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ABSTRACT

This paper proposes to explore the following question: can software
evolution systems like FINCH, that evolve linear representations
originating from a higher-level structural language, take advantage
of building blocks inherent to that original language?
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1 POSITION

FINCH [4, 5] is a system for unrestricted Darwinian software evo-
lution that is based on Java bytecode. Any Java source code can be
automatically evolved after compiling it to Java bytecode, when
provided with a fitness function. The reason for working at byte-
code level instead of source code level is the conceptual simplicity
of detecting correct crossovers in Java bytecode methods. The main
benefit is efficiency: both costly source code (mostly failed) com-
pilation attempts, and Java virtual machine verification of (mostly
incorrect) bytecode modifications are altogether avoided. Correct
bytecode crossover thus drives unrestricted evolution of Java soft-
ware, and also software written in one of the many other languages
that can use the JVM backend (Scala, Python, Ruby and others).

We therefore opt to use linear genetic programming [1] on Java
bytecode not due to a preference of linear vs. tree-based GP, but
mainly because the methodology produces a search space that
roughly corresponds to all correct bytecode sequences that might
result from crossover-based evolution of initially seeded popula-
tion of programs. Bytecode formal semantics are simple enough to
efficiently construct such a search space.
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Figure 1: Java source code is first compiled to bytecode, and
subsequently interpreted or executed as native code. Heavy
optimizations are reserved for the JIT-compilation phase.

However, bytecode is still not the original source code language,
and the completeness of bytecode search space is vast. When our
motivation for improving extant software comes from domain
knowledge that is already present in the code, we must find a way
to use preexisting building blocks — as they are seen in the eyes of
the original software designer. Even when our purpose is to evolve
software from scratch, we still work with programming languages
that were developed for humans, and that assume certain struc-
ture at high-level source code constructs. Researchers are certainly
interested in evolving software at source code level [2]. Perhaps
we could provide similar capacity while still taking advantage of
bytecode-level improvements?

The fundamental question posited is thus: How is it possible to
reintroduce the structural benefits of tree-based GP into its compiled
and serialized linear version? More specifically, how to achieve
that when the compiled result is Java bytecode? We attempt to
consider cost-effective automatic solutions that are easy to integrate,
as opposed to a more involved guidance of genetic improvement
process, such as proposed by White [6].

2 BYTECODE EVOLUTION BACKGROUND

Java bytecode results from compilation of source code in Java or
in another JVM-compatible language. It has a simple yet complete
structure, targeted at static correctness verification and later inter-
pretation with optimized just-in-time compilation to native code
by the JVM. Figure 1 illustrates this code execution pipeline.

Java bytecode operates over a single stack and a local variables
array, which differ for each method invocation frame. Both struc-
tures contain statically typed values, allowing for static bytecode
analysis by the JVM. Bytecode evolution in FINCH also performs
similar static analysis, and locates bytecode sequences that are fit
for compatible crossover, consistent with primitive and object value
type hierarchies in both the stack and in the variables array.
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Static bytecode analysis is not limited to detecting crossover
correctness. Below, we discuss the possibility of employing static
analysis in order to detect building blocks that are comparable to
those naturally found in the original source code, and use them to
construct a tree-based GP data structure.

Exploring the question presented in Section 1 does not require
knowledge of Java bytecode intricacies, although the interested
reader may refer to literature on the subject [3]. The bottom line
is that bytecode is a sequence of assembly-like instructions that
operate on an abstract model of a typed stack machine that also
supports typed registers — an array containing arguments and local
variables. So, for instance, the bytecode sequence iload_1/ iconst_1
/ isub in Figure 1 pushes variable number 1 of type int onto the
stack (the variable n, as variable number 0 is the object containing
the method), pushes int constant equal to 1 onto the stack, and then
subtracts the two values, popping them from the stack and pushing
back the result n — 1.

3 HIGH-LEVEL BUILDING BLOCKS

The following discussion’s scope is limited to building blocks that
can be recovered from a single method or function, since methods
and classes are fundamental entities in Java code. Let us consider a
single unrestricted Java method that FINCH is able to handle: it con-
tains expressions, object creation, conditionals, loops, method calls,
exceptions throwing and handling blocks, returns from a method,
etc. What kind of high-level building blocks, then, can we hope
to detect at bytecode level? How is it possible to algorithmically
characterize the linear sequences of bytecode that correspond to
these blocks? Hopefully, resorting to context-free grammar approx-
imations of high-level language syntax can be avoided.

Once we look at the building blocks mentioned above, it becomes
apparent that they may be roughly partitioned into the following
three categories: expressions, statements, and control flow exits.

Expressions are all rvalue expressions and sub-expressions, in-
cluding single variable references, arithmetic and Boolean expres-
sions, non-void method and function invocations, conditions in
if-then-else statements and in loops, if-then-else expressions (those
that use ?: syntax), and so on. In the statement ans = n * fact(n-1),

all underlined parts are expressions. We expect expressions to rep-
resent the most commonly encountered type of building blocks,
structured recursively. Indeed, many tree-based GP systems use
expressions exclusively. Note that although expression’s internal
structure may be ambiguous to a human, it is deterministic in source
code. E.g., a+b+c always represents (a+b)+c and not a+(b+c).
Statements are building blocks that do not produce a value: as-
signments, void method and function invocations, then and else
parts of conditionals, complete if-then-else statements, while and
do-while loops and their bodies, arbitrary scoped blocks, and, im-
portantly, sequences of statements. Partitioning of sequence of
statements into sub-sequences is ambiguous — however, treating
this issue may remain at the discretion of tree-based GP variation
operators designer. One possibility is to maximize the length of
higher-level sequences, avoiding sub-sequences altogether.
Finally, control flow exits are the return and throw statements
that abandon control flow, and are otherwise similar to regular state-
ments discussed above. We also omit discussion of special control

1540

Michael Orlov

flow statements like break and continue, which violate assumptions
about high-level building blocks in structured programming.

4 RECOVERING BUILDING BLOCKS

Which bytecode principles discussed in Section 2 may be useful for
recovering the original source code building blocks, without having
to support the full high-level language syntax? Local variables array
and class fields are unlikely to prove useful, since these features
cross the scopes of building blocks discussed in Section 3. What
seems most fit for the purpose is the stack, the state of which closely
corresponds to program’s control flow during method or function
invocation. In order to unmask the building blocks, we might be
able to employ static analysis of evolving method’s stack, which
is already performed for the purpose of compatible crossover in
FINCH.

Statement building blocks are the easiest to detect, as they exhibit
neutrality with regards to stack state. For instance, the previously
discussed statement ans = n * fact(n-1) manipulates stack state
above the top position before the statement is executed. However,
after the assignment to local variable ans is completed, all the extra
stack values are gone.

Expressions are quite similar to statements, except that they add
exactly one value to the stack after temporarily manipulating its
state above the previous top position. This occurs, for instance,
with the n-1 example from Section 2.

Once linear Java bytecode representation is converted to a tree-
based one, we may take advantage of our favorite tree GP methods,
such as biasing variation operators toward subtree features like
height and type, biasing evolution toward preferred tree size and
height, and so forth.

Since the high-level building blocks are not organic to the evolv-
ing individuals, but are instead reconstructed again and again from
linear representation, we might encounter unorthodox behaviors
during the evolutionary process. For instance, building blocks might
deteriorate or disappear altogether, despite the related bytecode
instructions still remaining intact, except for some control flow
changes. After all, evolutionary operators still work at linear GP
level and not on tree structures. Certainly, this is a subject that
requires separate examination.
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