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Introduction to Cryptology

 Cryptology (from Greek words kryptos which means hidden 
and logos which means word) is the scientific study of 
cryptography and cryptanalysis.

 We can trace the origins of cryptology in an art form to the 
ancient Egypt.

 Cryptography is a science (and art) of secret writing with the 
goal of hiding the meaning of a message. In modern 
cryptography, it is not only important to achieve 
confidentiality, but also authentication, non-repudiation and 
data integrity among other goals.

 Cryptanalysis is a science of analyzing ciphers in order to 
find weaknesses in them.

6

Introduction to Cryptology

Taxonomy

7

Classical Ciphers

 Transposition ciphers are such ciphers where the order of 
characters is shuffled around.

 Substitution ciphers are ciphers where each character in the 
alphabet is substituted with another character in the alphabet.

 Enigma machine is a mechanical rotor device that is 
comprised from several rotors that dynamically substitute the 
plaintext in accordance to the rotor position.

 Today, easy to cryptanalyze.

 Scytale, Caesar cipher, non-standard hieroglyphs, etc.

8

Modern Ciphers

 In 1940s Shannon published his paper on the design 
principles of block ciphers.

 Important milestones happened in 1970s.

 The design of the DES cipher, the introduction of public key 
cryptography.

 Modern cryptography has much more emphasize on 
definitions and proofs, although there are many primitives 
used today that do not have rigorous proofs.

 Informally, we distinguish classical from the modern 
cryptography on a basis that modern cryptography has a 
more scientific approach.
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Basic Notions

 Sender is a person who is sending a message. The most 
famous sender in cryptography is Alice.

 Receiver is a person who is receiving a message. The most 
famous message receiver in cryptography is Bob.

 Adversary is a malicious entity whose aim is to prevent the 
users of a cryptosystem from achieving their goals. Popular 
names are Eve in the case of passive adversaries and Mallory 
when talking about active adversaries.

 Cryptographic primitive is a part of a cryptographic tool used to 
provide information security, i.e., a low-level cryptographic 
algorithm that is frequently used.

10

Basic Notions

 Cryptographic algorithm (cipher) is a mathematical function 
used for encryption, decryption, key establishment, 
authentication, etc. 

 Plaintext P or message is the information that the sender 
wishes to transmit to the receiver.

 Ciphertext C is the result of an encryption performed on 
plaintext using a cryptographic algorithm.

 Encryption is a process of applying a transformation E to the 
plaintext P. After that transformation, only an authorized party 
should be able to read the message, i.e., E(P) = C.

 Decryption is a process of applying a transformation D to the 
ciphertext C, i.e., D(C) = P.

11

Symmetric-key Cryptography

 Also known as private key cryptography.

 Symmetric-key cryptography uses the same key to 
encrypt/decrypt or to compute/verify the data.

 Assume that Alice and Bob want to exchange some message 
and they want it to remain secret, i.e., that no one else can 
read it.

 They have only an insecure channel to communicate through. 
Alice could encrypt her message and send it encrypted over 
an insecure channel to Bob. If Bob has the same key as 
Alice, he can then decrypt and read the message.

 Eve cannot decrypt the message if she does not know the 
key.

12

Symmetric-key Cryptography
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Block Ciphers

 Block ciphers operate on blocks of fixed length of data with 
an unvarying transformation that is specified by the key.

 Should be indistinguishable from a random permutation by an 
adversary not knowing the key.

 Claude Shannon stated that computationally secure 
cryptosystem should follow confusion and diffusion principles.

 Confusion – the ciphertext statistics should depend on the 
plaintext statistics in a manner too complicated to be 
exploited by the cryptanalyst.

 Diffusion - each digit of the plaintext and each digit of the 
secret key should influence many digits of the ciphertext.

 DES, AES, MARS, PRESENT, etc.

14

Stream Ciphers

 Should behave as pseudorandom number generators 
(PRNGs).

 Most of the stream encryption schemes encrypt message bits 
by adding encryption bits modulo two.

 Historically looking, linear feedback shift registers (LFSRs) 
were used in order to produce pseudorandom numbers. 

 An LFSR is a shift register whose input bit is a linear function 
of its previous state. Those bit positions that affect the next 
state are called taps.

 To add the nonlinearity (and therefore improve the security) 
one option is to add some nonlinear element, where a 
Boolean function is a common choice.

15

Implementation Attacks

 All attacks that do not aim at the weaknesses of the algorithm 
itself, but on the implementations on cryptographic devices.

 Sources: power, sound, light, electromagnetic radiation, etc.

 Implementation attacks are among the most powerful known 
attacks against cryptographic devices.

 Common types of implementation attacks are side channel 
attacks and fault injection attacks.

 Side channel attacks are passive and non-invasive attacks.

 Fault injection attacks are active attacks since they enforce 
the target to work outside the nominal operation range.

16

Public-key Cryptography

 In symmetric-key cryptography, both parties need to know the 
key before the communication in order to establish the secure 
channel.

 However, the problem is how to exchange that key if there 
exists no secure channel.

 One option is to use public-key cryptography.

 Also called asymmetric cryptography.

 Here, there exist two keys: private and public key.

 To encrypt, one uses the public key, but to decrypt one needs 
to know the private key.
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Public-key Cryptography

 Public-key cryptography relies on difficult problems in 
mathematics, like integer factorization, discrete logarithm 
problem, knapsack problem, etc.

 RSA, Diffie-Hellman, ECC,…

 For public-key cryptography, the are only a few papers where 
authors use evolutionary computation and the results are not 
spectacular.

 However, this is to be expected: it is much more difficult to 
design some cryptographic primitive here or to attack a 
system with evolutionary computation.

18

Evolutionary Computation

19

Evolutionary Computation

 Research area within computer science that draws inspiration 
from the process of natural evolution.

 Evolutionary algorithms are population based metaheuristic 
optimization methods that use biology inspired mechanisms 
like selection, crossover or survival of the fittest.

 Genetic Algorithm (GA), Holland, 1975.

 Tree based Genetic Programming (GP), Koza, 1992.

 Cartesian Genetic Programming (CGP), Miller, 1999.

 Evolution Strategy (ES), Rechenberg, Schwefel, 1970s.

 NSGA-II, Deb, 2002.

20

Applications of EC to Cryptology
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Basics

 How to solve hard problems in cryptology?

 Problems need to be hard (to be worthwhile), but not too 
difficult (to be impossible to solve).

 Plenitude of problems and possible methods to solve them.

 Care needs to be taken that one does not select too difficult 
problems.

 Often, evolutionary computation is not used to provide the 
final solutions, but instead to help us to improve the results of 
some other technique.

22

Evolutionary Computation Framework

 ECF is a C++ framework intended for application of any type 
of evolutionary computation.

 Developed by Evolutionary Computation group from Faculty 
of Electrical Engineering and Computing, Zagreb, Croatia:

http://gp.zemris.fer.hr/

 Details about projects concerning evolutionary computation 
and cryptology:

http://evocrypt.zemris.fer.hr/

23

Evolutionary Computation Framework

ECF GUI

24

Evolutionary Computation Framework

1) Configure file with function size and cryptographic properties 2) 

Run evolutionary algorithm 3) Obtain truth table representation of a 

solution 4) Run Property checker 5) Use the checker's output as a 

metric of merit with values of desired properties.
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Boolean Functions

 The easiest problem to start.

 There exists a natural mapping between the truth table 
representation of Boolean functions and representation of 
solutions in EC.

 Boolean functions are important cryptographic primitive and 
often used in stream ciphers as the source of nonlinearity.

Boolean function with 2 inputs

26

Boolean Functions

 To be used in cryptography, a Boolean function needs to 
fulfill a number of cryptographic properties.

 To be used in filter generators: balancedness, high 
nonlinearity, high algebraic degree, high algebraic immunity, 
high fast algebraic immunity.

 To be used in combiner generators additionally is required a 
good value of correlation immunity.

 To be used as a part of the side-channel attack 
countermeasure it needs to have low Hamming weight and 
high correlation immunity.

 To be of practical importance, it should have at least 13 
inputs.

27

Boolean Functions

Combiner generator Filter generator

28

Boolean Functions, Scenario 1

 Evolving Boolean functions that are to be used in 
combiner/filter generators.

 We are interested in a number of properties, where some of 
those properties are conflicting.

 Search space size is 22
𝑛
.

 Representing solutions in the truth table form requires string 
of bits of length 2𝑛.

 Already for a Boolean function with 8 inputs, the search 
space size is 2256.
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Boolean Functions, Scenario 1

 Fitness functions: single objective with the weight factors, 
multiple stage fitness function, multi-objective, many-
objective.

 For Boolean functions up to 8 inputs, most of the EC 
techniques give good results.

 Currently, the best results are obtained with GP/CGP.

 The simplest problems seem to be either:

• Evolving bent function (those that are not balanced, but 
with maximum nonlinearity)

• Evolving balanced functions with high nonlinearity.

30

Boolean Functions, Scenario 1

 Much larger role of genotype than the choice of fitness 
function.

Average values, CGP, bent Boolean functions 

with 8 inputs

31

Boolean Functions, Scenario 1

GA, bitstring representation Boolean function with 8 inputs

32

Boolean Functions, Scenario 1

GP, Boolean function with 8 inputs
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Boolean Functions, Scenario 2

 Evolve Boolean functions with as small as possible Hamming 
weight and high correlation immunity in order to reduce the 
masking cost.

 Masking consists in changing randomly the representation of 
the key to deceive the attacker.

 Example: if each bit ki, 1< i < n of a key k is masked with a 
random bit mi, then an attacker could probe ki XOR mi.

 Provided mi is uniformly distributed, the knowledge of ki XOR 
mi does not disclose any information on bit ki .

 Since most of the algebraic constructions aim to find 
balanced Boolean functions, they are not appropriate for this 
problem.

34

Boolean Functions, Scenario 2

 Masking can be summarized as the problem of finding 
Boolean functions whose support is the masks' set, with the 
two following constraints:

• small Hamming weight, for implementation reasons, and

• high correlation immunity t to resist an attacker with 
multiple (< t) probes.

 There is a trade-off which motivates the research for low
Hamming weight high correlation immunity Boolean 
functions.

 Interesting problem since we know the best possible values, 
but we do not know actual functions reaching those values.

35

Boolean Functions, Scenario 2

 Up to recently, there were several values of practical interest 
unknown.

 Attempts with SAT solvers did not resulted in success even 
after more than one month of calculation.

 For CGP and GP, this problem seems to be trivial.

 Optimal results sometimes achieved even in less than 1 hour.

 However, there are combinations of parameters as well as 
function sizes that seem more difficult for EC.

36

Boolean Functions, Scenario 2

Solutions with GP and CGP
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Boolean Functions, Scenario 3

 Previous results show that EC can be used to evolve Boolean 
functions of various sizes and properties.

 However, it is to be expected that after some size, the results 
will become worse and the evaluation process long.

 For instance, if we consider the algebraic immunity and fast 
algebraic immunity properties. To calculate those two 
properties can easily take several hours for a Boolean 
functions with e.g. 16 inputs.

 Therefore, at least for now, those properties were never 
included in the evaluation process for larger sizes of Boolean 
functions.

38

Boolean Functions, Scenario 3

 We already discussed there are several techniques how to 
generate Boolean functions.

 The question is can we combine several techniques.

 For instance, could we use evolutionary computation to 
evolve algebraic constructions?

 If yes, then we need just to show that our construction results 
in Boolean functions with good properties and that it holds for 
any size of Boolean functions.

 We evolve secondary algebraic constructions that result in 
bent Boolean functions.

 2016 GECCO Humies finalist.

39

Boolean Functions, Scenario 3

GP secondary construction

40

Boolean Functions, Perspectives

 Possible challenges:

• Finding balanced Boolean function with 8 inputs that have 
nonlinearity 118.

• Use EC to evolve primary algebraic constructions.

• Evolve Boolean functions to be used in combiner/filter 
generators where parameters are also algebraic immunity 
and fast algebraic immunity.

• Use different, previously not investigated unique 
representations of Boolean functions.

• Investigate many-objective optimization.

• Quaternary Boolean functions.
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S-boxes

 Natural extension from the Boolean function case.

 S-boxes (Substitution Boxes) are also called vectorial 
Boolean functions.

 Often used in block ciphers as a source of nonlinearity.

 However, this problem is much more difficult!

 S-box of dimension nxm has m output Boolean functions, but 
for the most of the properties we need to check all linear 
combinations of those functions.

42

S-boxes

2x2 S-box

43

S-boxes

 For an S-box with n inputs and m outputs, there are in total 
2𝑚2𝑛S-boxes.

 Some realistic search space sizes when n=m:

 Several options to represent solutions.

 As with Boolean functions, there are three design options: 
algebraic constructions, random search, and heuristics.

44

S-boxes, Scenario 1

 When representing S-boxes with their truth tables (i.e., 
bitstring representation as with Boolean functions) the 
problem is very difficult.

 Already balancedness property requires that all columns of  
an S-box are balanced (have the same number of zeros and 
ones), but also all linear combinations needs to be balanced.

 Still, this approach works for sizes ~4x4 where there are 15 
linear combinations we need to consider.

 However, for larger sizes, it is almost impossible to obtain 
even balanced solution with bitstring representation.

 Therefore, we do not consider such representation anymore.
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S-boxes, Scenario 1

 It is possible to use CGP and GP with the permutation 
encoding:

46

S-boxes, Scenario 1

GP solution of an 8x8 S-box

47

S-boxes, Scenario 2

 Represent S-boxes as permutations, i.e., all values between 
0 and 2𝑛 − 1 (where n is the dimension of the S-box).

 Then the S-box is always bijective and we do not need to 
worry about the balancedness property.

 Similar as with Boolean functions, there are many properties 
of interest when evolving S-boxes: high nonlinearity, low 
differential uniformity, high algebraic degree, etc.

 For dimensions up to 4x4, permutation encoding gives 
optimal results (bijective solutions with maximal nonlinearity 
and minimal differential uniformity).

 For 8x8, algebraic construction gives nonlinearity of 112 and 
differential uniformity of 4.

48

S-boxes, Scenario 2

 Random search results in nonlinearity up to 98 and 
nonlinearity down to 10.

 Heuristics - up to 104 nonlinearity, differential uniformity 8.

 The question is then whether there is any sense to use 
heuristics if such methods cannot compete with algebraic 
constructions.

 It turns out there are properties that algebraic constructions 
do not consider. Properties related with the side-channel 
resistance often have poor values if S-boxes are constructed 
with algebraic constructions.

 Evolve S-boxes with good side channel resistance while 
keeping other properties optimal.
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S-boxes, Scenario 2

Permutation encoding of an 4x4 S-box

50

S-boxes, Scenario 3

 Besides the properties related with the side-channel attacks, 
we are also interested in implementation properties like 
power, area, and latency.

 Again, algebraic constructions do not consider such 
properties but we can evolve S-boxes with good 
cryptographic properties that are hardware-friendly.

 Naturally, there exist the same problem as before: we do not 
want that cryptographic properties deteriorate too much.

 In this scenario, we require that our evolution framework can 
communicate with the framework that does the 
implementation properties analysis.

51

S-boxes, Scenario 3

Evaluation setup when evolving S-boxes with good implementation 

properties

52

S-boxes, Scenario 3

 EC cannot handle larger S-box sizes so we modify our 
approach.

 We evolve affine transformations of an S-box.

 We change implementation properties, while keeping most of 
the cryptographic properties intact:

𝑆𝑎(x) = B(𝑆𝑏(A(x) XOR a)) XOR b.

 A and B are invertible nxn matrices in GF(2) and a and b are 
constants.
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S-boxes, Scenario 4

 Evolve S-boxes in a form of cellular automata (CA) rules.

 Such representation is also used in practice (Keccak cipher).

 The best results with EC up to now!

54

S-boxes, Scenario 4

Evolved CA rule for the 5x5 S-box

55

S-boxes, Perspectives

 Possible challenges:

• Evolve S-box of size 8x8 that has nonlinearity 112.

• Use new representations of solutions.

• Improve the efficiency of EC with the bitstring 
representation.

• Consider S-box representations in a form of equations.

• Find general rules for CA and S-boxes.

• S-boxes where the number of inputs and outputs is not 
the same.

56

Addition Chains

 Modular exponentiation: find the (unique) integer 
𝐵 𝜖 [1,… , 𝑝 − 1] such that:

𝐵 = 𝐴𝑐 mod p.

 Several ways to calculate this.

 The simplest is to naïve multiply A c times.

 Addition chain: a sequence of positive integers where each 
value is a sum of two values occurring in the sequence.

 The length of an addition chain determines the number of 
multiplications required for exponentiation.
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Addition Chains

 The aim is to find the shortest addition chain for a given 
exponent c.

 Binary method: write 60 in binary: 111100; replace “1” with 
“DA” and “0” with “D”; cross out the first “DA” on the left; 
“DADADADD”, calculate: 

1 → 2 → 3 → 6 → 7 → 14 → 15 → 30 → 60.

 Addition chain (7 operations):

A^1; A^2 = A^1 * A^1; A^4 = A^2 * A^2; A^6 = A^4 * A^2; 

A^12 = A^6 *A^6;A^24 = A^12 * A^12; A^30 = A^24 * A^6; 

A^60 = A^30 * A^30.

58

Addition Chains

 The problem of finding the shortest addition chain for a given 
exponent is of great relevance in cryptography.

 However, the problem is believed to be NP-hard.

 There is no single algorithm that can be used for any 
exponent.

 Still the best solutions are often obtained by pen and paper 
method.

 Huge numbers so exhaustive search is impossible.

 Heuristics should be able to help.

59

Addition Chains

 Types of steps in the addition chain:

• Doubling step; when j = k = i - 1. This step always gives 
the maximal possible value at the position i.

• Star step: when j but not necessarily k equals i – 1.

• Small step: when log2(ai) = log2(ai-1).

• Standard step: when ai = aj + ak where i > j > k.

 A star chain is a chain that involves only star operations.

60

Addition Chains

Crossover operator for addition chains, needs to include 

repair mechanism
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Addition Chains

Mutation operator for addition chains, needs to include 

repair mechanism

62

Addition Chains

Results for a number of different values

63

Addition Chains

Results for a number of different values

64

Addition Chains

 For most of the values we find the optimal one (or what is the 
current best).

 Out of all tested numbers, only 2127 − 3 has practical 
importance.

 We find chain of 136 steps, also done by expert by hand.

 Human-competitive?

 We believe so, on average we need 10 minutes, pen and 
paper requires a lot of experience and will last longer.

 More realistic numbers are 2255 − 21 and 

2252 − 27742317777372353535851937790883648491.
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Addition Chains

Example of an evolved addition chain

66

Addition Chains, Perspectives

 Possible challenges:

• Improve the speed of the algorithm.

• Look for optimal chains for even larger numbers.

• Differentiate between multiplication and squaring steps.

• Analyze the structure of numbers with regards to the EC 
performance.

• Support special structures of numbers.

• Explore different types of chains.

67

Pseudorandom Number Generators

 In cryptography, random number generators (RNGs) play an 
important role.

 Most of the time, we need true random number generators 
(TRNGs), but still there are applications where 
pseudorandom number generators (PRNGs) are enough.

 TRNG is a device for which the output values depend on 
some unpredictable source that produces entropy.

 PRNGs represent mechanisms that produce random 
numbers by performing a deterministic algorithm on a 
randomly selected seed.

 One example is masking for the side channel resistance.

68

Pseudorandom Number Generators

 Find extremely fast and small PRNGs that pass all NIST 
statistical tests.

 Use GP and CGP to evolve PRNGs.

PRNG model
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Pseudorandom Number Generators

 Evolve PRNGs that have n inputs and 1 output (GP) or m
outputs (CGP).

 All variables are 32-bit integer values.

 Function set are function that are fast and small when 
implemented in hardware (shift, rotate, permute, and logical 
operations XOR, NOT, AND).

 Here, obvious advantage of CGP over GP is that GP needs 
to iterate m times to produce the same size of the output as 
CGP produces in a single iteration.

 Fitness function needs to be simple, yet powerful enough to 
drive our search.

70

Pseudorandom Number Generators

 We use approximate entropy test from the NIST statistical 
test suite as a fitness function.

 After the evolution process is over, our parser automatically 
takes the best individual and outputs it as a C source code.

 That source code is then used to produce 10 million bits that 
are then evaluated with the NIST statistical suite.

 We cannot use whole test suite in the evolution since it would 
be too slow.

 Our current fitness function consists of 130 evaluations of the 
approximate entropy function.

71

Pseudorandom Number Generators

Structure of evolved PRNGs

72

Pseudorandom Number Generators

Example of evolved PRNG
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Pseudorandom Number Generators

GP solution

74

Pseudorandom Number Generators

CGP solution

75

Pseudorandom Number Generators

 The same technique can be used to produce PRNGs on-the-
fly.

 Then, we can use evolvable hardware that constantly 
updates the PRNG part.

 In order to ensure that our designs always use all terminals, 
we penalize solutions that do not have all inputs.

 Maximal throughput on ASIC 117 Gb/s and for FPGA 66 
Gb/s.

 Here, GP and CGP are used to evolve only the update 
functions, but EC can be also used to evolve the non-
invertible function.

76

Pseudorandom Number Generators

Evolvable hardware setting

1084



77

Pseudorandom Number Generators

Virtual reconfigurable circuit cell

78

Pseudorandom Number Generators, 

Perspectives

 Possible challenges:

• Improve the fitness function and consequently the 
evaluation process.

• Add to the fitness function also consideration about the 
size and speed of specific functions (platform dependent).

• Experiment with different sizes of the update function as 
well as different terminal sets.

• Improve the efficiency of the evolvable hardware 
scenario.

79

PUFs

 Physically Unclonable Functions (PUFs) are embedded or 
standalone devices used as a means to generate either a 
source of randomness or to obtain an instance-specific 
uniqueness for secure identification.

 This is achieved by relying on inherent uncontrollable 
manufacturing process variations, which results in each chip 
having a unique response.

 Optimization techniques can be used to find a model (“clone”) 
of a PUF by modeling the delay vector of an actual PUF in as 
few measurements as possible. 

80

PUFs

 Arbiter PUF consists of one or more chains of two 2-bit 
multiplexers that have identical layouts.

 Each multiplexer pair is denoted a stage, with n stages in a 
single chain.

 There is a single input signal that is introduced to the first 
stage to both bottom and top multiplexer in the pair (red and 
blue).

 The chain is fed a control signal of n bits called a challenge 
(bits c1 to cn), where each bit determines whether the two 
input signals in that stage would be switched (crossed over) 
or not.
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PUFs

 The response of a PUF is determined by the delay difference 
between the top and bottom input signal, which is in turn the 
sum of delay differences of the individual stages.

 To efficiently model a PUF, one usually tries to determine the 
delay vector w=(𝑤1, … , 𝑤𝑛+1).

 The delay difference ∆D  at the end of a chain is

∆D = 𝑤𝑇ϕ

 The feature vector ϕ is derived from the challenge vector as

ϕ𝑖=ς𝑙=1
𝑛 (−1)𝑐𝑙, for 1 ≤ 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ ϕ𝑛+1 = 1.

 The final response is equal to 1 if ∆D < 0 and 0 otherwise.

82

PUFs

n-arbiter PUF

Examples of solutions

83

Fault Injection

 A fault injection (FI) attack is successful if after exposing the 
device to a specially crafted external interference, it shows an 
unexpected behavior exploitable by the attacker.

 Finding the correct parameters for a successful FI can be 
considered as a search problem where one aims to find, 
within a minimum time, the parameter configurations which 
result in a successful fault injection.

 The search space is typically too large to perform an 
exhaustive search.

 Use heuristics to find search space parameters that lead to 
successful attack.
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Fault Injection

 Voltage switching, three parameters: glitch length, glitch 
voltage, and glitch offset.

 Two scenarios:

• Finding faults in a minimal number of measurements.

• Characterizing the parameter space, again in a minimal 
number of measurements.

 FI testing equipment can output only verdict classes that 
correspond to successful measurements. 

 Attacking the PIN mechanism.
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Fault Injection

PIN mechanism

86

Fault Injection

 Possible classes for classifying a single measurement:

• NORMAL: smart card behaves as expected  and the 
glitch is ignored

• RESET: smart card resets as a result of the glitch

• MUTE: smart card stops all communication as a result of 
the glitch

• INCONCLUSIVE: smart card responds in a way that 
cannot be classified in any other class

• SUCCESS: smart card response is a specific, 
predetermined value that does not happen under normal 
operation

87

Fault Injection

Custom GA for fault injection

88

Fault Injection

Random, 2500 measurements Exhaustive, 7500 measurements

GA + LS, 250 

measurements
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Fault Injection

Random, 250 measurements GA, 250 measurements

GA+LS, 250 measurements

90

Fault Injection

 Possible challenges:

• Working with more relevant parameters.

• Attacking cards with countermeasures.

• Switching to other sources of attacks.

• Making the search algorithm more powerful.

• Laser and electromagnetic radiation attacks.
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Conclusions
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Final Remarks

 All the examples presented here are available from SVN 
repository:

http://evocrypt.zemris.fer.hr/

 In all the experiments we use Evolutionary Computation 
Framework (ECF) that can be downloaded from:

http://ecf.zemris.fer.hr/

For updated version of slides as well as for the further 
references, please check:

http://www.evocrypt.com/
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Security Applications

 Stepping outside of the cryptology area and considering 
security area there are many more interesting problems:

• Malware detection.

• Intrusion detection.

• Automatic code improvement.

• Spam detection.

 For EC applications in security, check the tutorial 
“Evolutionary Computation in Network Management and 
Security” by Nur Zincir-Heywood and Gunes Kayacik.
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Machine Learning and SCA

 Side-channel attacks (SCA) represent extremely powerful 
category of attacks on cryptographic devices with profiled 
side-channel attacks in a prominent place as the most 
powerful among them.

 Within the profiling phase the attacker estimates leakage 
models for targeted intermediate computations, which are 
then exploited to extract secret information from the device in 
the actual attack phase.

 Classification and regression problems.

 Different devices, algorithms, number of classes, number of 
features, levels of noise, datasets, etc.

 Machine learning, deep learning, EC, etc.

95

Perspectives

 We also need to step outside the EC area and consider other 
heuristic techniques.

 Even for each of the applications, there is a plethora of 
options still to try: 

• New algorithms.

• Representations.

• Fitness functions. 

• Combinations of parameters.

 The results obtained up to now are good, but there is still 
much room for improvement.

96

Conclusions

 Up to now, EC proved to be successful in cryptology:

• When there exist no other, specialized approaches.

• To rapidly check whether some concept (e.g. formula) is 
correct.

• To assess the quality of some other method.

• To produce “good-enough” solutions.

• To produce novel and human-competitive solutions 
(solutions produced by EC that can rival the best solutions 
created by humans).

1089



97

Conclusions

 Heuristic methods are not a magic solvers.

 They require knowledge and experience if to be used 
correctly.

 Nice problems, both from the practical perspective, but also 
as benchmarks – see talk on crypto problems for 
benchmarking – CryptoBench.

 If there are others, specialized algorithms, EC rarely can beat 
them.
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Conclusions

 Without proper collaboration, for EC community cryptology 
problems are just something to be solved but without 
adequate understanding.

 For cryptographic community, EC techniques are just a tool 
to be used.

 Without good understanding the problem and the tool to be 
used, it is hard to expect nice results.

 Thank you for your attention.

Questions?
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