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ABSTRACT
Following the realization that computation is an inherent a�ribute
of evolving organisms, implementing desired computation in syn-
thesized biochemical systems becomes an important pursuit for
synthetic biology. Considering the stochastic nature of biochemical
reactions, the always changing environment, and the infeasibility
to analyze complete dynamics of designed systems over all probable
conditions, autonomous self-adjustment is necessary for systems to
be robust against internal and external variations. However, to date,
the essential self-adapting capability remains missing from most
synthetic designs. �e de�ciency hinders the robustness of designed
systems, limiting applicable scenarios. To remedy the de�ciency,
we propose a cell-compatible way that exploits the similarities be-
tween two biological signal transmission media, i.e., cell signaling
pathways and action potential of spiking neurons. Given the ubiq-
uity and versatility of cell signaling pathways preserved across
various cells and organisms, the proposed method can potentially
embed self-adapting neuromorphic computation into biochemical
reaction systems of a broader realm.
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1 INTRODUCTION
As manifested in biological entities, nature’s competence far sur-
passes existing arti�cial designs when it comes to solving a wide
range of real world problems. Instead of always resorting to the
long-dominant algorithmic approach on Von-Neumann architec-
ture, directly adopting the structure and dynamics from natural de-
signs presents a promising alternative to integrate nature’s evolved
strength into engineered systems. During accelerating advance in
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systems and synthetic biology, it was identi�ed before long that
the two crucial features—adaptation and evolution—that allow
living organisms to achieve targeted goals reliably despite the
always-changing environment, are in fact the biological analog
of spontaneous recon�guration and optimization capabilities
of an engineered system. Inspired by the observation that many
demanding tasks such as perception, association, and non-linear
control, are elegantly solved by even the simplest living organ-
isms, neural system has become the imitation target for arti�cial
systems with high adaptability requirement.

�e adaptability requirement is exactly one major challenge of
synthesizing viable bio-computing systems. One important exam-
ple in medical applications is to detect, and react to, certain pa�erns
of physiological biomarkers [11, 13] with disease implications. Gen-
erally, the pa�erns are speci�ed as non-trivial relations involving
multiple biomarkers [6] that can be obscured by environmental
noises and individual variations. Self-adapting bio-computation
is an indispensable component for engineered system to not only
decide the probability of certain disease [5, 7], but also to react
appropriately to the disease given di�erent hosting individuals.

As can be seen from the example, at least in two ways could
bio-computing systems bene�t from incorporating neural-network-
like self-adaptability: First, because both the engineered system
per se and the operating environment are of biochemical nature,
unpredictable variations in system behavior and environmental
conditions are the norm. Self-adaptability allows the system to
maintain correct functionality under varying conditions, as well
as to compensate for the system’s own deviation from original
design. Second, di�erent scenarios may require di�erent actions
(ex. di�erent therapies for di�erent diseases detected on-site); if the
system is capable of learning the decision rules, multiple functions
targeted at di�erent scenarios can be integrated into a single bio-
computation system without ambiguity—as the appropriate one will
be autonomously selected by the system [3, 4] based on encountered
scenario.

Neural network is capable of extracting and retaining mean-
ings from input history while maintaining recon�gurability to adapt.
Each composing neuron integrates the input signals received to
produce corresponding output voltage spikes. �e voltage spikes
are then interpreted and transmi�ed by connecting synapses to
the next neurons. Each synapse plays dual roles of self-adapting
information encoder and distributor. As a self-adapting encoder,
the synapse spontaneously adjusts how its output depends on the
strength and timing of incoming spikes; as a self-adapting distrib-
utor, the interconnects between two neurons can be dynamically
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established or removed—�e capabilities are collectively known as
synaptic plasticity.

To embed neural network’s self-adapting ability into engineered
systems, it is best to make use of the inherent mechanisms and
materials of the hosting system. Take our case here as an example,
cells are the hosting systems, so cell signaling pathway is chosen as
the biochemical chassis for its ubiquity and versatility. �e fact
that cell signaling pathways exist naturally in various types of cells,
and are involved in a wide range of cellular processes [1] make
them an ideal substrate for implanting neuronal functionality to
targeted cells with high compatibility. Furthermore, by identifying
corresponding “modules” between di�erent biological systems, it is
possible to borrow the wisdom from one system and re-implement
it using modules of similar roles in another system. �e resulted
system has higher probability to robustly reproduce the desired
functions than if cra�ed manually from scratch.

To sum up, we propose in this paper a way to realize cell-
compatible neuromorphic computing system, which can be imple-
mented on existing cell signaling pathways. An FPGA-like, module-
based architecture is adopted to promote instinctive migration of
self-adapting and recon�guration capabilities from neural system
into multiple types of cells in general.

2 NEURON MODEL AND KEY
CHARACTERISTICS

Model provides a means to represent complex dynamics of a sys-
tem in a simpler form while retaining important characteristics of
the original system; the goal is to make system analysis feasible
and predictive of concerned system behaviors. Since abstraction
is unavoidable in the process of modeling, whether the key con-
tributors to concerned characteristics are correctly identi�ed and
included in the model determines the quality of the model. �us, in
this section, we �rst focus on identifying the crucial properties of
spiking neurons that lead to adaptability; the way to realize adapt-
ability with cell-signaling pathway motif by exploiting matching
properties to the neurons will be presented in the next section.

Neurons transform complex dynamical inputs into trains of ac-
tion potential in the form of abrupt voltage spikes. Apart from the
amplitude of output action potential, the temporal pro�le of out-
put spikes also holds a crucial role in encoding stimuli information.
Furthermore, as demonstrated in [12], in order to realize useful
sensory processing in nature, it is required to perform analog com-
putations at a speed faster than that explainable by an averaging
mechanism. As a result, the explicit timing of individual spikes is
also indispensable with its unique share of information. �erefore,
it is reasonable for our embedded neuromorphic computation to
have plasticity also depend on the timing of spikes.

2.1 Voltage-gated ion channels on action
potential dynamics

In the Hodgkin-Huxley neuron model[8], the behavior of a neu-
ron depends on the coordination of two main types of voltage-
gated ion channels: the sodium channel Nav, and the potassium
channel Kv. “Voltage-gated” here is used to indicate that the chan-
nel’s conductance is dependent on the membrane potential Vm

Figure 1: �e equivalent circuit of Hodgkin-Huxley model.
Note that as implied in the opposite polarities of VNa+ and
VK+ , the �ow ofNa+ increasesmembrane potential while K+
�ow causes decrease in membrane potential.
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Figure 2: (a) In�uence diagram of membrane potential in
neurons. Membrane potential couples the dynamics of oth-
erwise independent ion �ows through its di�erent in�u-
ences on channel conductance gNa and gK . (b)m,h,n as func-
tions ofVm are gating variables representing the probability,
or the degree, of corresponding gate’s opening.
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(i.e. the voltage di�erence across membrane due to ion concen-
tration gradient). An unspeci�ed leaking channel is also included
in the model for completeness, however, since its constant con-
ductance is signi�cant lower than others, it is of small in�uence
on the dynamics of membrane potential. An equivalent circuit
model of electrical properties across and in immediate vicinity to
the membrane is given in Figure 1. �e voltage-gated ion channels
are modeled as variable resistors to describe their Vm-dependent
conductance; the electrochemical gradient resulted from concen-
tration di�erence of each ion is modeled as corresponding voltage
source. While both Na+ and K+ are positively charged, the opposite
concentration gradient across the membrane makes the two types
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Figure 3: �e dynamics of Hodgkin-Huxley neuron with equivalent circuit abstraction given in Fig. 1. (a) �e absolute values
of current density through ion channels and corresponding membrane potential. Sub�gure: opposite concentration gradient
of Na+ and K+, and their respective one-way ion �ow. (b) Ion activation and deactivation variables’ evolution with membrane
potential. Howm, h, and n a�ect channel conductance can be found in Fig. 2. (c) Membrane potential and the conductance of
ion channels. (All membrane potential values are scaled by 0.01 for clarity.)
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of ions �ow separately in opposite directions through respective
channels. A simulation of the dynamic evolution of channel cur-
rent and membrane potential as a result of their interdependence
is shown in Figure 3; the evolution of channel conductance with
varying membrane potential is also taken into account. With in-
�uence landscape shown in Figure 2, the separation of respective
concentrations as driving forces and the coupling through shared
membrane potential give rise to a wide range of temporal dynam-
ics, allowing e�ective encoding of plentiful input pa�erns—the
diversity is one of the crucial requirements while designing our
proposed system.

2.2 Directional signal transmission with
waveform preserved

In biological neural networks, information is encoded and transmit-
ted through neurons’ membrane potential. �e ability to preserve
the causality relation and signal integrity for each node-to-node
segment is crucial for the applicability of the knowledge learned.

However, voltage by itself has no directional preference and
can potentially spread to all connected neurons including those
upstream, disturbing the correct causality relation. �e refrac-
tory period right a�er each spike (resulted from the inactivation
gating mechanism of Nav and the delayed closing of Kv) thus holds
great importance as it can prevent a spike from re-exciting its source
neuron. In the �rst (absolute) part of the refractory period, the
neuron that produced the spike cannot �re again no ma�er how
great the stimulation. In the second (relative) part, a stronger than
usual stimulus is required to trigger the spike. �e two periods
are distinguished based on whether Nav has returned from inacti-
vated to close state. A�er the refractory period, the neuron will
again �re upon reaching the original neural threshold, allowing di-
rectional propagation of electrical signals in the form of solitary
waves.

On the other hand, signal integrity concerns the timing and
the quality of the signal—does it reach the destination when it is
supposed to? Is the waveform intact upon its arrival? In biological
neural network, the shape and velocity of propagating action poten-
tial can be kept nearly constant between connected neurons, so the
information encoded by the source neuron can be well-preserved
till reaching the next “processing unit.” �e signal integrity with
well-preserved waveform is achieved in a way similar to how we
transfer electrical signals through cables of extended length. �e
biological counterparts are the cooperation between axon myeli-
nated with appropriate thickness and properly distanced nodes
Ranvier.

As will be shown by simulation in later section 3.3, the signal
transmi�ed through our proposed modules is not only well pre-
served with precise timing and oscillating frequency, but can also
be ampli�ed through the cascade. �e signal integrity achieved is
critical for the proposed system’s applicability.

3 PROPOSED CELL-COMPATIBLE SYSTEM
In this section, we describe and verify the implementation of our
modularized, FPGA-like biomolecular system, which allows for
both self- and externally-recon�guration. Self-recon�gurability
is the mechanism behind self-adaptability. In the case of synapses,
this “plasticity” is achieved by autonomously modifying the e�ect
of an incoming pre-synaptic spike on the post-synaptic neuron.
Our implementation with cell signaling motif as basic unit relies
on exploiting functional resemblance between the two realms.
However, due to the natural lack of one-to-one correspondence, our
identi�ed motif as basic unit actually covers both roles of neuron
and synapse. Motif and module will be used interchangeably
unless ambiguity occurs.

As identi�ed in previous sections 2.1 and 2.2, the rich output
dynamics for encoding a wide range of input pa�erns and signal
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Table 1: Analogies between Hodgkin-Huxley neuron and cell signaling pathway

Item Hodgkin-Huxley Neuron Cell Signaling Pathway

Input Externally applied charging current Synthesis rate of enzyme1 (vsynth1)
Externally applied discharging current Synthesis rate of enzyme2 (vsynth2)

Output Membrane potential (Vm ) Concentration of A′
Feedback Mechanism Vm-dependent ion channel conductance Concentration-controlled reaction rate
Encoding Format Oscillation amplitude Oscillation frequency

Figure 4: �e recurring motif across various signaling path-
ways. A andA’ are two inter-convertible forms of a signaling
molecule with constant total amount; the enzymatic reac-
tions involved are assumed to follow Michaelis-Menten ki-
netics, with catalytic rate constant and Michaelis constant
denoted in form (ki ,KMi ).

A

enzyme1

enzyme2

vsynth1

vsynth2

kdeg1

kdeg2

(k1, KM1)
(k-1, KM-1)

A’

transmission integrity are two key factors behind neural network’s
self-adaptability. To verify our implementation, respective simula-
tion results are given in sections 3.2 and 3.3 to demonstrate the two
key factors.

3.1 Universal cell-signaling motif and
analogies exploited

�e responses of biological cells to extra-cellular stimuli—such as
hormones, growth factors, nutrients and stress—are coordinated by
networks of protein-based signaling pathways. Signaling pathways
can not only transmit, but also process complex stimuli pa�erns
and encode extracted information into signaling pa�erns compat-
ible with targeted down-stream systems. Considering the large
variety of control tasks required of the relatively scarce resources,
it comes as no surprise that the speci�city of diverse physiological
signal-response relations is achieved by delicate temporal control
over the (de)activation between a restrictive set of signaling proteins,
rather than by designating speci�c, independent pathways for each
type of stimulation.

In fact, complex temporal dynamics can arise from modifying
reaction kinetics and/or feedback relations of a heavily-conserved
pathway motif as shown in Figure 4, without changing its topo-
logical structure that recurs across signaling networks. More
speci�cally, each feedback relation describes how concentration
of one biochemical species can inhibit (negative feedback) or pro-
mote (positive feedback) certain reaction in the motif. Listed in
Table 1 are the analogies found in respective properties of the two

systems; our proposed way to realize those analogies to bring
neuronal plasticity to cell signaling pathways are given in Figure 5.

In our proposed cell-signaling realization, A’ is the output and
can be conceptually regarded as membrane potential Vm . In the case
of neuron, Vm in�uences two opposite ionic currents di�erently
through channel conductance, while the two opposite �ows of Na+
and K+ increases and decreases Vm , respectively. Since Na+ �ow
increases Vm , in�uences of Vm on sodium channel are mapped to
the upper half of the motif—as enzymatic reactions on the upper half
convert A to A’. Similarly, in�uences of Vm on potassium channel
are mapped to the lower half of the motif.

Cell-signaling counterparts of Vm ’s in�uences on channel con-
ductance are realized through feedback design. Take sodium chan-
nel as example, its dependence on Vm consists of two terms: m of
fast channel activation and h of delayed channel deactivation. �e
fast channel activation is realized through a positive feedback to
directly promote reaction A → A′; the delayed channel deactiva-
tion, on the other hand, is realized as a negative feedback to inhibit
enzyme1 synthesis, indirectly impeding A’ formation. �e same
reasoning goes for potassium channel.

3.2 Recon�gurable dynamics of a single
module

In this section, simulation results are presented to demonstrate
the recon�gurability of our proposed implementation. �e im-
plementation is based on aforementioned analogies between (1)
neuron of Hodgkin-Huxley model with synaptic plasticity, and (2)
cell-signaling pathway motif with tunable feedback strength. �e
aim is to demonstrate the feasibility of employing feedback design
to realize neuronal plasticity in cell-signaling network.

�e �rst simulation with result in Figure 6 consists of two parts.
For the �rst half where time = 0 ∼ 60 (arbitrary unit), the syn-
thesis rate of enzyme1 (vsynth1)—which will be used as the motif’s
input port for module interconnects—is varied from 150 to 400
(arbitrary unit). It can be observed that the output oscillation fre-
quency of A’ re�ects the changes correspondingly. �e frequency
�rst increases with the input value, then decreases while the input
value keeps increasing. Finally, the output response to the input
becomes a one-to-one value correspondence without oscillation.
At least qualitatively, this bifurcation behavior is consistent with
that predicted of Hodgkin-Huxley model as depicted in Figure 7,
and can be regarded as a justi�cation that our proposed analogy
between the two systems is eligible.

�e purpose of the second half of the simulation where time =
60 ∼ 100 (arbitrary unit) is to verify vsynth2’s propensity as an
additional tuning knob, which can provide additional �exibility for
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Figure 5: Compared to Fig. 4, feedback relations are added to the motif backbone to realize our proposed analogies between
neuron and signaling pathway dynamics. Each channel gating variable (i.e. m, h, n) on the le� is mapped to a corresponding
feedback branch on the right, indicated by matching number of *.
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Figure 6: Simulation shows output concentration’s fre-
quency response to changes invsynth1 andvsynth2. Note that
changes in either is enough to in�uence themodule’s behav-
ior.

external control. During this period, the motif’s self-con�gured
input value vsynth1 remains unchanged. It can be observed that
the output can really be controlled by the tuning knob alone.

3.3 Signal transmission through modules
A possible way to connect motifs into layered networks is given in
Figure 8. �e connected motif constructs the structural backbone
which, when combined with appropriate feedback design both in
and between modules, can serve di�erent purposes such as sig-
nal ampli�cation, generation of discontinuous bistable dynamics
and oscillations from hysteresis, etc., thus can be used to encode
complex relationships between input stimuli and output cellular
responses. More importantly, the versatility of the motif is valid
with universal compatibility—while conserved in structure, what
is upstream and downstream can vary widely across species and
cells. Systems based on the motif can thus adapt e�ectively to dif-
ferent types of receptors, substrates and cellular endpoints. �e
second simulation involves two modules connected as shown in

Figure 7: Bifurcations of Hodgkin-Huxley neuron with ap-
plied current Iapp as the bifurcation parameter. osc max and
osc min denote, respectively, the maximum and minimum
oscillating amplitude, and ss denotes a steady state without
oscillation. Note that the predicted oscillating amplitude
shares the same trend with the oscillation frequency in our
simulation (Fig. 6) as applied input current increases, which
is consistent with our proposed analogy. Image Source: [9].

1st layer

2nd layer

A’A

B’B

…

Figure 8: Module cascade through enzyme synthesis rate.

Figure 8. �e module upstream (�rst layer) transmit the signal
to the downstream module (second layer) through vsynth1. As
can be observed from the outputs of the two modules ([A′] and
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Figure 9: Simulation result showing the output relation of
two connected modules.

[B′], respectively), both the spiking frequency and timing are faith-
fully preserved throughout the cascade. Furthermore, the signal is
ampli�ed without additional design.

4 CONCLUSION
�is paper proposed a modularized way to realize cell-compatible
neuromorphic computation based on existing cell signaling path-
ways. Analogies between neural networks and cell signaling path-
ways are identi�ed and exploited. Two simulations help verify
the signal encoding recon�gurability of a module as well as signal
transmission integrity across connected modules, which are central
to neural network’s adaptability.

Encouraged by reported successes in synthetically reshaping the
dynamics of cell signaling pathways [2, 10], the proposed FPGA-
like, module-based architecture holds potential to help promote
instinctive migration of self-adapting and recon�guration capabili-
ties from neural system to multiple types of cells in general.
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