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ABSTRACT
Excursions of a protein between di�erent structures at equilibrium
are key to its ability to modulate its biological function. �e energy
landscape, which organizes structures available to a protein by their
energetics, contains all the information needed to characterize and
simulate structural excursions. Computational research aims to
uncover such excursions to complement wet-laboratory studies in
characterizing protein equilibrium dynamics. Popular strategies
adapt the robot motion planning framework and construct full
or partial, structured representations of the energy landscape. In
this paper, we present a novel, complementary approach based on
evolutionary computation. We propose an evolutionary algorithm
that evolves path representations of a speci�c structural excursion
without a priori construction of the energy landscape. Preliminary
applications on healthy and pathogenic variants of a protein central
to human health are promising and warranting further investigation
of evolutionary search techniques for modeling protein structural
excursions.
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1 INTRODUCTION
Proteins are inherently dynamic systems that harness their equi-
librium structural dynamics into productive events in the cell [11].
Improvements in both dry- and wet-laboratory technologies have
yielded evidence of proteins using o�en markedly di�erent three-
dimensional structures to stick with di�erent molecular partners,
thus modulating their biological function [1, 6, 10]. Obtaining a
detailed view of the structural excursions that proteins employ to
modulate their function is the subject of much research in molecular
biology, as it promises to improve our understanding of molecular
mechanisms in living and healthy cell and even suggest directions
for design of molecular therapeutics [7].

While great strides are being made by wet-laboratory single-
molecule techniques, no single wet- or dry-laboratory technique
can currently provide a detailed, structure-by-structure character-
ization of excursions independent of protein size and biological
timescale [15]. �e challenge lies in the disparate spatial and tem-
poral scales involved; the start and end structures of an excursion
of interest may di�er by several angstroms (Å), and the excursion
may take several micro- or even milli-seconds. Yet, these challenges
motivate protein modeling research to complement wet-laboratory
studies in uncovering functionally-relevant structural excursions
that a protein employs to tune its biological function in the living
cell [15].

In principle, the energy landscape, which organizes the struc-
tures available to a protein by their energetics, contains all the
information needed to characterize and simulate structural excur-
sions [3, 9]. Yet, energy landscapes are vast, high-dimensional,
and rich in local minima [8, 21]. �e la�er provide pitfalls for
computational approaches that rely on numerical integration and
Newton’s second law of motion to follow motions of the atoms that
comprise a molecular system. Computational strategies using this
approach, also known as Molecular Dynamics (MD), are regularly
proposed [15]. Other similar e�orts are undertaken in the comple-
mentary, Monte Carlo (MC) approach, which explores the energy
landscape of a protein one biased random walk at a time [17].

One category of e�orts, referred to as robotics-inspired, essen-
tially organize MC walks in trees or graphs to enhance the ex-
ploration capability. �ese methods were originally inspired by
mechanistic analogies between molecular motions and motions
of articulated kinematic linkages [14]. A more informative sum-
mary of these methods is that they aim to construct a structured
representation of an energy landscape.

Robotics-inspired methods can be classi�ed as tree- or roadmap-
based. Tree-based methods build partial representations to model
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an excursion of interest. �e representation provides a highly local
view of the energy landscape insofar as it helps provide a constraint-
satisfying series of structures (a path) that connect a given start
to a given goal structure; the constraints can be energetic and/or
distance-based. Roadmap-based methods build more comprehen-
sive representations that provide a non-local view of the landscape.
In principle, these methods can model many excursions among
more than two structures of interest. �e non-local view, however,
comes at a higher computational cost.

A recent roadmap-based approach, which is the subject of our
comparative analysis in Section 3 �rst reconstructs the energy
landscape of a protein with a powerful memetic EA (making use
of several building blocks developed over the years [4, 5, 19, 20])
and then exploits a graph-based representation of the landscape
to answer path queries corresponding to structural excursions of
interest [18]. �is direction has revealed key insights on many
proteins but has a large computational footprint due to the need
to construct comprehensive and detailed representations of energy
landscapes [18]. �e reader is referred to Ref. [22] for a review of
robotics-inspired methods for biomolecular dynamics.

In this paper we present a novel, complementary method that
approaches the problem of modeling a structural excursion of a
protein of interest under the umbrella of evolutionary computation.
�e method is an evolutionary algorithm (EA), and it falls between
tree-based and roadmap-based methods. Unlike a robotics-inspired
tree-based method, the EA proposed in this paper computes many
paths that connect a given start to goal structure approaching the
problem of modeling structural excursions as a path optimization
problem. Unlike a robotics-inspired roadmap-based method, the EA
does not construct a protein’s energy landscape a priori, thus reduc-
ing the computational burden of modeling a speci�c excursion of
interest. �e EA leverages several algorithmic innovations in prior
work by us on e�ective, low-dimensional representations of struc-
tures of medium-size proteins, but employs here novel evolution-
ary operators. Preliminary applications on healthy and pathogenic
variants of a protein central to human health are promising and
warranting further investigation of evolutionary search techniques
for modeling protein structural excursions.

2 METHODS
�e EA presented here evolves a population of paths directly, ex-
ploits experimentally-known structures of a protein in its initializa-
tion, and makes use of novel selection and crossover operators. Key
building blocks in the proposed path-evolving EA have been devel-
oped and analyzed in prior work [18–20]. �ey include exploiting
known structures of a protein (of healthy and diseased sequence
variants) to extract a lower-dimensional variable space for explo-
ration. While details can be found in prior work, in summary, the
experimentally-known structures of a protein of interest (its se-
quence and similar sequence variants) are subjected to a principal
component analysis to extract a new basis whose axes are ordered
by the amount of variance they capture in the structure data. �ese
axes are also referred to as principal components (PC). A subset
of them that captures more than 90% of the variance but represent
over a hundred-fold reduction over the number of Cartesian coor-
dinates of the protein under investigation are selected as variables,

and each new computed structure is e�ectively represented as a
point in this variable space. �e reader is directed to Ref. [5] for
further details.

Unlike prior work, in which an EA evolves individuals in this
variable space, starting from a collection of individuals (points) cor-
responding to known structures, the new EA evolves paths utilizing
only two given (experimentally-known) structures. �ese given
structures initialize the start and end points for all sought paths
in the variable space. Speci�cally, a path individual is represented
as a (start-to-goal directed) list of points in the variable space. �e
�tness/cost of a path sums up the energy increase between struc-
tures corresponding to consecutive points. In addition to cost, a
second quantity is associated with each path, its resolution. �e
resolution of a path is the maximum Euclidean distance between
two consecutive points in the path.

Initially, n points are obtained by linear interpolation between
the given start and end points. Each obtained point undergoes a
transformation, which e�ectively converts it to an all-atom protein
structure corresponding to a local minimum in the all-atom Rose�a
energy landscape. �e transformation utilizes stochastic optimiza-
tion, so repeating it N times yields an initial population of N paths.
�e transformation of a point in the variable space to an all-atom
structure corresponding to a local minimum is also a building block
developed and analyzed in prior work, and we direct the reader to
Ref. [4] for details.

Once the initial population of paths is de�ned, successive genera-
tions evolve in the following way. For every two consecutive points
in a path, a variation operator yields a new mid-point, which is
then converted to a (local minimum) all-atom structure utilizing the
transformation summarized above. Note that this variation opera-
tor is not explicitly yielding a path o�spring but instead providing
additional points from a path individual.

All existing (of paths in the current population) and resulting
points (new points yielded by the variation operator) are then
inserted into a nearest-neighbor graph (nngraph) which connects a
point to others within a ball of radius ϵ ; the radius ϵ is measured
via the Euclidean distance in the variable space. A�er initialization,
this value undergoes increase or decrease as follows. Dijkstra’s
algorithm is invoked on the nngraph to obtain the lowest-cost
path. All internal points of the path are removed, and Dijkstra’s
algorithm is invoked again in the induced subgraph; prior to any
application of Dijkstra’s algorithm, ϵ is increased from its current
value until the start and end points are in a connected component in
the induced subgraph. �is process of applying Dijkstra’s algorithm
is repeated until N lowest-cost paths are obtained to initialize the
next generation. In addition, ϵ is subjected to a gradual decrease
over the generations so that the algorithm evolves both low-cost
and high-resolution paths that faithfully follow the actual energy
landscape.

�e described process for selecting the paths for the next gen-
eration is a novel mechanism in several ways. First, the paths in
a population are e�ectively rewired, and a graph structure is used
to centralize the view. Second, novel points are added onto the
graph to increase diversity. �is selection mechanism circumvents
the issue of comparing two paths to determine which one is be�er.
Comparing two paths is not trivial, as (lower) path cost is not the
only consideration. �e resolution of a path is also very important.
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Cost and resolution are competing optimization objectives, but the
adversarial relationship is non-trivial. A path with low resolution
may have low cost because it may “dig a tunnel” or “draw a bridge”
to connect two structures rather than follow the curvature of the
landscape. Such considerations are ignored in existing robotics-
inspired methods, particularly in tree-based ones, but the proposed
EA addresses both cost and resolution in its selection operator.

2.1 Implementation Details
�e proposed EA is implemented in C++ and run on a 16 core Red
Hat Linux box with 3.2 GhZ HT Xeon CPU and 8GB RAM. �e
cores are employed to parallelize o�spring improvements. �ere
are n points = 10 points obtained by linear interpolation between
the given start and end points, and the population size is N = 15
paths. �e initial value for the ϵ radius is set to d/n points , with
d measuring the Euclidean distance between the start and goal
points (corresponding to projections of the known start and goal
structures in the variable space). In the results related in Section 3,
the resolution of paths, however, is related in terms of root-mean-
square-deviation (rmsd) [16] and reported in Å, as there is more
domain-speci�c insight on what rmsd values correspond to low or
high resolutions. �e EA operates under a �xed computational bud-
get, tallying up the number of energy evaluations in the transforma-
tions from points to structures. For the majority of the applications
described in Section 3, the budget is 100, 000 �tness evaluations.
On a protein of 166 amino acids, the total running time of the EA is
about 38 CPU hours, with a signi�cant portion of this time devoted
to conduct N lowest-cost path searches on the induced nngraph.

3 RESULTS
�e performance of the path-evolving EA is showcased here on
several variant sequences of the H-Ras enzyme, which is a protein
central to cell growth and various human cancers. Speci�cally, we
consider here the healthy variant, also referred to as the wildtype
(WT) from now on, and two oncogenic variants, G12C and Q61L.
�e naming convention indicates in which position the variant
di�ers from the WT sequence; for instance, G12C indicates that in
this variant, the W amino acid at position 12 in the WT sequence
is mutated to the C amino acid.

�e path-evolving EA is run to obtain paths connecting two
known structures of H-Ras that correspond to two di�erent func-
tional states. Speci�cally, the two structures are those deposited
in the Protein Data Bank (PDB) [2] under PDB ids 1qra and 4q21,
corresponding to the on/active and the o�/inactive state of H-Ras,
respectively. For each of the test cases, the computational budget
is �xed to 100, 000 �tness evaluations, which is 10 times less than
that used in prior work that �rst reconstructs energy landscapes
with an EA and then uses graph-based representations to answer
speci�c path queries [18].

�e results are organized as follows. We �rst demonstrate that
even with a much more modest budget, the path-evolving EA is
able to �nd among its top solutions paths that have similar ener-
getic costs and similar resolutions as the more computationally-
demanding landscape-reconstructing EA from previous published
work. We additionally demonstrate that with further computational

resources, the path-evolving EA is able to further improve its so-
lutions. �is detailed analysis focuses on the WT H-Ras sequence.
We then relate the performance of the path-evolving EA on the
other two variants of H-Ras.

3.1 Analysis of the Performance of
Path-evolving EA on H-Ras WT

Figure 1 draws the top 15 paths found by the path-evolving EA
on the WT H-Ras. Panel (a) shows the results obtained when the
algorithm is limited to a computational budget of 100, 000 �tness
evaluations. �e paths are drawn by connecting consecutive struc-
tures with edges. Structures are drawn as dots, projecting them onto
the top two variables in the variable space. As described brie�y in
Section 2, the variables are principal component (PC) axes extracted
from analysis of experimentally-known structures of a protein’s
healthy and pathogenic variants. �e color-coding in Figure 1 addi-
tionally conveys the energy of each structure, with a red-to-blue
color scheme tracking high-to-low energy values measured with
the score12 energy function in Rose�a [12, 13].

Figure 1(a) shows that even a modest budget of 100, 000 �tness
evaluations reaches low costs and high resolutions. Figure 1(b)
shows that the quality of the paths when the path-evolving EA is
provided with a longer computational budget of 200, 000 �tness
evaluations improves even further (higher resolutions). Visual com-
parison shows that the longer budget allows the paths to phenotypi-
cally converge to a narrower region of the �tness landscape, as well,
but their average cost increases from 170.33REUs to 260.07REUs
when the budget is doubled. We describe this phenomenon as tun-
neling; paths with higher resolution do not follow the curvature of
the landscape but instead connect by an edge two structures that
may be far apart to one another. Doing so underestimates the true
energetic cost; rather than climbing a mountain, such paths draw
tunnels through an energetic mountain in the landscape.

Table 1 enhances the analysis by comparing the path-evolving
EA to the landscape-reconstructing EA [18] of prior work by jux-
taposing the costs and resolutions of the ten lowest-cost paths
produced by each algorithm; the performance of the path-evolving
EA is shown under both computational budgets of 100, 000 and
200, 000 �tness evaluations (respectively 1/10 and 1/5 of the budget
used by the landscape-reconstructing EA [18], respectively). We
restrict the comparison to the 10 lowest-cost paths, as the reso-
lution of the lowest-cost paths obtained by the path-evolving EA
restricted to a computational budget of 100, 000 �tness evaluations
deteriorates a�erwards. While all paths obtained by post-analysis
of the reconstructed map in prior work have the same resolution,
the ones obtained by the path-evolving EA have varying resolution.

�e juxtaposition in Table 1, where paths are ordered from high
to low energy, shows that the path-evolving EA is able to obtain
high-resolution (0.133Å and 0.129Å under the two budgets) paths
with much less computational budget (and consequently fewer ac-
tual structures). �ese resolutions are be�er than the ones obtained
with the landscape-reconstruting EA. As also related earlier, path
costs at high resolution typically increase due to the high rugged-
ness of protein energy landscapes, but the lowest costs at similar
resolutions are similar; for comparison, the lowest-cost path re-
ported by the landscape-reconstructing EA has a cost of 266REUs
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(a) Computational budget of 100, 000 �tness evaluations

(b) Computational budget of 200, 000 �tness evaluations
Figure 1: �e path-evolving is allowed a budget of (a) 100, 000
or (b) 200, 000 �tness evaluations; the 15 lowest-cost paths
are shown by drawing an edge between two consecutive
structures. Dots show 2D projections of structures over the
top two variables (described in Section 2). Dots outside the
drawn paths are color-coded and note structures generated
during the execution of the algorithm. �e color-coding
scheme on the right runs from low (blue) to high (red) en-
ergy values measured with the all-atom Rosetta energy func-
tion (score12). �e text annotations indicate projections of
experimentally-known structures, with WT referring to the
structures detected in the wet laboratory for the healthy
form/variant of the protein, and others to pathogenic forms
(variants found in cancer and other disorders). �e legend in
each plot lists the path costs in Rosetta energy units (REUs)
and their resolutions in angstroms (Å).

(all paths have a resolution of 0.145Å). �e costs of paths found
at around that resolution (0.143-0.146Å) from the path-evolving
EA with a budget of 100, 000 �tness evaluations also have simi-
lar costs (292 and 296REUs). At a similar resolution (0.143), the
path-evolving EA with twice the budget �nds a lower-cost path of
251REUs. As also related earlier, the path-evolving EA with a higher
computational budget but still about 1/5 of the budget a�orded to

Table 1: Top ten paths obtained by each algorithm.

Path-evolving EA Path-evolving EA EA [18]
200K �tness evals 100K �tness evals 1M �tness evals
Cost Res Cost Res Cost Res
487 0.129 554 0.133 588 0.145
301 0.134 296 0.146 546 0.145
291 0.139 292 0.143 504 0.145
288 0.152 149 0.162 470 0.145
271 0.157 148 0.172 408 0.145
267 0.150 129 0.172 395 0.145
263 0.172 123 0.172 376 0.145
251 0.143 113 0.195 324 0.145
248 0.158 112 0.190 306 0.145
236 0.172 109 0.192 266 0.145

the landscape-reconstructing EA reports much be�er resolutions
(as low as 0.129Å) that invariably increase the costs of paths due
to the ruggedness of the landscape. Moreover, the average value
over the resolution of of the paths improves from 0.168Å (when the
budget is 100, 000 �tness evaluations) to 0.151Å when the budget
is doubled.

3.2 Comparative Analysis on More Variants
Figure 2 shows the top 15 paths obtained by the path-evolving EA
on two more test cases that are oncogenic variants of H-Ras. �e
resolutions are generally worse in comparison with what the path-
evolving EA can �nd for the H-Ras WT, which helps reduce the
total cost of a path, as described earlier. �e resolutions obtained
for the Q61L variant are be�er than those obtained for the G12C,
pointing to possibly more complex landscapes (and even more so
for G12C) where more �tness evaluations may be needed to uncover
local minima in higher-energy regions. Visual comparison of the
generated structures (color-coded projections) across the WT and
these two variants suggests higher-energy regions separating the
start and goal structures in the G12C variant than the Q61L variant.

4 CONCLUSION
�e evaluation of this path-evolving EA suggests that it represents
a complementary approach to uncovering structural excursions
in proteins of interest without relying on an a priori reconstruc-
tion of energy landscapes. �e results provided on the H-Ras WT
demonstrate the capability of the proposed EA to improve over
such landscape-reconstructing EAs that are now considered state
of the art [18], as well as the ability of the proposed EA to further
improve the quality of its solutions when allowed larger computa-
tional budgets. �e results on the two other pathogenic variants of
H-Ras suggest that there may be complex landscapes where larger
computational budgets may needed to uncover the true energetic
costs of speci�c structural excursions.

�e results related in this paper warrant further research on
frameworks for modeling protein structural dynamics with rea-
sonable computational budgets. �e emphasis on lower computa-
tional budgets in this paper is motivated by the potential of these
frameworks to obtain and then compare the structural dynamics of
various forms of a protein in a large-scale se�ing. �e la�er would
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(a) G12C

(b) Q61L

Figure 2: �e top 15 paths obtained by the path-evolving EA
with a budget of 100, 000 �tness evaluations is shown here
for two more test cases, the G12C and the Q61L variants of
H-Ras. �e same plotting style is followed, as in Fig. 1.

allow understanding the impact of mutation-altered dynamics on
protein function.

It is worth noting that the techniques presented here are more
general than the speci�c domain of protein modeling and thus po-
tentially useful for a broad range of problems on �tness landscapes.
In addition, evolving individuals with complex representations,
such as paths, is of interest in evolutionary computation and is
likely to spur further work by us and others on e�ective variation
operators and selection mechanisms in such se�ings.
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