
1

Evolutionary Computation and Cryptology

Stjepan Picek
Massachusetts Institute of Technology, CSAIL, USA

and

Cyber Security Research Group,

Delft University of Technology, The Netherlands

stjepan@computer.org

http://gecco-2017.sigevo.org/

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

GECCO '17 Companion, July 15-19, 2017, Berlin, Germany

ACM 978-1-4503-4939-0/17/07.

http://dx.doi.org/10.1145/3067695.3067725

2

Instructor
 Stjepan Picek is currently a

postdoctoral researcher in ALFA

group, CSAIL, MIT, USA. Prior to that,

Stjepan was a postdoc researcher at

KU Leuven, Belgium. Stjepan obtained

his PhD in 2015 from Radboud

University Nijmegen, The Netherlands

and University of Zagreb, Croatia. His

research topics include cryptology,

evolutionary computation, and

machine learning.

3

Agenda

 Introduction to Cryptology

 Evolutionary Computation

 Applications of EC to Cryptology

• Boolean Functions

• S-boxes

• Addition Chains

• Pseudorandom Number Generators

• PUFs

• Fault Injection

 Conclusions

 References

4

Introduction to Cryptology

1066

5

Introduction to Cryptology

 Cryptology (from Greek words kryptos which means hidden
and logos which means word) is the scientific study of
cryptography and cryptanalysis.

 We can trace the origins of cryptology in an art form to the
ancient Egypt.

 Cryptography is a science (and art) of secret writing with the
goal of hiding the meaning of a message. In modern
cryptography, it is not only important to achieve
confidentiality, but also authentication, non-repudiation and
data integrity among other goals.

 Cryptanalysis is a science of analyzing ciphers in order to
find weaknesses in them.

6

Introduction to Cryptology

Taxonomy

7

Classical Ciphers

 Transposition ciphers are such ciphers where the order of
characters is shuffled around.

 Substitution ciphers are ciphers where each character in the
alphabet is substituted with another character in the alphabet.

 Enigma machine is a mechanical rotor device that is
comprised from several rotors that dynamically substitute the
plaintext in accordance to the rotor position.

 Today, easy to cryptanalyze.

 Scytale, Caesar cipher, non-standard hieroglyphs, etc.

8

Modern Ciphers

 In 1940s Shannon published his paper on the design
principles of block ciphers.

 Important milestones happened in 1970s.

 The design of the DES cipher, the introduction of public key
cryptography.

 Modern cryptography has much more emphasize on
definitions and proofs, although there are many primitives
used today that do not have rigorous proofs.

 Informally, we distinguish classical from the modern
cryptography on a basis that modern cryptography has a
more scientific approach.

1067

9

Basic Notions

 Sender is a person who is sending a message. The most
famous sender in cryptography is Alice.

 Receiver is a person who is receiving a message. The most
famous message receiver in cryptography is Bob.

 Adversary is a malicious entity whose aim is to prevent the
users of a cryptosystem from achieving their goals. Popular
names are Eve in the case of passive adversaries and Mallory
when talking about active adversaries.

 Cryptographic primitive is a part of a cryptographic tool used to
provide information security, i.e., a low-level cryptographic
algorithm that is frequently used.

10

Basic Notions

 Cryptographic algorithm (cipher) is a mathematical function
used for encryption, decryption, key establishment,
authentication, etc.

 Plaintext P or message is the information that the sender
wishes to transmit to the receiver.

 Ciphertext C is the result of an encryption performed on
plaintext using a cryptographic algorithm.

 Encryption is a process of applying a transformation E to the
plaintext P. After that transformation, only an authorized party
should be able to read the message, i.e., E(P) = C.

 Decryption is a process of applying a transformation D to the
ciphertext C, i.e., D(C) = P.

11

Symmetric-key Cryptography

 Also known as private key cryptography.

 Symmetric-key cryptography uses the same key to
encrypt/decrypt or to compute/verify the data.

 Assume that Alice and Bob want to exchange some message
and they want it to remain secret, i.e., that no one else can
read it.

 They have only an insecure channel to communicate through.
Alice could encrypt her message and send it encrypted over
an insecure channel to Bob. If Bob has the same key as
Alice, he can then decrypt and read the message.

 Eve cannot decrypt the message if she does not know the
key.

12

Symmetric-key Cryptography

1068

13

Block Ciphers

 Block ciphers operate on blocks of fixed length of data with
an unvarying transformation that is specified by the key.

 Should be indistinguishable from a random permutation by an
adversary not knowing the key.

 Claude Shannon stated that computationally secure
cryptosystem should follow confusion and diffusion principles.

 Confusion – the ciphertext statistics should depend on the
plaintext statistics in a manner too complicated to be
exploited by the cryptanalyst.

 Diffusion - each digit of the plaintext and each digit of the
secret key should influence many digits of the ciphertext.

 DES, AES, MARS, PRESENT, etc.

14

Stream Ciphers

 Should behave as pseudorandom number generators
(PRNGs).

 Most of the stream encryption schemes encrypt message bits
by adding encryption bits modulo two.

 Historically looking, linear feedback shift registers (LFSRs)
were used in order to produce pseudorandom numbers.

 An LFSR is a shift register whose input bit is a linear function
of its previous state. Those bit positions that affect the next
state are called taps.

 To add the nonlinearity (and therefore improve the security)
one option is to add some nonlinear element, where a
Boolean function is a common choice.

15

Implementation Attacks

 All attacks that do not aim at the weaknesses of the algorithm
itself, but on the implementations on cryptographic devices.

 Sources: power, sound, light, electromagnetic radiation, etc.

 Implementation attacks are among the most powerful known
attacks against cryptographic devices.

 Common types of implementation attacks are side channel
attacks and fault injection attacks.

 Side channel attacks are passive and non-invasive attacks.

 Fault injection attacks are active attacks since they enforce
the target to work outside the nominal operation range.

16

Public-key Cryptography

 In symmetric-key cryptography, both parties need to know the
key before the communication in order to establish the secure
channel.

 However, the problem is how to exchange that key if there
exists no secure channel.

 One option is to use public-key cryptography.

 Also called asymmetric cryptography.

 Here, there exist two keys: private and public key.

 To encrypt, one uses the public key, but to decrypt one needs
to know the private key.

1069

17

Public-key Cryptography

 Public-key cryptography relies on difficult problems in
mathematics, like integer factorization, discrete logarithm
problem, knapsack problem, etc.

 RSA, Diffie-Hellman, ECC,…

 For public-key cryptography, the are only a few papers where
authors use evolutionary computation and the results are not
spectacular.

 However, this is to be expected: it is much more difficult to
design some cryptographic primitive here or to attack a
system with evolutionary computation.

18

Evolutionary Computation

19

Evolutionary Computation

 Research area within computer science that draws inspiration
from the process of natural evolution.

 Evolutionary algorithms are population based metaheuristic
optimization methods that use biology inspired mechanisms
like selection, crossover or survival of the fittest.

 Genetic Algorithm (GA), Holland, 1975.

 Tree based Genetic Programming (GP), Koza, 1992.

 Cartesian Genetic Programming (CGP), Miller, 1999.

 Evolution Strategy (ES), Rechenberg, Schwefel, 1970s.

 NSGA-II, Deb, 2002.

20

Applications of EC to Cryptology

1070

21

Basics

 How to solve hard problems in cryptology?

 Problems need to be hard (to be worthwhile), but not too
difficult (to be impossible to solve).

 Plenitude of problems and possible methods to solve them.

 Care needs to be taken that one does not select too difficult
problems.

 Often, evolutionary computation is not used to provide the
final solutions, but instead to help us to improve the results of
some other technique.

22

Evolutionary Computation Framework

 ECF is a C++ framework intended for application of any type
of evolutionary computation.

 Developed by Evolutionary Computation group from Faculty
of Electrical Engineering and Computing, Zagreb, Croatia:

http://gp.zemris.fer.hr/

 Details about projects concerning evolutionary computation
and cryptology:

http://evocrypt.zemris.fer.hr/

23

Evolutionary Computation Framework

ECF GUI

24

Evolutionary Computation Framework

1) Configure file with function size and cryptographic properties 2)

Run evolutionary algorithm 3) Obtain truth table representation of a

solution 4) Run Property checker 5) Use the checker's output as a

metric of merit with values of desired properties.

1071

25

Boolean Functions

 The easiest problem to start.

 There exists a natural mapping between the truth table
representation of Boolean functions and representation of
solutions in EC.

 Boolean functions are important cryptographic primitive and
often used in stream ciphers as the source of nonlinearity.

Boolean function with 2 inputs

26

Boolean Functions

 To be used in cryptography, a Boolean function needs to
fulfill a number of cryptographic properties.

 To be used in filter generators: balancedness, high
nonlinearity, high algebraic degree, high algebraic immunity,
high fast algebraic immunity.

 To be used in combiner generators additionally is required a
good value of correlation immunity.

 To be used as a part of the side-channel attack
countermeasure it needs to have low Hamming weight and
high correlation immunity.

 To be of practical importance, it should have at least 13
inputs.

27

Boolean Functions

Combiner generator Filter generator

28

Boolean Functions, Scenario 1

 Evolving Boolean functions that are to be used in
combiner/filter generators.

 We are interested in a number of properties, where some of
those properties are conflicting.

 Search space size is 22
𝑛
.

 Representing solutions in the truth table form requires string
of bits of length 2𝑛.

 Already for a Boolean function with 8 inputs, the search
space size is 2256.

1072

29

Boolean Functions, Scenario 1

 Fitness functions: single objective with the weight factors,
multiple stage fitness function, multi-objective, many-
objective.

 For Boolean functions up to 8 inputs, most of the EC
techniques give good results.

 Currently, the best results are obtained with GP/CGP.

 The simplest problems seem to be either:

• Evolving bent function (those that are not balanced, but
with maximum nonlinearity)

• Evolving balanced functions with high nonlinearity.

30

Boolean Functions, Scenario 1

 Much larger role of genotype than the choice of fitness
function.

Average values, CGP, bent Boolean functions

with 8 inputs

31

Boolean Functions, Scenario 1

GA, bitstring representation Boolean function with 8 inputs

32

Boolean Functions, Scenario 1

GP, Boolean function with 8 inputs

1073

33

Boolean Functions, Scenario 2

 Evolve Boolean functions with as small as possible Hamming
weight and high correlation immunity in order to reduce the
masking cost.

 Masking consists in changing randomly the representation of
the key to deceive the attacker.

 Example: if each bit ki, 1< i < n of a key k is masked with a
random bit mi, then an attacker could probe ki XOR mi.

 Provided mi is uniformly distributed, the knowledge of ki XOR
mi does not disclose any information on bit ki .

 Since most of the algebraic constructions aim to find
balanced Boolean functions, they are not appropriate for this
problem.

34

Boolean Functions, Scenario 2

 Masking can be summarized as the problem of finding
Boolean functions whose support is the masks' set, with the
two following constraints:

• small Hamming weight, for implementation reasons, and

• high correlation immunity t to resist an attacker with
multiple (< t) probes.

 There is a trade-off which motivates the research for low
Hamming weight high correlation immunity Boolean
functions.

 Interesting problem since we know the best possible values,
but we do not know actual functions reaching those values.

35

Boolean Functions, Scenario 2

 Up to recently, there were several values of practical interest
unknown.

 Attempts with SAT solvers did not resulted in success even
after more than one month of calculation.

 For CGP and GP, this problem seems to be trivial.

 Optimal results sometimes achieved even in less than 1 hour.

 However, there are combinations of parameters as well as
function sizes that seem more difficult for EC.

36

Boolean Functions, Scenario 2

Solutions with GP and CGP

1074

37

Boolean Functions, Scenario 3

 Previous results show that EC can be used to evolve Boolean
functions of various sizes and properties.

 However, it is to be expected that after some size, the results
will become worse and the evaluation process long.

 For instance, if we consider the algebraic immunity and fast
algebraic immunity properties. To calculate those two
properties can easily take several hours for a Boolean
functions with e.g. 16 inputs.

 Therefore, at least for now, those properties were never
included in the evaluation process for larger sizes of Boolean
functions.

38

Boolean Functions, Scenario 3

 We already discussed there are several techniques how to
generate Boolean functions.

 The question is can we combine several techniques.

 For instance, could we use evolutionary computation to
evolve algebraic constructions?

 If yes, then we need just to show that our construction results
in Boolean functions with good properties and that it holds for
any size of Boolean functions.

 We evolve secondary algebraic constructions that result in
bent Boolean functions.

 2016 GECCO Humies finalist.

39

Boolean Functions, Scenario 3

GP secondary construction

40

Boolean Functions, Perspectives

 Possible challenges:

• Finding balanced Boolean function with 8 inputs that have
nonlinearity 118.

• Use EC to evolve primary algebraic constructions.

• Evolve Boolean functions to be used in combiner/filter
generators where parameters are also algebraic immunity
and fast algebraic immunity.

• Use different, previously not investigated unique
representations of Boolean functions.

• Investigate many-objective optimization.

• Quaternary Boolean functions.

1075

41

S-boxes

 Natural extension from the Boolean function case.

 S-boxes (Substitution Boxes) are also called vectorial
Boolean functions.

 Often used in block ciphers as a source of nonlinearity.

 However, this problem is much more difficult!

 S-box of dimension nxm has m output Boolean functions, but
for the most of the properties we need to check all linear
combinations of those functions.

42

S-boxes

2x2 S-box

43

S-boxes

 For an S-box with n inputs and m outputs, there are in total
2𝑚2𝑛S-boxes.

 Some realistic search space sizes when n=m:

 Several options to represent solutions.

 As with Boolean functions, there are three design options:
algebraic constructions, random search, and heuristics.

44

S-boxes, Scenario 1

 When representing S-boxes with their truth tables (i.e.,
bitstring representation as with Boolean functions) the
problem is very difficult.

 Already balancedness property requires that all columns of
an S-box are balanced (have the same number of zeros and
ones), but also all linear combinations needs to be balanced.

 Still, this approach works for sizes ~4x4 where there are 15
linear combinations we need to consider.

 However, for larger sizes, it is almost impossible to obtain
even balanced solution with bitstring representation.

 Therefore, we do not consider such representation anymore.

1076

45

S-boxes, Scenario 1

 It is possible to use CGP and GP with the permutation
encoding:

46

S-boxes, Scenario 1

GP solution of an 8x8 S-box

47

S-boxes, Scenario 2

 Represent S-boxes as permutations, i.e., all values between
0 and 2𝑛 − 1 (where n is the dimension of the S-box).

 Then the S-box is always bijective and we do not need to
worry about the balancedness property.

 Similar as with Boolean functions, there are many properties
of interest when evolving S-boxes: high nonlinearity, low
differential uniformity, high algebraic degree, etc.

 For dimensions up to 4x4, permutation encoding gives
optimal results (bijective solutions with maximal nonlinearity
and minimal differential uniformity).

 For 8x8, algebraic construction gives nonlinearity of 112 and
differential uniformity of 4.

48

S-boxes, Scenario 2

 Random search results in nonlinearity up to 98 and
nonlinearity down to 10.

 Heuristics - up to 104 nonlinearity, differential uniformity 8.

 The question is then whether there is any sense to use
heuristics if such methods cannot compete with algebraic
constructions.

 It turns out there are properties that algebraic constructions
do not consider. Properties related with the side-channel
resistance often have poor values if S-boxes are constructed
with algebraic constructions.

 Evolve S-boxes with good side channel resistance while
keeping other properties optimal.

1077

49

S-boxes, Scenario 2

Permutation encoding of an 4x4 S-box

50

S-boxes, Scenario 3

 Besides the properties related with the side-channel attacks,
we are also interested in implementation properties like
power, area, and latency.

 Again, algebraic constructions do not consider such
properties but we can evolve S-boxes with good
cryptographic properties that are hardware-friendly.

 Naturally, there exist the same problem as before: we do not
want that cryptographic properties deteriorate too much.

 In this scenario, we require that our evolution framework can
communicate with the framework that does the
implementation properties analysis.

51

S-boxes, Scenario 3

Evaluation setup when evolving S-boxes with good implementation

properties

52

S-boxes, Scenario 3

 EC cannot handle larger S-box sizes so we modify our
approach.

 We evolve affine transformations of an S-box.

 We change implementation properties, while keeping most of
the cryptographic properties intact:

𝑆𝑎(x) = B(𝑆𝑏(A(x) XOR a)) XOR b.

 A and B are invertible nxn matrices in GF(2) and a and b are
constants.

1078

53

S-boxes, Scenario 4

 Evolve S-boxes in a form of cellular automata (CA) rules.

 Such representation is also used in practice (Keccak cipher).

 The best results with EC up to now!

54

S-boxes, Scenario 4

Evolved CA rule for the 5x5 S-box

55

S-boxes, Perspectives

 Possible challenges:

• Evolve S-box of size 8x8 that has nonlinearity 112.

• Use new representations of solutions.

• Improve the efficiency of EC with the bitstring
representation.

• Consider S-box representations in a form of equations.

• Find general rules for CA and S-boxes.

• S-boxes where the number of inputs and outputs is not
the same.

56

Addition Chains

 Modular exponentiation: find the (unique) integer
𝐵 𝜖 [1,… , 𝑝 − 1] such that:

𝐵 = 𝐴𝑐 mod p.

 Several ways to calculate this.

 The simplest is to naïve multiply A c times.

 Addition chain: a sequence of positive integers where each
value is a sum of two values occurring in the sequence.

 The length of an addition chain determines the number of
multiplications required for exponentiation.

1079

57

Addition Chains

 The aim is to find the shortest addition chain for a given
exponent c.

 Binary method: write 60 in binary: 111100; replace “1” with
“DA” and “0” with “D”; cross out the first “DA” on the left;
“DADADADD”, calculate:

1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60.

 Addition chain (7 operations):

A^1; A^2 = A^1 * A^1; A^4 = A^2 * A^2; A^6 = A^4 * A^2;

A^12 = A^6 *A^6;A^24 = A^12 * A^12; A^30 = A^24 * A^6;

A^60 = A^30 * A^30.

58

Addition Chains

 The problem of finding the shortest addition chain for a given
exponent is of great relevance in cryptography.

 However, the problem is believed to be NP-hard.

 There is no single algorithm that can be used for any
exponent.

 Still the best solutions are often obtained by pen and paper
method.

 Huge numbers so exhaustive search is impossible.

 Heuristics should be able to help.

59

Addition Chains

 Types of steps in the addition chain:

• Doubling step; when j = k = i - 1. This step always gives
the maximal possible value at the position i.

• Star step: when j but not necessarily k equals i – 1.

• Small step: when log2(ai) = log2(ai-1).

• Standard step: when ai = aj + ak where i > j > k.

 A star chain is a chain that involves only star operations.

60

Addition Chains

Crossover operator for addition chains, needs to include

repair mechanism

1080

61

Addition Chains

Mutation operator for addition chains, needs to include

repair mechanism

62

Addition Chains

Results for a number of different values

63

Addition Chains

Results for a number of different values

64

Addition Chains

 For most of the values we find the optimal one (or what is the
current best).

 Out of all tested numbers, only 2127 − 3 has practical
importance.

 We find chain of 136 steps, also done by expert by hand.

 Human-competitive?

 We believe so, on average we need 10 minutes, pen and
paper requires a lot of experience and will last longer.

 More realistic numbers are 2255 − 21 and

2252 − 27742317777372353535851937790883648491.

1081

65

Addition Chains

Example of an evolved addition chain

66

Addition Chains, Perspectives

 Possible challenges:

• Improve the speed of the algorithm.

• Look for optimal chains for even larger numbers.

• Differentiate between multiplication and squaring steps.

• Analyze the structure of numbers with regards to the EC
performance.

• Support special structures of numbers.

• Explore different types of chains.

67

Pseudorandom Number Generators

 In cryptography, random number generators (RNGs) play an
important role.

 Most of the time, we need true random number generators
(TRNGs), but still there are applications where
pseudorandom number generators (PRNGs) are enough.

 TRNG is a device for which the output values depend on
some unpredictable source that produces entropy.

 PRNGs represent mechanisms that produce random
numbers by performing a deterministic algorithm on a
randomly selected seed.

 One example is masking for the side channel resistance.

68

Pseudorandom Number Generators

 Find extremely fast and small PRNGs that pass all NIST
statistical tests.

 Use GP and CGP to evolve PRNGs.

PRNG model

1082

69

Pseudorandom Number Generators

 Evolve PRNGs that have n inputs and 1 output (GP) or m
outputs (CGP).

 All variables are 32-bit integer values.

 Function set are function that are fast and small when
implemented in hardware (shift, rotate, permute, and logical
operations XOR, NOT, AND).

 Here, obvious advantage of CGP over GP is that GP needs
to iterate m times to produce the same size of the output as
CGP produces in a single iteration.

 Fitness function needs to be simple, yet powerful enough to
drive our search.

70

Pseudorandom Number Generators

 We use approximate entropy test from the NIST statistical
test suite as a fitness function.

 After the evolution process is over, our parser automatically
takes the best individual and outputs it as a C source code.

 That source code is then used to produce 10 million bits that
are then evaluated with the NIST statistical suite.

 We cannot use whole test suite in the evolution since it would
be too slow.

 Our current fitness function consists of 130 evaluations of the
approximate entropy function.

71

Pseudorandom Number Generators

Structure of evolved PRNGs

72

Pseudorandom Number Generators

Example of evolved PRNG

1083

73

Pseudorandom Number Generators

GP solution

74

Pseudorandom Number Generators

CGP solution

75

Pseudorandom Number Generators

 The same technique can be used to produce PRNGs on-the-
fly.

 Then, we can use evolvable hardware that constantly
updates the PRNG part.

 In order to ensure that our designs always use all terminals,
we penalize solutions that do not have all inputs.

 Maximal throughput on ASIC 117 Gb/s and for FPGA 66
Gb/s.

 Here, GP and CGP are used to evolve only the update
functions, but EC can be also used to evolve the non-
invertible function.

76

Pseudorandom Number Generators

Evolvable hardware setting

1084

77

Pseudorandom Number Generators

Virtual reconfigurable circuit cell

78

Pseudorandom Number Generators,

Perspectives

 Possible challenges:

• Improve the fitness function and consequently the
evaluation process.

• Add to the fitness function also consideration about the
size and speed of specific functions (platform dependent).

• Experiment with different sizes of the update function as
well as different terminal sets.

• Improve the efficiency of the evolvable hardware
scenario.

79

PUFs

 Physically Unclonable Functions (PUFs) are embedded or
standalone devices used as a means to generate either a
source of randomness or to obtain an instance-specific
uniqueness for secure identification.

 This is achieved by relying on inherent uncontrollable
manufacturing process variations, which results in each chip
having a unique response.

 Optimization techniques can be used to find a model (“clone”)
of a PUF by modeling the delay vector of an actual PUF in as
few measurements as possible.

80

PUFs

 Arbiter PUF consists of one or more chains of two 2-bit
multiplexers that have identical layouts.

 Each multiplexer pair is denoted a stage, with n stages in a
single chain.

 There is a single input signal that is introduced to the first
stage to both bottom and top multiplexer in the pair (red and
blue).

 The chain is fed a control signal of n bits called a challenge
(bits c1 to cn), where each bit determines whether the two
input signals in that stage would be switched (crossed over)
or not.

1085

81

PUFs

 The response of a PUF is determined by the delay difference
between the top and bottom input signal, which is in turn the
sum of delay differences of the individual stages.

 To efficiently model a PUF, one usually tries to determine the
delay vector w=(𝑤1, … , 𝑤𝑛+1).

 The delay difference ∆D at the end of a chain is

∆D = 𝑤𝑇ϕ

 The feature vector ϕ is derived from the challenge vector as

ϕ𝑖=ς𝑙=1
𝑛 (−1)𝑐𝑙, for 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ ϕ𝑛+1 = 1.

 The final response is equal to 1 if ∆D < 0 and 0 otherwise.

82

PUFs

n-arbiter PUF

Examples of solutions

83

Fault Injection

 A fault injection (FI) attack is successful if after exposing the
device to a specially crafted external interference, it shows an
unexpected behavior exploitable by the attacker.

 Finding the correct parameters for a successful FI can be
considered as a search problem where one aims to find,
within a minimum time, the parameter configurations which
result in a successful fault injection.

 The search space is typically too large to perform an
exhaustive search.

 Use heuristics to find search space parameters that lead to
successful attack.

84

Fault Injection

 Voltage switching, three parameters: glitch length, glitch
voltage, and glitch offset.

 Two scenarios:

• Finding faults in a minimal number of measurements.

• Characterizing the parameter space, again in a minimal
number of measurements.

 FI testing equipment can output only verdict classes that
correspond to successful measurements.

 Attacking the PIN mechanism.

1086

85

Fault Injection

PIN mechanism

86

Fault Injection

 Possible classes for classifying a single measurement:

• NORMAL: smart card behaves as expected and the
glitch is ignored

• RESET: smart card resets as a result of the glitch

• MUTE: smart card stops all communication as a result of
the glitch

• INCONCLUSIVE: smart card responds in a way that
cannot be classified in any other class

• SUCCESS: smart card response is a specific,
predetermined value that does not happen under normal
operation

87

Fault Injection

Custom GA for fault injection

88

Fault Injection

Random, 2500 measurements Exhaustive, 7500 measurements

GA + LS, 250

measurements

1087

89

Fault Injection

Random, 250 measurements GA, 250 measurements

GA+LS, 250 measurements

90

Fault Injection

 Possible challenges:

• Working with more relevant parameters.

• Attacking cards with countermeasures.

• Switching to other sources of attacks.

• Making the search algorithm more powerful.

• Laser and electromagnetic radiation attacks.

91

Conclusions

92

Final Remarks

 All the examples presented here are available from SVN
repository:

http://evocrypt.zemris.fer.hr/

 In all the experiments we use Evolutionary Computation
Framework (ECF) that can be downloaded from:

http://ecf.zemris.fer.hr/

For updated version of slides as well as for the further
references, please check:

http://www.evocrypt.com/

1088

93

Security Applications

 Stepping outside of the cryptology area and considering
security area there are many more interesting problems:

• Malware detection.

• Intrusion detection.

• Automatic code improvement.

• Spam detection.

 For EC applications in security, check the tutorial
“Evolutionary Computation in Network Management and
Security” by Nur Zincir-Heywood and Gunes Kayacik.

94

Machine Learning and SCA

 Side-channel attacks (SCA) represent extremely powerful
category of attacks on cryptographic devices with profiled
side-channel attacks in a prominent place as the most
powerful among them.

 Within the profiling phase the attacker estimates leakage
models for targeted intermediate computations, which are
then exploited to extract secret information from the device in
the actual attack phase.

 Classification and regression problems.

 Different devices, algorithms, number of classes, number of
features, levels of noise, datasets, etc.

 Machine learning, deep learning, EC, etc.

95

Perspectives

 We also need to step outside the EC area and consider other
heuristic techniques.

 Even for each of the applications, there is a plethora of
options still to try:

• New algorithms.

• Representations.

• Fitness functions.

• Combinations of parameters.

 The results obtained up to now are good, but there is still
much room for improvement.

96

Conclusions

 Up to now, EC proved to be successful in cryptology:

• When there exist no other, specialized approaches.

• To rapidly check whether some concept (e.g. formula) is
correct.

• To assess the quality of some other method.

• To produce “good-enough” solutions.

• To produce novel and human-competitive solutions
(solutions produced by EC that can rival the best solutions
created by humans).

1089

97

Conclusions

 Heuristic methods are not a magic solvers.

 They require knowledge and experience if to be used
correctly.

 Nice problems, both from the practical perspective, but also
as benchmarks – see talk on crypto problems for
benchmarking – CryptoBench.

 If there are others, specialized algorithms, EC rarely can beat
them.

98

Conclusions

 Without proper collaboration, for EC community cryptology
problems are just something to be solved but without
adequate understanding.

 For cryptographic community, EC techniques are just a tool
to be used.

 Without good understanding the problem and the tool to be
used, it is hard to expect nice results.

 Thank you for your attention.

Questions?

99

Acknowledgements

This work has been supported in part by Croatian

Science Foundation under the project IP-2014-09-

4882.

The author would like to thank prof. Domagoj

Jakobovic for his help with the preparation of

presentation.

100

References

 J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and

Hall/CRC, Boca Raton, 2nd edition, 2015.

 L. R. Knudsen and M. Robshaw. The Block Cipher Companion. Information Security

and Cryptography. Springer, 2011.

 A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied

Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

 B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code

in C. John Wiley and Sons, Inc., New York, NY, USA, 1995.

 J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. The MIT Press,

Cambridge, USA, 1992.

 J. R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

 J. F. Miller, editor. Cartesian Genetic Programming. Natural Computing Series.

Springer Berlin Heidelberg, 2011.

 H.-G. Beyer and H.-P. Schwefel. Evolution Strategies A Comprehensive

Introduction. Natural Computing, 1(1):3–52, May 2002.

 A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer-

Verlag, Berlin Heidelberg New York, USA, 2003.

1090

101

References

 J. F. Miller. An Empirical Study of the Efficiency of Learning Boolean Functions using

a Cartesian Genetic Programming Approach. Genetic and Evolutionary Computation

Conference (GECCO) 1999, pp. 1135–1142.

 L. D. Burnett. Heuristic Optimization of Boolean Functions and Substitution Boxes

for Cryptography, Ph.D. thesis, Queensland University of Technology (2005).

 C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Boolean

Models and Methods in Mathematics, Computer Science, and Engineering, 1st

Edition, Cambridge University Press, New York, USA, 2010, pp. 257–397.

 C. Carlet and S. Guilley. Correlation-immune Boolean functions for easing counter

measures to side-channel attacks. Algebraic Curves and Finite Fields. Cryptography

and Other Applications., Berlin, Boston: De Gruyter., 2014, pp. 41–70.

 W. Millan, J. Fuller, and E. Dawson. New concepts in evolutionary search for

Boolean functions in cryptology, Computational Intelligence 20 (3) (2004) pp. 463–

474.

 S. Picek, D. Jakobovic, and M. Golub. Evolving Cryptographically Sound Boolean

Functions. Genetic and Evolutionary Computation Conference (GECCO)

Companion 2013, pp. 191–192.

 S. Picek, L. Batina, and D. Jakobovic. Evolving DPA-Resistant Boolean Functions.

PPSN XIII, Lecture Notes in Computer Science, Springer International Publishing,

2014, pp. 812–821.

 W. Millan, A. Clark, and E. Dawson. An Effective Genetic Algorithm for Finding

Highly Nonlinear Boolean Functions. ICICS ’97, pp.149–158.

102

References

 A. J. Clark. Optimisation heuristics for cryptology, Ph.D. thesis, Queensland

University of Technology (1998).

 H. Aguirre, H. Okazaki, and Y. Fuwa. An Evolutionary Multiobjective Approach to

Design Highly Non-linear Boolean Functions. Genetic and Evolutionary Computation

Conference (GECCO) 2007, pp. 749-756.

 W. Millan, A. Clark, and E. Dawson. Heuristic design of cryptographically strong

balanced Boolean functions. Advances in Cryptology - EUROCRYPT ’98, 1998, pp.

489–499.

 W. Millan, A. Clark, and E. Dawson. Boolean Function Design Using Hill Climbing

Methods. Information Security and Privacy, Vol. 1587 of LNCS, Springer Berlin

Heidelberg, 1999, pp. 1–11.

 J. Clark and J. Jacob. Two-Stage Optimisation in the Design of Boolean Functions.

Information Security and Privacy, Vol. 1841 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 2000, pp. 242–254.

 J. A. Clark, J. L. Jacob, S. Stepney, S. Maitra, and W. Millan. Evolving Boolean

Functions Satisfying Multiple Criteria. Progress in Cryptology - INDOCRYPT 2002,

pp. 246–259.

 J. A. Clark, J. Jacob, S. Maitra, and P. Stanica. Almost Boolean functions: the design

of Boolean functions by spectral inversion. CEC ’03.,Vol. 3, 2003, pp. 2173–2180.

103

References

 L. Burnett, W. Millan, E. Dawson, and A. Clark. Simpler methods for generating

better Boolean functions with good cryptographic properties, Australasian Journal of

Combinatorics 29 (2004) pp. 231–247.

 J. McLaughlin and J. A. Clark. Evolving balanced Boolean functions with optimal

resistance to algebraic and fast algebraic attacks, maximal algebraic degree, and

very high nonlinearity, Cryptology ePrint Archive, Report 2013/011,

http://eprint.iacr.org/.

 R. Hrbacek and V. Dvorak. Bent Function Synthesis by Means of Cartesian Genetic

Programming. PPSN XIII, Vol. 8672 of LNCS, Springer International Publishing,

2014, pp. 414–423.

 S. Picek, E. Marchiori, L. Batina, and D. Jakobovic. Combining Evolutionary

Computation and Algebraic Constructions to Find Cryptography-Relevant Boolean

Functions. PPSN XIII, LNCS, Springer International Publishing, 2014, pp. 822–831.

 S. Picek, D. Jakobovic, J. F. Miller, E. Marchiori, L. Batina. Evolutionary methods for

the construction of cryptographic Boolean functions. EuroGP 2015, 2015, pp. 192–

204.

 S. Picek, C. Carlet, D. Jakobovic, J. F. Miller, and L. Batina. Correlation Immunity of

Boolean Functions: An Evolutionary Algorithms Perspective. Genetic and

Evolutionary Computation Conference (GECCO) 2015, pp. 1095–1102.

 S. Picek, R. I. McKay, R. Santana, and T. D. Gedeon. Fighting the symmetries: The

structure of cryptographic Boolean function spaces. Genetic and Evolutionary

Computation Conference (GECCO) 2015, pp. 457-64.

104

References

 L. Mariot, and A. Leporati. Heuristic Search by Particle Swarm Optimization of

Boolean Functions for Cryptographic Applications. Genetic and Evolutionary

Computation Conference Companion, GECCO 2015, pp. 1425–1426.

 S. Picek, S. Guilley, C. Carlet, D. Jakobovic, and J. Miller. Evolutionary Approach for

Finding Correlation Immune Boolean Functions of Order t with Minimal Hamming

Weight. TPNC 2015, pp. 71-82.

 L. Mariot and A. Leporati. A Genetic Algorithm for Evolving Plateaued Cryptographic

Boolean Functions. TPNC 2015, pp. 33-45, 2015.

 S. Picek, D. Jakobovic, J. F. Miller, L. Batina, and M. Cupic. Cryptographic Boolean

functions: One output, many design criteria. Applied Soft Computing, 40: pp. 635 -

653, 2016.

 S. Picek and D. Jakobovic. Evolving Algebraic Constructions for Designing Bent

Boolean Functions. Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference, pp. 781-788, 2016.

 S. Picek, R. Santana, and D. Jakobovic. Maximal nonlinearity in balanced Boolean

functions with even number of inputs, revisited. 2016 IEEE Congress on

Evolutionary Computation (CEC), pp. 3222-3229, 2016.

 Stjepan Picek. Applications of Soft Computing in Cryptology. International Workshop

on Information Security Applications 2016, pp. 305-317, 2016.

 S. Picek, D. Sisejkovic, and D. Jakobovic. Immunological algorithms paradigm for

construction of Boolean functions with good cryptographic properties. Engineering

Applications of Artificial Intelligence, 2016.

1091

105

References

 S. Picek, C. Carlet, S. Guilley, J.F. Miller, and D. Jakobovic. Evolutionary Algorithms

for Boolean Functions in Diverse Domains of Cryptography. Evolutionary

Computation, MIT press, vol. 24, num. 4, pp. 667-694, 2016.

 C. Carlet. Vectorial Boolean Functions for Cryptography. In Crama, Y. and Hammer,

P. L., editors, Boolean Models and Methods in Mathematics, Computer Science, and

Engineering, pp. 398–469. Cambridge University Press, New York, NY, USA, 1st

edition.

 J. A. Clark, J. Jacob, and S. Stepney. Searching for cost functions. CEC2004,

volume 2, pp. 1517–1524.

 J. A. Clark, J. Jacob, and S. Stepney. The design of S-boxes by simulated

annealing. New Generation Computing, 23 (3): pp. 219–231.

 B. Ege, K. Papagiannopoulos, L. Batina, and S. Picek. Improving DPA resistance of

S-boxes: How far can we go? ISCAS 2015, pp. 2013–2016.

 J. Fuller, W. Millan, and E. Dawson. Multi-objective optimisation of bijective s-boxes.

CEC 2004, volume 2, pp. 1525–1532.

 G. Ivanov, N. Nikolov, and S. Nikova. Cryptographically Strong S-Boxes Generated

by Modified Immune Algorithm. BalkanCryptSec 2015, pp. 31 - 42.

 G. Ivanov, N. Nikolov, and S. Nikova. Reversed genetic algorithms for generation of

bijective s-boxes with good cryptographic properties. Cryptography and

Communications, 8(2): pp. 247–276.

106

References

 W. Millan, L. Burnett, G. Carter, A. Clark, and E. Dawson. Evolutionary Heuristics for

Finding Cryptographically Strong S-Boxes. Information and Communication

Security, volume 1726 of LNCS, pp. 263–274.

 S. Picek, B. Ege, L. Batina, D. Jakobovic, L. Chmielewski, and M. Golub. On Using

Genetic Algorithms for Intrinsic Side-channel Resistance: The Case of AES S-box.

In Proceedings of the First Workshop on Cryptography and Security in Computing

Systems, CS2 ’14, pp. 13 - 18.

 S. Picek, B. Ege, K. Papagiannopoulos, L. Batina, and D. Jakobovic. Optimality and

beyond: The case of 4x4 S-boxes. HOST 2014, pp. 80 - 83.

 S. Picek, B. Mazumdar, D. Mukhopadhyay, and L. Batina. Modified Transparency

Order Property: Solution or Just Another Attempt. SPACE 2015, pp. 210 - 227.

 S. Picek, J. F. Miller, D. Jakobovic, and L. Batina. Cartesian Genetic Programming

Approach for Generating Substitution Boxes of Different Sizes. Genetic and

Evolutionary Computation Companion (GECCO) 2015, pp. 1457–1458.

 S. Picek, K. Papagiannopoulos, B. Ege, L. Batina, and D. Jakobovic. Confused by

Confusion: Systematic Evaluation of DPA Resistance of Various S-boxes.

INDOCRYPT 2014, pp. 374–390.

 P. Tesar. A New Method for Generating High Non-linearity S-Boxes.

Radioengineering, 19(1): pp. 23–26.

 S. Picek. M. Cupic, and L. Rotim. A New Cost Function for Evolution of S-Boxes.

Evolutionary Computation, MIT press, vol. 24, num. 4, pp. 695-718, 2016.

107

References

 N. Nedjah and L. de Macedo Mourelle. Minimal Addition Chain for Efficient Modular

Exponentiation Using Genetic Algorithms. Developments in Applied Artificial

Intelligence. LNCS 2358, 2002, pp. 88-98.

 N. Nedjah and L. de Macedo Mourelle. Minimal Addition-Subtraction Chains Using

Genetic Algorithms. Advances in Information Systems. Volume 2457 of LNCS, 2002,

pp. 303 – 313.

 N. Nedjah and L. de Macedo Mourelle. Minimal Addition-Subtraction Sequences for

Efficient Preprocessing in Large Window-Based Modular Exponentiation Using

Genetic Algorithms. Intelligent Data Engineering and Automated Learning. Volume

2690 of LNCS, 2003, pp. 329 – 336.

 N. Nedjah and L. de Macedo Mourelle. Finding Minimal Addition Chains Using Ant

Colony. Intelligent Data Engineering and Automated Learning - IDEAL 2004, pp. 642

– 647.

 N. Nedjah and L. de Macedo Mourelle. Towards Minimal Addition Chains Using Ant

Colony Optimisation. Journal of Mathematical Modelling and Algorithms 5(4), 2006,

pp. 525 – 543.

 N. Cruz-Cortes, F. Rodriguez-Henriquez, R. Juarez-Morales, and C. Coello Coello.

Finding Optimal Addition Chains Using a Genetic Algorithm Approach.

Computational Intelligence and Security. Volume 3801 of LNCS, 2005, pp. 208 –

215.

108

References

 N. Cruz-Cortes, F. Rodriguez-Henriquez, and C. Coello Coello. An Artificial Immune

System Heuristic for Generating Short Addition Chains. Evolutionary Computation,

IEEE Transactions on 12(1), 2008, pp. 1 – 24.

 L. G. Osorio-Hernandez, E. Mezura-Montes, N.C. Cortes, and F. Rodriguez-

Henriquez. A genetic algorithm with repair and local search mechanisms able to find

minimal length addition chains for small exponents. CEC 2009, pp. 1422 – 1429.

 A. Leon-Javier, N. Cruz-Cortes, M. Moreno-Armendariz, and S. Orantes-Jimenez.

Finding Minimal Addition Chains with a Particle Swarm Optimization Algorithm.

MICAI 2009: Advances in Artificial Intelligence. Volume 5845 of LNCS, 2009, pp.

680 – 691.

 N. Nedjah and L. de Macedo Mourelle. High-performance SoC-based

Implementation of Modular Exponentiation Using Evolutionary Addition Chains for

Efficient Cryptography. Applied Soft Computing 11 (7), 2011, pp. 4302 – 4311.

 S. Dominguez-Isidro, E. Mezura-Montes, and L.G. Osorio-Hernandez. Addition

chain length minimization with evolutionary programming. Genetic and Evolutionary

Computation Conference Companion, GECCO 2011, pp. 59 – 60.

 S. Dominguez-Isidro, E. Mezura-Montes, and L.G. Osorio-Hernandez. Evolutionary

programming for the length minimization of addition chains. Eng. Appl. of AI 37,

2015, 125 -134.

 S. Picek, C. A. Coello Coello, D. Jakobovic, and N. Mentens. Evolutionary

Algorithms for Finding Short Addition Chains: Going the Distance. EvoCOP 2016,

pp. 121 – 137.

1092

109

References

 C. Lamenca-Martinez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A.

Ribagorda. Lamar: A new pseudorandom number generator evolved by means of

genetic programming. PPSN IX, 2006, pp. 850-859.

 P. Peris-Lopez, J.C. Hernandez-Castro, J.M. Estevez-Tapiador, and A.Ribagorda.

LAMED - A PRNG for EPC Class-1 Generation-2 RFID Specification. Comput.

Stand. Interfaces 31(1), 2009, pp. 88 – 97.

 J.R. Koza. Evolving a computer program to generate random numbers using the

genetic programming paradigm (1991).

 J. Hernandez, A. Seznec, and P. Isasi. On the design of state-of-the-art

pseudorandom number generators by means of genetic programming. CEC2004,

volume 2. pp. 1510 – 1516.

 A. Poorghanad, A. Sadr, and A. Kashanipour. Generating high quality pseudo

random number using evolutionary methods. In Computational Intelligence and

Security, 2008. CIS '08, pp. 331 – 335.

 L. Sekanina. Virtual reconfigurable circuits for real-world applications of evolvable

hardware. Evolvable Systems: From Biology to Hardware. Springer Berlin

Heidelberg, 2003, pp. 186- 197.

 S. Wolfram. Random sequence generation by cellular automata. Advances in

Applied Mathematics, 7(2): pp. 123 - 169, 1986.

110

References

 S. Picek, D. Sisejkovic, V. Rozic, B. Yang, D. Jakobovic, and N. Mentens. Evolving

Cryptographic Pseudorandom Number Generators. International Conference on

Parallel Problem Solving from Nature 2016, pp. 613-622.

 S. Picek, B. Yang, V. Rozic, J. Vliegen, J. Winderickx, T. De Cnudde, and N.

Mentens. PRNGs for Masking Applications and Their Mapping to Evolvable

Hardware. International Conference on Smart Card Research and Advanced

Applications 2016, pp. 209-227.

 S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the

Secrets of Smart Cards (Advances in Information Security). Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2007.

 P. C. Kocher, J. Jae, and B. Jun. Differential power analysis. CRYPTO '99, 1999,

pp. 388 - 397.

 R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and M. Golub. Glitch it if

you can: Parameter search strategies for successful fault injection, CARDIS 2013,

pp. 236 -252.

 S. Picek, L. Batina, D. Jakobovic, and R. B. Carpi. Evolving genetic algorithms for

fault injection attacks, MIPRO 2014, pp. 1106 – 1111.

 S. Picek, L. Batina, P. Buzing, and D. Jakobovic. Fault Injection with a new flavor:

Memetic Algorithms make a difference. COSADE 2015, pp. 159 – 173.

111

References

 R. Maes. Physically unclonable functions: Constructions, properties and

applications. Dissertation, University of KU Leuven, 2012.

 R. Maes and I. Verbauwhede. Physically unclonable functions: A study on the state

of the art and future research directions. Towards Hardware-Intrinsic Security, 2010,

pp. 3-37.

 G. T. Becker. The gap between promise and reality: on the insecurity of XOR arbiter

PUFs. International Workshop on Cryptographic Hardware and Embedded Systems

– CHES 2015, pp. 535-555.

 A. Heuser, S. Picek, S. Guilley, and N. Mentens. Side-channel Analysis of

Lightweight Ciphers: Does Lightweight Equal Easy? Cryptology ePrint Archive,

Report 2017/261, 2017.

 A, Heuser and M. Zohner. Intelligent machine homicide. International Workshop on

Constructive Side-Channel Analysis and Secure Design, pp. 249-264, 2012.

 L. Lerman, G. Bontempi, and O. Markowitch. Side channel attack: an approach

based on machine learning. Center for Advanced Security Research Darmstadt, pp.

29-41, 2011.

 L. Lerman, G. Bontempi, and O. Markowitch. A machine learning approach against a

masked AES. Journal of Cryptographic Engineering, vol. 5, num. 2, pp. 123-139,

2015.

1093

