
Parallel Optimization of Transistor Level Circuits using
Cartesian Genetic Programming

Vojtech Mrazek
Faculty of Information Technology, Centre of Excellence

IT4Innovations
Brno University of Technology
Brno, Czech Republic 612 66

imrazek@�t.vutbr.cz

Zdenek Vasicek
Faculty of Information Technology, Centre of Excellence

IT4Innovations
Brno University of Technology
Brno, Czech Republic 612 66

vasicek@�t.vutbr.cz

ABSTRACT
�e aim of the paper is to introduce a new parallel approach to
evolutionary optimization of digital circuits described on transis-
tor level. �e evolutionary optimization is guided by the �tness
function employing a simulator of candidate circuits. A new dis-
crete simulator was introduced to achieve a good trade-o� between
precision and cost of circuit evaluations. �e simulator is based
on event-driven simulation. Precise numeric SPICE simulator is
regularly called to validate simulation results. To increase the speed
of evolution, three parallel approaches were proposed: (i) thread
level parallelism, (ii) multiple computing nodes which collectively
communicate and distribute the best solution, and (iii) client-server
architecture eliminating a limited count of SPICE simulator instan-
ces.

CCS CONCEPTS
•Computing methodologies → Parallel algorithms; Search
methodologies; •Hardware → Power estimation and optimiza-
tion;

KEYWORDS
Evolutionary optimization, transistor-level, parallel systems, digital
circuits

ACM Reference format:
Vojtech Mrazek and Zdenek Vasicek. 2017. Parallel Optimization of Transis-
tor Level Circuits using Cartesian Genetic Programming. In Proceedings of
GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3084212

1 INTRODUCTION
In recent years, many of papers showing the advantages of evoluti-
onary design techniques in the �eld of digital circuit design have
been published. E�cient implementations of various combinational
circuits be�er than conventional design approaches can provide
have been obtained by using Cartesian genetic programming (CGP).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3084212

�is branch of GP currently represents probably most e�ective
technique in evolutionary logical circuits design [6–8, 15].

However, while the gate-level evolutionary synthesis represents
an intensively studied research area, the synthesis of transistor-level
digital circuits remains, in contrast with design of transistor-level
analog circuits, on a peripheral concern of the researchers. Only
a few papers were devoted to evolution of digital circuits directly
at the transistor level. One of the �rst experiments of evolutio-
nary design analog and discrete circuits were done by Vellasco et
al. [16]. Zaloudek et al. published an approach based on a sim-
ple circuit simulator which was designed for rapid evaluation of
candidate solutions [18]. Trefzer used another technique to evolve
some basic logic gates [14]. Instead of using a time consuming
analogue circuit simulator, a recon�gurable analog transistor array
was employed. However, it was shown that the performance of
many solutions decreased in simulation for various technologies;
about 50% of discovered circuits failed in the simulation. �e rough
approximation of transistor behavior used in �tness function unfor-
tunately caused that this approach tended to produce incorrectly
working circuits. Walker et al. adopted detailed circuit simulation
in the �tness function [17]. �ere was a problem with enormous
computational overhead introduced by SPICE-based simulator. For
that reason, it was possible to evolve correct solutions for small
problem instances only.

Evolutionary algorithms are good candidates for parallel imple-
mentation. �e parallelism can be introduced on various levels. In
distributed evolutionary algorithms, best individuals are exchanged
among independently evolving population (islands). In addition
to the best individuals, probabilistic models and other parameters
can be exchanged in these distributed approaches [2]. Another
approach is to parallelize the �tness calculation, because it is the
most time consuming procedure in real world applications. In the
�eld of digital evolution, GPUs [5], Intel Xeon accelerators [3] or
FPGAs [1] were used.

�e goal of the paper is to compare three di�erent approaches
for parallel evolutionary circuit design which combines low-cost
simulation and precise circuit simulation by means of SPICE.

2 EVOLUTIONARY DESIGN OF
TRANSISTOR-LEVEL CIRCUITS

In order to evolve complex digital circuits on transistor-level, a
suitable circuit representation enabling to encode bidirectional
graph structures containing junctions is needed. To address this
problem, we utilized encoding that is based on CGP [6] as proposed
in [12].

1849

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Vojtech Mrazek and Zdenek Vasicek

2.1 Circuit Representation
Each candidate solution is represented by means of an array of
elementary nodes arranged in nc columns and nr rows. Each node
consists of one output pin and two input pins. �e input pins can
independently be connected to a) the output pin of any node in
previous columns, b) the circuit primary input. According to its
con�guration, each node can act as pmos transistor, nmos transistor,
or junction of wires.

G
S

D

G
S

D

(a) (b) (c)

Figure 1: Functions of the nodes

Each circuit has ni primary inputs and no outputs. Two addi-
tional inputs are reserved for power rails (VGND and VDD). �e
following encoding scheme is utilized. �e primary inputs and
node outputs are labeled from 0 to 2+ni +nc ·nr −1. �e candidate
solution is represented by nc · nr triplets (x1,x2, f) determining
node function f , and two positions where node’s inputs are con-
nected to. Negative value of x1 or x2 is allowed too, but only for
one of primary inputs (labeled 2 to ni + 1). When negative value is
detected, an implicit inverter of the input is used and inverted value
is connected. �e last part of the chromosome contains no integers
specifying the nodes where primary outputs are connected to.

Figure 2 demonstrates the utilized encoding on using XNOR
circuit implemented by pass-transistor logic. Implicit inverters are
used for each input. In total, the circuit uses 4 implicit transistors
to invert each input and 4 explicit transistors for the logic.

in.0

in.1

in.1

in.0
in.0

VDD

in.1

out.0

P1

P2

N3

J4

N5

P6

J7

N8

J9

4

5

6

7

8

9

10

11

12

in.1

in.0

in.1

P1

P2

N3

N5

(a) (b)

in.0

in.0

in.1

in.1

in.0

out.0

Figure 2: Evolved XNOR circuit and its re-
presentation. Chromosome of the solution
is (2,-3,pmos)(-2,3,pmos)(3,2,nmos)(4,5,junction)(-3,-
2,nmos)(1,2,pmos)(4,8,junction)(9,3,nmos)(5,6,junction)(12).

2.2 Fitness calculation
A candidate circuit with ni inputs is tested with all possible input
vectors, i.e. 2ni test vectors are applied. �e �tness checks the
functionality constraints and if they are satis�ed then the size
(transistors count) or power is optimized. �e evaluation is divided
into three steps: (i) detection of active nodes, (ii) simulation of each
input vector and (iii) power estimation.

2.2.1 Detection of active nodes. Circuit response depends on
the so-called active nodes; the others are inactive. �e active node
is every node either connected directly to output, or acting as
transistor with output connected to another active node, or acting as
junction with any pin connected to other active node. It is necessary
to detect these inactive nodes, because short circuit exception raised
by inactive node can be ignored.

At the �rst, all nodes are marked as inactive. We mark as active
nodes only those nodes whose output is connected directly to pri-
mary outputs of circuit. �en, in every iteration, we mark as active
nodes those nodes that have their output directly connected to some
active node input. If the node acts as junction then the connection
from the input to the active node’s output is allowed too. �is step
works in linear complexity.

2.2.2 Function verification. �e function veri�cation is done by
simulating all input vector combinations and comparing the circuit
responses with a target truth table. If these results meet the de�ni-
tion, we denote the circuit as valid. Our approach for simulation
of circuits is based on event-driven multilevel simulation. We set
up all primary inputs including supply voltage. Each node with
fully speci�ed inputs recalculates its output value and propagates
it to all related nodes. �is approach is convenient for speed, be-
cause responses are recalculated only for nodes with changed input
conditions.

Unlike in standard CGP representation for gate-level digital cir-
cuit design, bidirectional data-�ow have to be supported. It means
that the transistors can pass data from source to drain as well as
from drain to source – both electrodes can act as input or output.
Junction can cause data-�ow in any direction. When a value is pro-
pagated from input pin to output pin of previous node in backward
direction, there can be more values reduced into one because of
n:1 relation. If every connected wire has the same value (degraded
or not) or is in the high impedance state, the strongest value is
assigned to wire. In this case, the strongest value is propagated to
all other wires which have not the strongest one. If the values are
incompatible, short circuit exception is raised and the simulation
fails.

Behavior of transistor nodes follows the TSMC 180 nm numerical
model. �e decision table for calculating drain output from source

Table 1: Function of MOSFET transistor used in simulator.
Symbol ’1’ represents VDD voltage, ’H’ represents degraded
1 which is VDD −Vtn , ’L’ is degraded 0 Vtp , ’0’ is logical zero,
’Z’ is high impedance state and ’X’ unde�ned.

gate source gate source
1 H L 0 Z X 1 H L 0 Z X

1 H X L 0 Z X 1 Z Z Z Z Z X
H X X L 0 Z X H Z Z Z Z Z X
L Z Z Z Z Z X L 1 H X X Z X
0 Z Z Z Z Z X 0 1 H X L Z X
Z Z Z Z Z Z X Z Z Z Z Z Z X
X X X X X X X X X X X X X X

nmos pmos

1850

Parallel Optimization of Transistor Level Circuits using CGP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

and gate electrodes is shown in Table 1. �ere are two simpli�-
cations against precious simulation. High-impedance state is not
allowed on the gate, but it is not tested until the end of simulation.
When degraded value is located on gate electrode, the transistor is
partially opened, but the output value is set to high-impedance.

When a new value of drain is calculated, the current value of
drain is checked. If the old one is not compatible with the new
one, short circuit is detected. Otherwise the strongest value is
propagated to all related nodes. In addition, that state with high
impedance source and drain se�ing can be caused. In this state
the transistor works in reverted function (drain as input, source as
output) and source is counted similarly as the drain counting was
showed.

�ere is no di�erence between pins, when the node acts as
junction. �e node gets three values and if they are compatible
the strongest one is propagated to all pins. If one of them is unde-
�ned ’X’, this value is propagated to all other pins. If values are
incompatible short circuit is detected.

2.2.3 Power consumption estimation. One of the most accurate
and straightforwardmethods for the power consumption estimation
is to perform a circuit simulation by means of the SPICE simula-
tor. However, it was shown that the simulation results are usually
strongly pa�ern-dependent [4]. Hence large numbers of the input
pa�erns would have to be simulated. �is can become computa-
tionally very expensive, especially for large circuits. During the
evolutionary optimization, it is requested to perform the evaluation
quickly.

To avoid the time-consuming exhaustive simulation, we used a
probabilistic method for active mode power estimation. �e pro-
blem of the power consumption estimation can be transformed to
the task of computing steady-state transition probabilities. In order
to estimate the power consumption, we generalized the approach
introduced at gate-level [9] and implemented it for transistor-level
circuits [11].

�e switching activity is determined according to the signal
and transition probabilities obtained from functional veri�cation.
Hence, no additional computational overhead is introduced. �e
signal probability Pn (x = V) at a signal x is de�ned as the average
fraction of clock cycles in which the steady state value of x is equal
to the logic value V ∈ Λ, where Λ is a set of possible logic values,
in our case, six logic values are considered. Let state S(x) = (д, sd)
of a transistor node x be de�ned by the actual logic values present
at the signals corresponding to its three terminals, where д, sd ∈ Λ.

Given a state S(x), we can calculate a transistor state probability
Ps (S(x) = y) for each y ∈ (a,b) de�ned as the average fraction of
the clock cycles in which a transistor node x remained in the state
S(x), where a,b ∈ Λ. �is simpli�cation can be introduced thanks
to the fact that the simulation-based approach inherently takes into
account the correlation caused at internal nodes in the circuit due
to reconvergence of the input signals or reconvergent fan-out.

Given the transition probabilities, the power consumption can
be calculated as:

Pwrest =
∑
∀x

∑
A,B∈Λ×Λ

Cload (x)Pwr (A,B)P
A→B
tr (x),

where Cload (x) is a constant related to the load capacitance being
charged/discharged in the transistor node x and Pwr (A,B) is a

(
1
,
1
)

(
H
,
1
)

(
h
,
1
)

(
l
,
1
)

(
L
,
1
)

(
0
,
1
)

(
1
,
H
)

(
H
,
H
)

(
h
,
H
)

(
l
,
H
)

(
L
,
H
)

(
0
,
H
)

(
1
,
h
)

(
H
,
h
)

(
h
,
h
)

(
l
,
h
)

(
L
,
h
)

(
0
,
h
)

(
1
,
l
)

(
H
,
l
)

(
h
,
l
)

(
l
,
l
)

(
L
,
l
)

(
0
,
l
)

(
1
,
L
)

(
H
,
L
)

(
h
,
L
)

(
l
,
L
)

(
L
,
L
)

(
0
,
L
)

(
1
,
0
)

(
H
,
0
)

(
h
,
0
)

(
l
,
0
)

(
L
,
0
)

(
0
,
0
)

(1,1)
(H,1)
(h,1)
(l,1)
(L,1)
(0,1)
(1,H)
(H,H)
(h,H)
(l,H)
(L,H)
(0,H)
(1,h)
(H,h)
(h,h)
(l,h)
(L,h)
(0,h)
(1,l)
(H,l)
(h,l)
(l,l)
(L,l)
(0,l)
(1,L)
(H,L)
(h,L)
(l,L)
(L,L)
(0,L)
(1,0)
(H,0)
(h,0)
(l,0)
(L,0)
(0,0)

NMOS

PMOS

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

×10−6

Figure 3: �e average power consumption of n-MOS (p-MOS)
transistor when its state represented as (g,sd) changed to
state (g’,sd’) at 100MHz and 180nm.

constant related to the power consumed by a transistor running
at frequency f when its state changed from A to B. Note that Pwr
is a technology dependent factor that has to be characterized in
advance using a SPICE simulator for n-MOS and p-MOS transistors.
�e average power consumption measured using SPICE is shown
in Figure 3.

2.3 Search strategy
As search algorithm, the evolution strategy (1+λ) is utilized [6]. �e
initial population is seeded with a fully-working solution that was
obtained from a common gate-level description implementation
in which we replaced all gates with theirs CMOS implementation.
Every new population consists of the best individual and λ o�spring
derived from the parent. Fitness (size, power) of each o�spring is
calculated if functional constraints are not violated. If the obtained
�tness is be�er or equal the best one, the candidate solution is
selected as a parent in next population. �e o�spring are derived
from the parent by mutation of a few integer values. As stated
in previous section, not all nodes are counted and hence the time
of simulation is variable and the time of evolution is not linearly
dependent on generations count.

As the discrete simulation uses control instructions primarily and
6-state logic, vectorization using SIMD instructions does not bring
any advantages. �ere are lot of conditional jumps in the resulting
code. For that reason we are not able to parallelize the application
using AVX units or modern GPU accelerators. Circuit evaluation
was already accelerated using special FPTA [14] or FPGA chips
[10], but our approach requires running SPICE simulator which is
not possible on these chips.

2.4 Single-thread implementation
�e proposed evolutionary algorithm for optimization of digital
circuits described at the transistor level was implemented using C++

1851

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Vojtech Mrazek and Zdenek Vasicek

language for standard 64b architecture. �e algorithm implements
a single-objective Cartesian genetic programming. Please note that
all analyses of results were performed in the optimization of one-bit
full adder.

We can divide the program into two main parts — evolutionary
algorithm and circuit simulator. Evolutionary algorithm uses (1+λ)
evolutionary strategy. However, the bo�leneck of the algorithm
is the second part. Our approach is based on combining fast but
inaccurate discrete simulation with the state-of-the-art simulator
(slow, but accurate SPICE). It helps us to cross the reality gap which
is mainly caused by the timing (which means that evolved circuits
are correct for a given frequency, but fail for higher frequencies –
this is impossible to detect using the proposed fast simulator).

Evolutionary part. In contrast with the standard CGP implemen-
tation for the gate-level design, we have to take into account additi-
onal constraints when representing candidate circuits. For example,
it is not allowed to connect any primary input to the node acting
as junction. Otherwise, an incorrect value will be propagated to
the primary input if the node’s output is changed.

In transistor-level circuit design, there are two additional options
how to interconnect circuit components. �e circuit primary inputs
are usually connected to the gates of transistors. However, in
a special type of circuits, the so-called pass-transistor logic, it is
allowed to connect the inputs to the sources or drains. It causes
bigger input load capacitance and in some cases, this phenomenon
is undesirable. �e second option is to explicitly add inverters to
the primary inputs in order to make the problem easier for the
evolution. �ese above-mentioned issues lead to more complex
mutation operator.

Simulation part. �e discrete simulation is combined with nu-
meric simulation using SPICE. At the beginning, the seed is stored
as a valid solution. All candidate circuits are one-by-one evaluated
using discrete simulator. �e current best circuit is evaluated using
SPICE every 800 generation. If the SPICE simulation fails, the run
is reverted to the last valid solution and the next population is
generated from this one.

3 SHARED MEMORY VERSION
In single-threaded version we used just one core on the CPU. As
a �rst step a multi-threaded implementation of our evolutionary
circuit design algorithm was implemented. �e usage of shared
memory with OpenMP library is one of possible ways how to do it.

3.1 Implementation
We parallelized the application at two levels. �e �rst one evaluates
p candidate circuits using p cores in parallel. �e second one gene-
rates work for the unused cores during SPICE evaluation. Note that
only s SPICE simulations can be active as we have only s licenses
for SPICE simulator. �e thread level parallelism is shown in Figure
4.

�e main problem in the population-level parallelism is a vari-
ance of the time of �tness calculation. �e time is not constant
for each candidate solution because some circuits can raise short-
circuit exception or can be signi�cantly smaller. It was measured,

generation counter

mutate

calculate

find best

each circuit in population

barrier

test SPICE

barrier

barrier

test SPICE

results
collecting

is
la

n
d

 m
o
d

e
 w

it
h

 p
=

1

S
P
IC

E

if gen mod 800 = 0

Figure 4: Shared memory implementation. Parallel evalua-
tions of candidate circuits (le�); Handling the SPICE simu-
lation (right).

that just about 30% of candidate solutions were valid w.r.t. speci�-
cation. Because of that 60% of CPU time was unused although the
population size was larger than thread count and we used dynamic
scheduling.

�e SPICE-evaluation parallelisms works as follows. One thread
runs the SPICE evaluation. �e remaining threads try to incremen-
tally increase the �tness of the candidate solution which was send
to SPICE. When the �tness is increased, the circuit is distributed to
the other threads. When the SPICE simulation is �nished s and the
speci�cation is satis�ed, the best solution is used as shown in Fig.
4. Otherwise we use previous valid solution and the parallel run is
rolled back.

3.2 Results
We performed two tests – with and without SPICE simulation. If
SPICE is not used, results are reported for population-level paralle-
lization. �e resulting speedup is shown in Table 2.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6
Thread

0%

5%

10%

15%

20%

25%

In
st

ru
ct

io
n
 c

o
u
n
t

[%
]

without SPICE with SPICE

Figure 5: Work distribution for shared-memory version

As we can see, adding more threads does not accelerate the
optimization, because a barrier has to be used to synchronize all

1852

Parallel Optimization of Transistor Level Circuits using CGP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 2: Speedup of shared memory implementation depen-
ding on population size (p) and threads count

(a) without SPICE

p threads
1 2 3 4 6

1 1.00 0.96 0.97 0.94 0.92
6 1.00 1.47 1.52 1.59 1.66
12 1.00 1.47 1.63 1.67 1.68
18 1.00 1.51 1.71 1.73 1.68

(b) with SPICE

p threads
1 2 3 4 6

1 1.00 0.89 0.87 0.87 0.80
6 1.00 1.09 1.15 0.96 1.11
12 1.00 1.14 1.32 1.33 1.25
18 1.00 1.23 1.38 1.40 0.95

threads when candidate circuits are evaluated. We analyzed thread
balance using HW counters (Figure 5). �e threads are balanced
in ±0.3% for 6 threads without SPICE simulation. Note that the
implementation employing SPICE simulator is balanced too, except
�read 1 which was used for the numeric simulation (SPICE) with
a completely di�erent instruction-mix. �erefore, the poor accele-
ration is a consequence of the huge variance in time required for
circuit evaluation.

On the other hand, parallel processes during SPICE evaluation
increase total count of evaluation. �is fact helps the algorithm in
the searching process. �e impact of threads adding is shown in
Figure 6.

1 2 3 4 5 6
threads

0

5000

10000

15000

20000

25000

E
v
a
lu

a
ti

o
n
s

p
e
r

se
co

n
d

p=1 p=6 p=12 p=18

Figure 6: Evaluations per second for di�erent threads count
and population size (p)

�e results were measured on Intel Xeon processor with 4/8
cores. We can see that 6 threads shows the lowest performance
because of hyper-threading. Similarly, performance of 4 threads
and p = 6 is lower, because 2 threads stop their work when they are
waiting for results from the others. Note that speedup in the speed
greater than 1 for p = 1 w.r.t. 1 thread is caused by changing the
evolutionary strategy from (1+λ) to p−1 parallel (1+1). In general,
shared-memory model does not speed up the population-level part,

but signi�cantly increases the number of evaluations that can be
performed within the same time.

4 ISLAND AND HYBRID VERSIONS
As it was reported in previous section, increasing the number of
threads does not bring desired acceleration. In this section, we pre-
sent a di�erent approach which is called the island parallelisms. �e
main idea is that a set of populations is independently evolved, but
the best solutions can migrate among the populations during the
evolution. �is approach can be implemented by message sending
using MPI interface1. We also proposed a hybrid version that com-
bines this approach with shared-memory implementation proposed
in previous section.

4.1 Implementation
�e hybrid implementation is based on the shared-memory im-
plementation. Evolution on one island is implemented using one-
thread. �e main idea is to exchange the best candidate solution
among the populations. To keep the diversity, the solution is accep-
ted only if its �tness (i.e. power consumption calculated using
SPICE) is be�er than the �tness of current best individual in the
destination population. When SPICE simulation fails (functional
and timing constraints are violated), the best circuit is rolled-back
to the previous valid and the circuits obtained by parallel run are
refused too.

S
P
IC

E

is
la

n
d

 m
o
d

e
 w

it
h

 p
=

1

results
collecting

MPI all-to-all broadcast

if gen mod 800 = 0

test SPICE

Figure 7: SPICE evaluation with broadcasting of the best so-
lution

�e key operation is MPI all-to-all broadcast. We used blocking
version of broadcasting, which is waiting for results from all MPI
threads. Since sending a small messages may take a long time,
we send the �tness and integer netlist (i.e. the best circuit) in one
message instead of distributing just the �tness value followed by
successive sending the best circuit. �e overall scheme is shown in
Figure 7.
1Message Passing Interface

1853

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Vojtech Mrazek and Zdenek Vasicek

4.2 Results
�is implementation was tested on a computer cluster with fol-
lowing setup. Each node contains 2 CPUs Intel E5, 8 cores each
(without hyper-threading). Totally there are up to 16 cores which
can use shared-memory model. We used 6 nodes, 144 cores in total.
�e goal was to optimize the 1-bit full adder. We run evolutionary
algorithm for 100 000 generations, i.e. 125 SPICE runs and 125 MPI
all-to-all broadcast messages. We performed 3 independent runs for
every shared memory group size and population size p ∈ {12, 15}.

1/16 2/8 4/4 8/2 16/1
OMP / MPI threads in node

0

10000

20000

30000

40000

50000

60000

70000

80000

E
v
a
lu

a
ti

o
n
s

p
e
r

se
co

n
d

(a) population = 12

1/16 2/8 4/4 8/2 16/1
OMP / MPI threads in node

0

10000

20000

30000

40000

50000

E
v
a
lu

a
ti

o
n
s

p
e
r

se
co

n
d

(b) population = 15

Figure 8: Evaluation step with best solution broadcasting

Figure 8 shows performance (evaluations per seconds) for two
population sizes and di�erent shared-memory groups’ sizes. �e
number of threads in this group is denoted as OMP. We can see
that single OMP thread implementation shows low performance
similarly to the pure shared-memory version. If the number of
OMP threads is greater than 4, the cache increases the miss rate
and with more than 8 threads the memory must be synchronized
and the performance falls o�. It seems that the ideal proportion is
4/4.

Table 3 compares the results from the evolutionary design con-
ducted with di�erent parameters se�ing. Note that the ratio of
successful updates of circuits between islands is averaged for all
runs and the minimal circuit size is found. It is interesting that
balanced load of both types of cores on the node leads to more ex-
changes between nodes. �e best exchange rate is in con�guration
2/8 where 48 independent islands change the best candidate circuit
in 57% of 125 exchanges (6000 messages).

We can see in Table 3 that the most compact solution contains
14 transistors. We compared this solution and a common solution
obtained by transferring gate-level netlist to CMOS implementation
which requires 48 transistors. �e size reduction is up to 70%. In
addition the evolved solutions are similar to a 14 transistor another
human-created solution [13].

�e usage of more MPI threads does not lead to be�er solutions.
�e hybrid implementation provides be�er results and cores utili-
zation than shared memory implementation. One disadvantage is

Table 3: Results of one-bit full adder optimization using hy-
brid implementation

node islands # succ. updates # trans.
omp / mpi msg p=15 p=12 p=15 p=12
1 / 16 96 12000 16% 11% 21 20
2 / 8 48 6000 18% 57% 14 14
4 / 4 24 3000 17% 29% 15 14
8 / 2 12 1500 9% 12% 14 15
16 / 1 6 750 10% 15% 18 15

that we need many instances of SPICE simulator which could be
problematic if the number of instances is limited.

5 GRID IMPLEMENTATION
As stated in previous section, the hybrid implementation provides
good results but we need many instances of SPICE simulator. In
previous testing, we used open-source simulator ngspice, where
the number of instances is unlimited. But sometimes we need to
perform be�er analysis, e.g. power consumption measurement,
which is not supported by open-source tools. Hence we need to use
some commercial SPICE simulator, but we have to accept higher
costs.

5.1 Implementation
If the number of SPICE instances is limited, the approach sharing
SPICE instances can be used. Employing the shared-memory model
is not practical since it was found as ine�ective for runs without
SPICE evaluation. �e main idea of the client-server algorithm is
a connecting of two iteration loops – the �rst one denoted as fast
improvement is standard evolutionary strategy (1+λ) using discrete
simulator. �is loop uses random mutation to change the candidate
circuit. �e second one uses SPICE simulator and the circuits are
generated using the fast loop. �e advantage of this approach is
that the circuits sent to the SPICE have the higher probability to be
valid if the discrete simulation works �ne. It helps us to deal with
uncertainty of discrete simulator without loss of performance. �e
overall scheme of both parts of this algorithm is shown in Figure 9.

Server part. �e goal of server application is receiving of candi-
date circuits described using integer netlist and performing their
SPICE evaluations. As a communication interface the YAMI2 frame-
work was selected. �is framework controls peer-to-peer commu-
nication using messages. �e main advantage of this framework is
the support of a many programming languages and the implemen-
tation of all types of communication — blocking and non-blocking
(pooling).

�e server works as follows. It transforms the integer netlist to
SPICE netlist and performs the �rst testing with all input vector
combinations. Note that only VDD and 0 values (logical ‘0‘ and ‘1‘)
are allowed as an input. All 2ni steps are simulated. If the circuit
passes this test, the power analysis starts. �e power analysis
follows the power estimation method presented in [4]. �e results

2h�p://www.inspirel.com/yami4/

1854

http://www.inspirel.com/yami4/

Parallel Optimization of Transistor Level Circuits using CGP GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

x, pt := initial

send pt to SPICE server

fast improve x as p t+1

receive pwr(pt)

x := pt if pwr is better

increment t

S
P
IC

E

receive
circuit

send pwr

d
a
ta

 n
o
t

re
a
d

y

SPICE server

wait for next circuit

Figure 9: Grid implementation of the client implementing
search algorithm and the server evaluating candidate soluti-
ons using SPICE.

of both analysis are replied to the sender. �en the next circuit is
processed.

Client part. �is application runs standard evolutionary strategy
ES for CGP. It generates p circuits from the best one and incremen-
tally improves the circuit to get the least power consumption of the
circuits that meet functional constraints. �e algorithm sends its
best solution to SPICE server for validation. During non-blocking
waiting for results, ES is running. If the validated solution meets
the speci�cation and the real power consumption is be�er than
previous one, this new circuit is selected for the new incremental
improvement. �e server for evaluation is allocated statically on
the startup.

5.2 Results
As one-bit full adder (ni = 3,no = 2) was successfully evolved
using previous implementation, we evaluated the client-server im-
plementation with a signi�cantly harder task which is optimization
of 2 and 4-bit multiplier (ni = 4/8,no = 4/8).

�e test scenario was as follows. We used a computer cluster
where up to 75 threads of client application were running in pa-
rallel. �e server was running in 15 instances, i.e. each server
must serve 5 clients. Servers were distributed to di�erent machi-
nes so each server uses one core without any sharing. Totally we
run 500 independed client applications for 30 minutes. During
these runs 1,368,164 generation with population size p = 5 were
evolved in average. Each client has 55.32 requests to the server in
average and 56% of tested circuits met the functional constraints.
We obtained 3800 evaluations per second which corresponds with
shared-memory implementation with one thread and p = 6. �e
performance is two-times smaller than the mentioned implementa-
tion for one-bit full adder optimization because an addition of one
primary input (see Figure 6).

�e resulting power distribution for 2 bit multiplier is shown in
Figure 10. �e initial solution consumes 115.3 µW and consists of
54 transistors. We can see that some circuits were not optimized
but some were power-optimized up to 91.7 µW (-20.4 %). �e size
was 44.9 transistors in average, the most compact solution that we
discovered consists of 34 transistors (-37 % savings). To avoid the
starvation of GP, we implemented an advanced scheduling version
which tries to optimize best solution from the previous �nished
runs. A�er 2000 consequent runs running 30 minutes each the
power was optimized up to 87.9 µW (-23.7 %).

90 95 100 105 110 115 120

Power [¹W]

0

2

4

6

8

10

12

F
re

q
u
e
n
cy

Power histogram of 2b multiplier

Figure 10: Power distribution of 500 independent 2b multi-
plier optimization runs for 30 minutes

�e goal of the second experiment was to optimize a common
4-bit multiplier. �e setup was as follows. Each spice-server serves
3 evolutionary runs, totally 15 servers and 45 clients were running
in parallel, 200 clients were running in total. As an initial solution,
a compact implementation whose gate-level description consists of
59 two-input gates and exhibits delay of 15 logic gates was chosen.
When converted to the transistor-level, the multiplier contains 444
transistors.

Each client evolved the circuit in 15743 generations in the average.
�e speed of evolution was 8.74 evaluations per second. It is 434
times slower than in the case of 2-bit adder, where 16x less test
vectors were tested and 8-13x larger circuits were obtained. In total,
2107 messages were exchanged (i.e. 10.5 per client) and 55 % of
them were found as valid, i.e. they met the functional constraints.

Table 4: Power (× 10−4), delay (× 10−9) and power-delay
(× 10−13) product for 4-bit multipliers and di�erent techno-
logy processes

Total power Delay PDP
180 90 45 180 90 45 180 90 45

ORIG 7.95 3.43 1.46 1.69 0.64 0.70 13.43 2.19 1.02

OPT1 7.87 3.38 1.45 1.57 0.58 0.70 12.36 1.96 1.01
impr. 0.9% 1.5% 1.0% 7.1% 9.4% 0.0% 8.0% 11% 1.0%
OPT2 7.65 3.34 1.41 1.78 0.70 0.93 13.62 2.34 1.32
impr. 3.7% 2.5% 3.3% -5.3% -9.4% -33% -1.4% -6.7% -28%
OPT3 7.63 3.33 1.41 1.75 0.70 0.93 13.36 2.33 1.31
impr. 4.0% 2.8% 3.8% -3.6% -9.4% -33% 0.6% -6.3% -28%

1855

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Vojtech Mrazek and Zdenek Vasicek

�e parameters of the original implementation and the three best
discovered alternatives are summarized in Table 4. �e total power
consumption, worst-case delay and power-delay product (PDP) are
included. �e best value in each column is emphasized in bold. If
we focus only on the results obtained using 180 nm TSMC process,
which was used in the �tness function, it can be concluded that
the proposed method could improve the total power consumption
in all cases. Circuit OPT3 has about 4% lower power consumption
compared to the original CMOS implementation. In the case of
delay, the �rst variant labeled as OPT1 exhibits 7% improvement.
Overall, OPT1 seems to provide the best results if PDP is considered.

A relative stable reduction in power consumption was achieved
if di�erent technology processes are considered. �is result indi-
cates that the obtained implementations are relative robust. �e
delay, however, is very sensitive to the technology process. Only
1% improvement was achieved at 45 nm. It is necessary to note,
however, that this result was expected because at lower technology
nodes (45nm and below) the leakage current in active mode beco-
mes almost comparable to switching currents. If our goal was to
obtain be�er results for 45 nm technology, it would be necessary
to optimize a given circuit using the target (i.e. 45 nm) technology.

6 CONCLUSION
�ree new parallel approaches suitable for evolutionary optimiza-
tion of digital circuits described on transistor-level were introduced
in this paper. It was demonstrated that evolutionary algorithm
using new discrete simulator can �nd human competitive solutions.
However, while the proposed simulator is fast, it is inaccurate in
time domain. �is issue was resolved by occasional performing a
precise simulation with a commercially available SPICE simulator.
Our contributions of the paper are following:

• Shared memory implementation utilizes multi-cores CPU.
Although the parallelism for evaluation of candidate cir-
cuits during was found ine�ective, the evolution during
SPICE evaluation signi�cantly improves the performance.

• Island and hybrid implementation combines shared me-
mory model and island evolution with the best circuits
exchange.

• Grid implementation tries to overcome limited access to
SPICE simulator instances. It divides the problem into two
parts — the server side running SPICE and the client run-
ning evolutionary optimization. Each server has assigned
several clients. �is solution is powerful in the term of
power optimization due to precise simulation and analysis
by SPICE.

Several interesting circuits were discovered during our expe-
riments. We discovered human-competitive implementation of
one-bit full adder. We also optimized large circuit such as 2-bit and

4-bit multipliers. �e future work can be focused on multi-level
evolution combining this approach with gate-level optimization,
which can be done e�ectively using SIMD instructions.

ACKNOWLEGEMENT
�is work was supported by the Brno University of Technology
project FIT/FSI-J-17-4294.

REFERENCES
[1] Roland Dobai and Lukas Sekanina. 2015. Low-Level Flexible Architecture with

Hybrid Recon�guration for Evolvable Hardware. ACM Trans. Recon�gurable
Technol. Syst. 8, 3, Article 20 (May 2015), 24 pages.

[2] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,
and Jing-Jing Li. 2015. Distributed evolutionary algorithms and their models: A
survey of the state-of-the-art. Applied So� Computing 34 (2015), 286 – 300.

[3] Radek Hrbacek and Vaclav Dvorak. 2014. Bent Function Synthesis by Means of
Cartesian Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XIII. Springer Verlag, 414–423.

[4] Ranjith Kumar, Zhiyu Liu, and Volkan Kursin. 2008. Technique for Accurate
Power and Energy Measurement with the Computer-aided Design Tools. Journal
of Circuits, Systems and Computers 17, 03 (2008), 399–421.

[5] W. B. Langdon and Wolfgang Banzhaf. 2008. A SIMD Interpreter for Genetic Pro-
gramming onGPUGraphicsCards. Springer Berlin Heidelberg, Berlin, Heidelberg,
73–85.

[6] Julian F. Miller (Ed.). 2011. Cartesian genetic programming. (22. ed.). Springer,
Berlin. 344 pages.

[7] Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. 2000. Principles in the
Evolutionary Design of Digital Circuits – Part I. Genetic Programming and
Evolvable Machines 1, 1 (2000), 8–35.

[8] Julian F. Miller, Dominic Job, and Vesselin K. Vassilev. 2000. Principles in the
Evolutionary Design of Digital Circuits – Part II. Genetic Programming and
Evolvable Machines 1, 3 (2000), 259–288.

[9] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White. 1997. Estimation
of average switching activity in combinational logic circuits using symbolic
simulation. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 16, 1 (Jan 1997), 121–127.

[10] Vojtech Mrazek and Zdenek Vasicek. 2014. Acceleration of Transistor-Level
Evolution using Xilinx Zynq Platform. In IEEE Int. Conf. Evolvable Systems, ICES.
Institute of Electrical and Electronics Engineers, 9–16.

[11] Vojtech Mrazek and Zdenek Vasicek. 2015. Automatic Design of Low-Power VLSI
Circuits: Accurate and Approximate Multipliers. In Proc. Int. Conf. Embedded
and Ubiquitous Computing. IEEE, 106–113.

[12] Vojtech Mrazek and Zdenek Vasicek. 2015. Evolutionary Design of Transistor
Level Digital Circuits using Discrete Simulation. In Genetic Programming, 18th
European Conference, EuroGP 2015 (LCNS 9025). Springer International Publishing,
66–77.

[13] A.M. Shams and M.A. Bayoumi. 2000. A novel high-performance CMOS 1-bit
full-adder cell. Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on 47, 5 (May 2000), 478–481.

[14] M.A. Trefzer. 2006. Evolution of Transistor Circuits. Ph.D. Dissertation. Ruprecht-
Karls-Universitt Heidelberg.

[15] V. Vassilev, D. Job, and J. Miller. 2000. Towards the Automatic Design of More
E�cient Digital Circuits. In Proc. of the 2nd NASA/DoD Workshop on Evolvable
Hardware. IEEE Computer Society, Los Alamitos, CA, USA, 151–160.

[16] Marley Maria Bernard Vellasco, Ricardo Salem Zebulum, and Marco Aurelio
Pacheco. 2001. Evolutionary Electronics: Automatic Design of Electronic Circuits
and Systems by Genetic Algorithms (1st ed.). CRC Press, Inc., Boca Raton, FL,
USA.

[17] J.A. Walker, J.A. Hilder, and A.M. Tyrrell. 2008. Evolving Variability-Tolerant
CMOS Designs. In Evolvable Systems: From Biology to Hardware (LNCS), Vol. 5216.
Springer Berlin Heidelberg, 308–319.

[18] Ludek Zaloudek and Lukas Sekanina. 2008. Transistor-Level Evolution of Digital
Circuits Using a Special Circuit Simulator. In Evolvable Systems: From Biology to
Hardware (LNCS), Vol. 5216. Springer Verlag, 320–331.

1856

	Abstract
	1 Introduction
	2 Evolutionary Design of Transistor-Level Circuits
	2.1 Circuit Representation
	2.2 Fitness calculation
	2.3 Search strategy
	2.4 Single-thread implementation

	3 Shared memory version
	3.1 Implementation
	3.2 Results

	4 Island and hybrid versions
	4.1 Implementation
	4.2 Results

	5 Grid implementation
	5.1 Implementation
	5.2 Results

	6 Conclusion
	References

