

the algorithm needs to escape)

 Note 2: the same idea can also be used to control other parameters, such

as the population size, crossover probabilities, etc.

45 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Examples for Simple Success-Based Rules

 Simple success-based (multiplicative) parameter update mechanisms have

been experimented with in different research streams of EC

 In what follows, I give a few examples, mostly stemming from the theory of

EC

 the simple algorithms and problems regarded there allow us to

concentrate on the main ideas

 for some of the considered (“toy”) problems, it is sometimes possible to

formally prove that the adaptive parameter choices outperform any (!)

static one

while all the mentioned works serve as a showcase that self-

adjustment is feasible and brings performance gains, for none of them

has there been a thorough investigation of how much one can gain by

tuning the adjustment rules (see discussion below), so there is a lot of

room for us to experiment and to learn !

 Empirical works which can serve as a starting point for further

investigations on the simple success-based (multiplicative) parameter

update mechanisms include [Aug09,KMH+04]

46

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules: Example 1

 Lässig, Sudholt: Adaptive Population Models for Offspring Populations

and Parallel Evolutionary Algorithms, FOGA 2011 [LS11]:

 regard the 1 + 𝜆 EA

 an iteration is called successful if it produces an offspring of better

than previous best fitness value

 Scheme A:

 If (iteration not successful) double 𝜆
If (iteration successful) reduce 𝜆 to 1

 Scheme B:

 If (iteration not successful) double 𝜆
If (iteration successful) halve 𝜆

 Main results: decreased expected parallel optimization times without

increasing the expected sequential runtime for problems like

OneMax, LeadingOnes, Jump, unimodal functions

47 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules: Example 1

 Similar mechanism has been proposed by Jansen, De Jong, Wegener

ECJ 2005 [JDW05]:

 Scheme C:

 If (iteration not successful) double 𝜆
If (iteration successful) replace 𝜆 by 𝜆/s where 𝑠 is the nbr

of better offspring

 Jansen, De Jong, Wegener showed that this principle works well in

practice, but did not analyze it theoretically

48

747

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules: Example 2

 In [DDK16a] (PPSN 2016) we regard a multi-valued version of OneMax

 Reminder: OneMax function

 traditionally, OM is the counting-ones function OM 𝑥 = 𝑖 𝑥𝑖 = 1 |

 generalization:

 unknown target string 𝑧 ∈ 0,1 𝑛

 fitness OM𝑧 𝑥 = 𝑖 𝑥𝑖 = 𝑧𝑖 | = 𝑛 − 𝐻(𝑥, 𝑧) = number of bits in

which 𝑥 and 𝑧 agree.

(For 𝑧 = 1,… , 1 , OM𝑧 = OM = counting-ones function)

 Maximization of OM𝑧= find 𝑧 = minimize the Hamming distance to 𝑧

 Multi-valued version 𝑧 ∈ 0,1,… , 𝑟 − 1 𝑛

 𝑓𝑧 𝑥 = 𝑖=1,…,𝑛 𝑑 𝑥𝑖 , 𝑧𝑖 where 𝑑 . , . is some distance function,

e.g., 𝑑 𝑎, 𝑏 = |𝑏 − 𝑎| (interval metric) or

𝑑 𝑎, 𝑏 = min{ 𝑏 − 𝑎 , |𝑏 − 𝑎 + 𝑟|, |𝑏 − 𝑎 − 𝑟|} (ring metric)

 Algorithm: RLS-type algorithm with component-wise step sizes

(blackboard, or see next slide)
49 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules: Example 2

 For suitable 𝑎 > 1 and 𝑏 < 1 (e.g., 𝑎 ∈ 1.7,2 and 𝑏 ∈ 0.8,0.9) this

algorithm achieves an expected optimization time of

Θ 𝑛 log𝑛 + log 𝑟 , which is best possible among all (static and non-

static) parameter choices

 We do not know if any static parameter choice can achieve this

performance

50

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Simple Success-Based Rules: Example 3

 The following example requires a bit of time

 I decided to invest this time because

 I think that this algorithm is worth it

 this is an example where we can formally prove that the simple

success-based rule is better than any static parameter choice

 I want to discuss with you how we came up with the main ideas

 there are quite a few open questions, interesting for both empirically-

and theory-oriented researchers

 References for this part:

 [DDE13] (GECCO 2013) and [DDE15] (TCS 2015, journal version of

[DDE13])

suggested the (1+(𝝀, 𝝀)) GA

 [DD15b] (GECCO’15): tight bound for static parameter setting

 [DD15a] (GECCO’15): analysis of self-adjusting mechanism

 [Doe16] (GECCO’16): lower bound for 3-dimensional parameter space
51 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

The (1+(𝝀, 𝝀)) GA

1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3,… do

3. Mutation phase:

4. Sample ℓ from 𝐵(𝑛, 𝑝);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 ,… , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 ,… , 𝑓(𝑦(𝜆))};

10. Selection step: if 𝑓 𝑦 ≥ 𝑓(𝑥) then replace 𝑥 by 𝑦;

0 1 0 1 0 0 0 0

0 0

1

1

0 0

1 0 1 0 0

𝑥

𝑥(𝑖)

0 1 0 1 0 0 0 0

0 0 1 1 0 1 0 0

0

0

1

1

1

1

1 0

0

00

1 0 0 0 0

𝑥

𝑥′

𝑦(𝑖)

748

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

The (1+(𝝀, 𝝀)) GA

1. Initialization: Sample 𝑥 ∈ 0,1 𝑛 u.a.r.

2. Optimization: for 𝑡 = 1,2,3,… do

3. Mutation phase:

4. Sample ℓ from 𝐵(𝑛, 𝑝);

5. for 𝑖 = 1,… , 𝜆 do Sample 𝑥(𝑖) ← mutℓ 𝑥 ;

6. Choose 𝑥’ ∈ {𝑥 1 , … , 𝑥(𝜆)} with 𝑓(𝑥’) = max{𝑓 𝑥 1 ,… , 𝑓(𝑥(𝜆))};

7. Crossover phase:

8. for 𝑖 = 1,… , 𝜆 do Sample 𝑦(𝑖) ← cross𝑐 𝑥, 𝑥′ ;

9. Choose 𝑦 ∈ {𝑦 1 , … , 𝑦(𝜆)} with 𝑓(𝑦) = max{𝑓 𝑦 1 ,… , 𝑓(𝑦(𝜆))};

10. Selection step: if 𝑓 𝑦 ≥ 𝑓(𝑥) then replace 𝑥 by 𝑦;

 Quite a few parameters that need to be chosen

 Analyzing the performance of the algorithm on OneMax, we observed

that 𝑝 = 𝜆/𝑛 and 𝑐 = 1/𝜆 are good choices, reducing the 3-dimensional

parameter space to a 1-dimensional one
Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

How to Chose 𝝀 in the (1+(𝝀, 𝝀)) GA?

 We analyzed the performance of the (1+(𝝀, 𝝀)) GA on OneMax

 First “quick&dirty” result: for 𝜆 = 𝛩(log 𝑛) the expected runtime of the

(1+(𝝀, 𝝀)) GA on OneMax is 𝑂(𝑛 log 𝑛) [DDE13]

 This bound has later been slightly improved in [DD15b]:

for 𝜆 = 𝛩(log (𝑛) log log(𝑛) / log log log(𝑛)) the expected runtime of the

(1+(𝝀, 𝝀)) GA on OneMax is 𝑂(𝑛 log (𝑛) log log log(𝑛)/ log log 𝑛)

 No other (static!) combination of 𝑝, 𝑐, 𝜆 can yield a better runtime

54

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

How to Chose 𝝀 in the (1+(𝝀, 𝝀)) GA?

 In [DDE13] we also observed (and this was in fact no so difficult to spot!)

that a fitness-based choice of 𝜆 gives a better result:

for 𝜆 =
𝑛

𝑛−𝑓(𝑥)
, the runtime is 𝑂 𝑛

 This linear runtime is better than what any (!) static parameter value

can achieve (by the results presented in [Doe16])

 one of the few examples where a non-static choice can be proven

(with mathematical rigor) to outperform static parameter setting

 Linear runtime can also be shown to be the best possible achievable

runtime

 Disadvantage of this non-static, fitness-dependent choice:

hard to guess such a functional relationship!

 Main question: is there a way to achieve similar performance in an

automated way?

55 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Self-Adjusting 𝝀 in the (1+(𝝀, 𝝀)) GA (1/2)

 Can the algorithm find good (or optimal) values for 𝜆 by itself?

 Idea: simple success-based rule.

 If at the end of an iteration

 we have an improvement (𝑓 𝑦 > 𝑓 𝑥) then 𝜆 ← 𝜆/𝐹;

 No improvement (𝑓 𝑦 ≤ 𝑓 𝑥) then 𝜆 ← 𝜆𝐹1/4;

 We did not invent this update scheme. We took it from work by Auger

(GECCO’09) [Aug09], who herself had taken it from work by Kern, Müller,

Hansen, Büche, Ocenasek , Koumoutsakos, Natural Computing, 2004

[KMH+04]

 Why is this called “discrete 1/5th success rule”?

 Assume that at time 𝑡 you have a parameter value of 𝑥𝑡

 We run the algorithm for 𝑠 iterations

 If 𝑠/5 of these iterations were successful, then 𝑥𝑡+𝑠 = 𝑥𝑡

 Note tough that we do not enforce or induce a success rate of 1/5,

nor is this sought

56

749

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Self-Adjusting 𝝀 in the (1+(𝝀, 𝝀)) GA (2/2)

 Can the algorithm find good (or optimal) values for 𝜆 by itself?

 Idea: simple success-based rule.

 If at the end of an iteration

 we have an improvement (𝑓 𝑦 > 𝑓 𝑥) then 𝜆 ← 𝜆/𝐹;

 No improvement (𝑓 𝑦 ≤ 𝑓 𝑥) then 𝜆 ← 𝜆𝐹1/4;

 Why did we try this discrete 1/5th success rule?

 By chance… We knew about it, we tried it, and it worked…

 We actually did not (not yet…) experiment with this rule, and it is not

unlikely that other update mechanisms yield even better performance.

For the time being, we were happy with the results presented next

 Anyone in this room interested in investigating these choices further,

please talk to me !

57 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Experimental Results for

Self-Adjusting (1+(𝝀, 𝝀)) GA on OneMax

58

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Self-Adjusting Choice Imitates the

Optimal Fitness-Dependent Parameter Choice

59

 Plot shows one representative run of the self-adjusting (1+(𝝀,𝝀)) GA on

ONEMAX for 𝑛 = 1,000

 In [DD15a] we could prove, with mathematical rigor, that the simple

success-based rule suggested above indeed yields linear (and thus

asymptotically optimal !) performance

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Good Performance Also for Other Test Functions

 Performance on linear functions with random weights in [1,2]

 Average over 1,000 runs

750

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Good Performance Also for Other Test Functions

 Performance on royal road functions with block size 5

 Average over 1,000 runs

 Modified self-adjusting parameter choice: no update if fitness does not

change
Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Surprise: Performance on MaxSAT
(and a number of other combinatorial problems)

62

 Graph taken from [GP15]: Goldman, Punch ECJ 2015. It shows number of

satisfied clauses as a function of time for a MaxSAT instance (median values

across 100 independent runs)

 First theoretical results for the self-adjusting (1+(𝝀,𝝀)) GA on MaxSAT available,

see talk of Buzdalov and Doerr in the best paper session of the theory track here

at GECCO 2017 [BD17]

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: The 1 + 𝜆 EA on OneMax

 Series of works analyzing how the mutation rate in the 1 + 𝜆 EA, for

fixed (!) 𝜆, influences the expected number 𝑇gen of generations (!) until,

for OneMax, an optimum is evaluated for the first time

 For static mutation rate 𝑝 = 𝑟/𝑛, Giessen and Witt (GECCO’15)

[GW15] and [GW17] have shown that 𝑇gen equals

 This bound is minimized for 𝑟 = 1 (i.e., 𝑝 = 1/𝑛)
(note that in [GW16] (GECCO’16) they showed that even for moderate 𝑛 and

not too small 𝜆 mutation rates up to 10% larger than 1/𝑛 minimize the

expected runtime)

 For a fitness-dependent mutation rate, Badkobeh, Lehre, Sudholt

(PPSN’14) [BLS14] showed a 𝑇gen = Θ
𝑛

log 𝜆
+
𝑛 log 𝑛

log 𝜆
runtime bound

 optimal among all possible and better than any static parameter setting

 requires the non-trivial setting 𝑝 = max
1

𝑛
,

ln 𝜆

𝑛 ln
𝑒𝑛

𝑑

main question is again how to achieve such a behavior without having to

guess such a complicated relationship

63 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: The 1 + 𝜆 EA on OneMax
Doerr, Giessen, Witt, Yang (GECCO’17, theory track) [DGWY17] suggest

the following mechanism:

 let 𝑝 be the current mutation rate

 in each iteration do:

 create 𝜆/2 offspring with mutation rate 2𝑝

 create 𝜆/2 offspring with mutation rate 𝑝/2

 update 𝑝 as follows (capping at 2/𝑛 and 1/4, respectively)

 with probability 1/2 set it to the value for which the best offspring

has been found

 with probability 1/2, independently of the last iteration, randomly

decide whether to replace 𝑝 by either 𝑝/2 or by 2𝑝

 Main result: this simple mechanism achieves the asymptotically

optimal 𝑇gen = Θ
𝑛

log 𝜆
+
𝑛 log 𝑛

log 𝜆
performance

 Note: this is very recent work. It is likely to be better to work with 3

subpopulations, created by mutation rate 𝑐𝑝, 𝑝, and 𝐶𝑝 for some constants

𝑐 < 1, 𝐶 > 1 (feel free to be creative ;))
64

751

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 4b:

Learning- or Reward-Type

Mechanisms

(“Operator Selection”)

65 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Main Ideas of Learning-Type Updates

 The main idea for learning-/reward-type adjustment rules is

 have a set 𝑆 of possible parameter values

 according to some rule, test all or some of these values

 update the likelihood to employ the tested value based on the feedback

from the optimization process

 Picture to have in mind:

 𝑛 experts

 in each round, you have to chose one of them and you follow his advice

 you update your confidence in this expert depending on the quality of

his forecast

 Main difficulty: exploitation vs. exploration trade off

 exploitation: we want to test each parameter value sufficiently often, to

make sure that we select the “optimal” one (in particular when the

quality of its “advice” changes, which is the typical situation that we face

in evolutionary optimization)

 exploration: we want, of course, to use an optimal parameter value as

often as possible

66

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Learning-Type Updates, Remarks

 Frequently found feature: time-discounted methods. That is, a good

advice in the past is worth less than a good advice now

 different update mechanisms and “forgetting rates” have been

experimented with, see discussion below

 note that such mechanisms are in particular useful when the quality of

advice (in our setting, this could be the expected fitness gain, the

expected decrease in distance to the optimum, or some other

quantity) changes over time

 Note: such learning mechanisms are referred to as “operator selection” in

[KHE15]. Another keywords to search for is “credit assignment”. It may also be

worth to look into literature from learning, in particular on multi-armed bandit

algorithms (main goal: maximize reward “on the go”, i.e., while learning) and on

reinforcement learning (possibly have dedicated “learning” iterations, a notion of

state is introduced and the hope is to learn for each state which operator

maximizes expected progress)

 Again I will have to focus on a few selected works here. Much more work

has been done, cf. Section IV.C.4 in [KHE15] for a survey. There is still

much room for further creativity and much research is needed to

understand which mechanisms are most useful in which situations
67 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 1: Davis’s adaptive operator fitness (1/2)

Davis (ICGA’89) [Dav89] suggests to adapt rates of crossover operators

based on rewards

 Several crossover operators are used simultaneously in every iteration,

each having its own crossover rate 𝑝𝑐 operator𝑖
 the strength of an operator is measured by the fitness value 𝑑𝑖 gained

over the best so-far individual in the population. These values are

updated after every use of operator 𝑖

 every 𝐾 iterations, the crossover rates are being updated as follows:

𝑝𝑐
new operator𝑖 = 0.85 𝑝𝑐

old operator𝑖 + 𝑑𝑖
normalized

with 𝑑𝑖
normalized are normalized 𝑑𝑖 values (summing up to 15)

that is, 15% of the probability mass is re-allocated based on the

experience from the last 𝐾 iterations

68

752

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 1: Davis’s adaptive operator fitness (2/2)

 Julstrom (ICGA’95) [Jul95] revisited this mechanism and proposed the

following changes:

 simpler update mechanism

 an operator is considered successful if its offspring is better than its

parents, i.e., it does not necessarily have to be better than the current-

best individual (local reward) or if it better than the median fitness of the

individuals in the population

 local reward: offspring better than parents

 global reward: offspring better than current-best individual

(used by Davis)

 Combinations of local and global rewards can also be considered, cf. work

by Barbosa and e Sa [BeS00] and follow-up works

69 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 2: COBRA

Cost Operator Based Rate Adaption (COBRA), suggested by Tuson and

Ross (ECJ 1998) [TR98]

 Set of possible values for operator probabilities

 Operators are evaluated periodically, but information does not transfer to

the next cycle, i.e., the rates are based only on the “productivity” of the

operators in the last cycle

 “Productivity” = average fitness gain over parents during the time period

divided by the cost of evaluating an offspring

 the rank of an operator determines the operator probability

70

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 3: Dynamic Multi-Armed Bandits
 Thierens (GECCO’05) [Thi05] parametrizes the forgetting rate in a dynamic

multi-armed bandit problem

 Operator 𝑖 is selected with some probability 𝑠𝑖
𝑡

 The update mechanism for the reward estimate of this 𝑖-th operator is

𝑝𝑖
𝑡 = 1 − 𝛼 𝑝𝑖

𝑡 + 𝛼𝑟𝑡,
where 𝑟𝑡 is the reward in the 𝑡-th iteration

 Probability Matching algorithms:

 𝑠𝑖
𝑡 is proportional to 𝑝𝑖

𝑡 while maintaining a minimal amount of exploration

(more precisely, 𝑠𝑖
𝑡 ≥ 𝑝min and 𝑠𝑖

𝑡 − 𝑝min proportional to 𝑝𝑖
𝑡)

 Adaptive Pursuit algorithms:

 almost greedy selection, a small “exploration (aka “learning”) rate” 𝛽
controls how likely other than current-best operators are used

 Dynamic Multi-Armed Bandits: Da Costa, Fialho, Schoenauer, Sebag

(GECCO’08) [DFSS08] and follow-up works suggest a parameter control

mechanism that hybridizes a multi-armed bandit algorithm (Upper

Confidence Bound UCB-type, see next slide) with the statistical Page-

Hinkley test (which triggers a restart of the UCB mechanism if positive,

indicating a change in the time series)
71 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Comment on Multi-Armed Bandits

 Upper Confidence Bound, aka UCB-mechanisms are well known in

learning theory, cf. work by Auer, Cesa-Bianchi, Fischer ML’02 [ACBF02]

 main ideas:

 cUCB greedily selects the operator (the “arm”) maximizing the

following expression:

expected reward + 𝑐 log
 𝑘 𝑛𝑘,𝑡

𝑛𝑗,𝑡
,

where

 𝑛𝑘,𝑡 is the number of times the 𝑘-th arm has been pulled in the

first 𝑡 iterations and

 𝑐 is a parameter that allows to control the exploration likelihood

(vs. exploitation, which is controlled by the first summand)

 tuned and other variants of this algorithm exist, cf. [ACBF02] for

details and empirical evaluations

 These ideas can be used in operator selection, but note that in contrast

to the classical setting in multi-armed bandit theory the rewards change

over time (dynamic multi-armed bandit scenario)

72

753

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Extreme Value-Based Adaptive Operator Selection

(ExAOS)
 In [FCSS08], Fialho, Da Costa, Schoenauer, and Sebag argue that, for

many problems,

 rare large fitness improvements are often better than

 many small fitness improvements

 They suggest to distribute confidence based on the largest fitness

improvement that an operator has produced in the last 𝑊 iterations in

which it has been used (sliding window of size 𝑊)

 Sizing 𝑊 is again non-obvious, too small 𝑊 makes it difficult for an

operator with rare but large fitness improvements to be chosen, while

too large 𝑊 makes it more difficult to adjust the search to the current

state of the optimization process

 In [FCSS10] the authors suggest the following changes:

 increase the reward with the time elapsed since the last application of

the operator

 decrease it with the number of times the operator has been used in

the last iterations
73 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on OneMax (1/4)

 An interesting (albeit not so easy to answer problem) is to determine, for

a given search point 𝑥, how many random bits to flip in order to maximize

the expected progress towards the target string 𝑧 when 𝑓 = OM𝑧

 It is easy to convince oneself that the optimal number of bits that one

should flip is large when OM𝑧(𝑥) is small and is getting smaller when we

approach the target string 𝑧 (illustration on the blackboard)

 In [DDY16b] (GECCO’16) we analyzed this dependence and showed that

an optimal mutation-based algorithm is the one employing such fitness-

based step sizes, striving at any point in time for maximal drift towards

the target string 𝑧

 As before, the question is how an algorithm designer should guess such

a relationship (e.g., it turns out that the numbers should always be odd. It

is not so easy to compute the cutoff-points from which on the optimal set

size changes (see next slide), etc.)

 In [DDY16a] (PPSN’16) we showed how a learning-type mechanism

automatically chooses parameter values that are close to optimal

74

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Guessing the Optimal Mutation Strength is Non-Obvious

 Expected progress 𝐴 𝑟, 𝑝, 1 − 𝑝 for different mutation strengths 𝑟=1,3,5,7

as a function of the distance 𝑝𝑛 to the target string

 As soon as the distance is less than 𝑛/3, it is optimal to flip 1 bit

 There is a complex monotonic relationship between distance and optimal

mutation strength

75

flipping 1 bit

is optimal

flipping 3 bits

is optimal

flipping 5 bits

is optimal

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on OneMax (2/4)

 Main idea: estimate the performance of different parameter values. Greedily choose

the one which has the highest confidence score

 Fix a small number of possible mutation strengths 𝑟 ≔ {1, 2, … , 𝑟}

 Estimate the expected fitness gain 𝑣𝑡−1[𝑘] from using 𝑘-bit flips (using data from

the past, see next slide)

 In iteration 𝑡

 with probability 𝛿, use a random 𝑘 ∈ [𝑟] “exploring mut. strengths”

 with prob. 1 − 𝛿, use a 𝑘 that maximized 𝑣𝑡−1[𝑘] “take the most efficient 𝑘”

 Update the expected fitness gain estimations

 Result: RLS optimizing OneMax with this self-adjusting mutation strength in almost

all iterations uses the (in this situation) optimal mutation strength.

 The iterations that do not operate with the optimal mutation rate account for an

additive 𝑜 𝑛 contribution to the total runtime and are thus negligible

 This adaptive mechanism is provably faster than all static unbiased mutation

operators!

 This algorithm with the same budget computes a solution that asymptotically is 13%

closer to the optimum than RLS (given that the budget is at least 0.2675𝑛).

76

754

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on OneMax (3/4)

 Expected fitness gain estimation for using a 𝑘-bit flip:

𝑣𝑡 𝑘 ≔
 𝑠=1
𝑡 1𝑟𝑠=𝑘 1 − 𝜀 𝑡−𝑠 𝑓 𝑥𝑠 − 𝑓 𝑥𝑠−1

 𝑠=1
𝑡 1𝑟𝑠=𝑘 1 − 𝜀 𝑡−𝑠

 1/𝜀: “forgetting rate”, determines the decrease of the importance of older

information. 1/𝜀 is (roughly) the information half-life

 The “velocity” can be computed iteratively in constant time by introducing

a new parameter 𝑤𝑡 𝑟 ≔ 𝑠=1
𝑡 𝟏𝑟𝑠=𝑟 1 − 𝜖

𝑡−𝑠

 This mechanism seems to work well also for other problems

 So far, no other theoretical results available

 A few experimental results for LeadingOnes and the Minimum

Spanning Tree problem exist, see next 2 slides (these results were

also presented in [DDY16a])

 Again, much more work is needed to see how the algorithm performs

on other problems and how to set the parameters 𝛿 and 𝜀 (see also

discussion below)

77 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on LeadingOnes

 LeadingOnes(𝑥)=number of initial 1s, e.g., LO(1110****)=3

 parameters above required some tuning, bit we did not invest much time for the

tuning it is likely that you can get better results by a more careful investigation

78

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on MST

79 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Example 4: Self-Adjusting RLS on OneMax (4/4)

 As said, we did not try hard to optimize the parameters 𝛿 and 𝜀

 If you want to experiment with this learning idea, we suggest that you use the

following set-up for the first tries:

 few different values for the mutation strength (i.e., small 𝑟), since the learning

effort is proportional to their number (we used 𝑟 = 5)

 learning rate 𝜹: a small constant, e.g., 5% (“price of the learning

mechanism”)

 𝛿 1 −
1

𝑟
is the rate of iterations using a non-optimal mutation strength

(can still give progress, but smaller than best-possible)

 we used 𝛿 = 0.1 and this seems to work well

 forgetting time 𝟏/𝜺: this parameter is the most difficult one to set. We

recommend to set it so that 1/𝜀 is a small percentage of the envisaged total

runtime, e.g., 1% it takes very roughly that long to change to a new optimal

parameter value

 Too large 𝜀: we quickly forget the outcomes of previous iterations

 quick adaption to a changed environment

 risk that a rare exceptional success with a non-ideal 𝑟-value has

too much influence

80

755

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 4c:

Ageing and Other Mechanisms

81 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Other Control Mechanisms (1/3)

In addition to the simple multiplicative update rules and the learning-type

rules, many other mechanisms have been experimented with. Here are a

few keywords and references (Again, more or less random selection of

references, much more work can be found in the survey papers. The works

below can serve as a starting point for further investigations.)

 Krasnogor and Smith [KS00] (GECCO 2000) suggest a control

mechanism for the selective pressure of a memetic algorithm. They use

Boltzmann selection (popular selection mechanism used in Simulated

Annealing, probability of 1 to accept better offspring, probability to accept

worse offspring depends on the fitness difference of parent and offspring

and a “temperature” which decreases over time, making it less and less

likely for worse offspring to get accepted) and suggest to

 increase selective pressure when fitness diversity in the population is large

 decrease it when fitness diversity is low

 main idea: low fitness diversity = converged population, increase probability

to escape and to search elsewhere

82

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Other Control Mechanisms (2/3)
 Controlling population size is the focus of the Genetic Algorithm with

Variable Population Size (GAVaPS) by Arabas, Michalewicz, Mulawka

(CEC’94) [AMM94]

 individuals come with their own lifetime

 at birth their age is set to 0, each iteration increases the age by 1

 maximum lifetime depends on the fitness values, the better a new individual is,

the longer its lifetime (and, hence, the more offspring are created from this

individual)

 there is hence no fixed population size, but the size depends adaptively on the

search history.

 One of the goals of GAVaPS was to remove the population size as parameter,

but the update mechanism itself comes again with its own parameters

 Adaptive Population GA (APGA) by Bäck, Eiben, van der Vaart (PPSN

2000) [BEvdV00]:

 similar to GAVaPS, but age of best individual is not increased, thus allowing it a

longer life

 lifetime depends on individual’s fitness and current-best as well as average

fitness of the individuals in the population

83 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Other Control Mechanisms (3/3)

 On-the-fly population size adjustment by Eiben, Marchiori, and Valko

(PPSN’04) [EMV04]: Population Resizing on Fitness Improvement GA

(PRoFIGA):
 variable population size:

1. fitness improvements population size increases

(update is proportional to fitness improvement and number of fitness

evaluations remaining until maximum is hit)

2. short-term lack of fitness improvement population size decreases

(multiplicative update, e.g., decrease by 5%)

3. long-term lack of fitness improvement population size increases

(update as in 1 tough in principle a different rule could be applied)

84

756

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

“Parameter-less” Population Pyramid (P3)

 The following 2 examples do not fall into category of parameter control

mechanisms but since it is much related, I want to briefly mention them

 Parameter-less Population Pyramid (P3) by Goldman and Punch

(GECCO 2014) and (ECJ 2015) [GP14,GP15]

 instead of generations, P3 works with a pyramid-like structure of

populations

 P3 combines local search with model-based search

 The pyramid is constructed from scratch as follows:

 In every iteration, a new random solution is generated, brought to a

local optimum, and, if not in the pyramid already, this local optimum

is added to the lowest population 𝑃0
 Solutions are then improved by crossover with individuals on higher

pyramid levels. If a better offspring is found, it is added to level 𝑖 + 1
of the pyramid, where 𝑖 is the level of the better of the two parents

 P3 shows promising performance on several combinatorial problems.

First theoretical results are available in [GS16] (Goldman, Sudholt

GECCO 2016)

85 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

“Parameter-Less” GA

 Parameter-less Genetic Algorithm (PLGA) by Harik and Lobo

(GECCO 1999) [HL99] and follow-up works

 a number of populations of different sizes evolve simultaneously

 the smaller the population size, the more function evaluations it gets

 a populations becomes extinct when it converges

 Hope was to remove population size as a parameter, but note that the

mechanism itself introduces new parameters, so the term “parameter-

less” may be deceptive

86

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 6:

Controlling Multiple Parameters

87 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Controlling Multiple Parameters

 Most EAs have several parameters

 Intuitively, there is no reason to not control more than one or even all of

them

 Several works on controlling more than 1 parameter exists, but we won’t

have the time to discuss them today

 Check the mentioned surveys for references on ideas that have been

experimented with so far

88

757

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Part 6:

Wrap Up

89 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Learning Control

1. What are the main (dis-)advantages of static parameter choices?

2. What are the main (dis-)advantages of non-static parameter choices?

3. How do we distinguish parameter control mechanisms?

4. What type of parameter control mechanisms have we discussed in this

tutorial? (and which one do you want to try next?!)

5. Homework

1. How do non-static parameter choices perform on your

favorite optimization problem?

2. Which update mechanisms work well for your favorite EA?

90

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Summary Static vs. Non-Static Parameter Choices (1/2)

 Clearly exaggerating, one can summarize our main messages as follows:

 Disadvantages of static parameter choices (aka parameter tuning):

 takes a considerable amount of time

 highly complex, multi-dimensional problem: optimal parameters can

typically not be found in a sequential fashion (unfortunately still the

predominant way of parameter tuning), because of the complex

interactions between them

 good parameter values for one problem can perform poorly on

similarly-looking problems

 good parameter values for one algorithm can cause poor

performance for similarly-looking algorithm

 even “optimal” static parameters can be inferior to dynamic ones as

they do not adapt the parameter values to the optimization process

 Possible advantages:

 no need to worry about suitable update rules

91 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Summary Static vs. Non-Static Parameter Choices (2/2)

 Advantages of non-static parameter choices (aka parameter control):

 we gain flexibility and the possibility to adjust the parameter values to the

current state of the search

 If we have no idea how to set the parameter, we let the algorithm discover

itself

 Possible disadvantages:

 how to determine which update scheme to use? designing parameter

control mechanisms can, in principle, be an even more complex task than

parameter tuning

(suggestion: use the “mushroom rule”: have a set of 2 or 3 different

mechanisms that you declare your favorite ones. Do not try to know all

possible mechanisms but rather concentrate on the most promising ones,

e.g., one multiplicative update rule, one learning-based rule)

 update mechanisms often come with their own parameters

(remember: hope is that the algorithm is much less sensitive to these)

 possibly more difficult to understand how the update mechanism influences

the overall performance (measured, e.g., by the distribution of the

optimization time)

92

758

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Wrap Up

 My hope was

To inspire (and to enable) you to test parameter control mechanisms

 So, I hope that you are (now) convinced

that non-static parameter values should be the new standard in the field

 As mentioned in the tutorial, there is a lot to be done to make this change

happen. So let us set out and discover this largely unexplored field

 enjoy!

 don’t get frightened by the fact that quite some work has been done

already. There is still much room for creativity and we are just starting

to understand how good mechanisms look like !

 … and, last but not least, keep in touch

 If you get to work on parameter control, I would be very much

interested in your results, positive and negative!

Carola.Doerr@mpi-inf.mpg.de

93 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Feedback

 This is the first time that I am presenting this tutorial at GECCO

 any feedback (positive and negative!) is highly welcome!

 which parts did you (not) like?

 was the speed accurate?

 is there anything that you would like to see changed?

94

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

Acknowledgments

 This work was supported by a public grant as part of the Investissement

d'avenir project, reference ANR-11-LABX-0056-LMH,LabEx LMH, in a

joint call with Programme Gaspard Monge en Optimisation et Recherche

Operationnelle

 This tutorial is also based upon work from COST Action CA15140

`Improving Applicability of Nature-Inspired Optimisation by Joining

Theory and Practice (ImAppNIO)' supported by COST (European

Cooperation in Science and Technology).

 Thanks also to the organizers and participants of Dagstuhl seminar

"Automated Algorithm Selection and Configuration" (16412) for several

very insightful discussions on parameter control mechanisms

95 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

96

759

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

97 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

98

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

99 Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

100

760

Carola Doerr: Non-Static Parameter Choices in Evolutionary Computation

References

101

761

