
Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms

Thomas Gabor
LMU Munich

thomas.gabor@ifi.lmu.de

Lenz Belzner
LMU Munich

belzner@ifi.lmu.de

ABSTRACT

The evolutionary edit distance between two individuals in a
population, i.e., the amount of applications of any genetic
operator it would take the evolutionary process to generate
one individual starting from the other, seems like a promis-
ing estimate for the diversity between said individuals. We
introduce genealogical diversity, i.e., estimating two individ-
uals’ degree of relatedness by analyzing large, unused parts
of their genome, as a computationally efficient method to
approximate that measure for diversity.

CCS CONCEPTS

•Computing methodologies→Heuristic function con-
struction; Genetic algorithms;

ACM Reference format:
Thomas Gabor and Lenz Belzner. 2017. Genealogical Distance as

a Diversity Estimate
in Evolutionary Algorithms. In Proceedings of GECCO ’17 Com-
panion, Berlin, Germany, July 15-19, 2017, 6 pages.

DOI: http://dx.doi.org/10.1145/3067695.3082529

1 INTRODUCTION

Diversity has been a central point of research in the area
of evolutionary algorithms. It is a well-known fact that
maintaining a certain level of diversity aids the evolutionary
process in preventing premature convergence, i.e., the phe-
nomenon that the population focuses too quickly on a local
optimum at hand and never reaches more fruitful areas of
the fitness landscape [4, 14, 16]. Diversity thus plays a key
role in adjusting the exploration-exploitation trade-off found
in any kind of metaheuristic search algorithm.

We encountered this problem from an industry point of
view when designing learning components for a system that
needs to guarantee certain levels of quality despite being sub-
jected to the probabilistic nature of its physical environment
and probabilistic behavior of its machine learning parts [1].
Of course, any general solution for this kind of challenge is

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082529

yet to be found. However, we believe that the engineering of
(hopefully) reliable learning components can be supported
by exposing all handles that search algorithms offer to the
engineer at site. For scenarios like this one, we consider it
most helpful to employ approaches that allow the engineer to
actively control properties like diversity of the evolutionary
search process instead of just observing diversity and adjust
it indirectly via other parameters (like, e.g., the mutation
rate).

Among the copious amount of different techniques to intro-
duce diversity-awareness to evolutionary algorithms, many
do not immediately make the job of adjusting a given evo-
lutionary algorithm easier but instead require additional
engineering effort: For example, one may need to define a
distance metric specifically for the search domain at hand or
adjust lots of hyperparameters in island or niching models.
We thus attempt to define a more domain-independent and
almost parameter-free measurement for diversity by utiliz-
ing the genetic operators already defined within any given
evolutionary process.

We discuss related work in the following Section 2. We then
explain the target metric called “evolutionary edit distance”
in Section 3. Section 4 continues by introducing the notion of
“genealogical diversity” as means to approximate that concept.
We improve this approach in Section 5 by using a much
simpler and computationally more efficient data structure.
To support our ideas, we describe a basic evaluation scenario
in which we have applied both approaches in Section 6. We
end with a short conclusion in Section 7.

2 RELATED WORK

The importance of diversity for evolutionary algorithms is
discussed throughout the body of literature on evolutionary
computing ranging from entry level [4, 9] to specialized pa-
pers [13, 16]. In many cases, authors refer to diversity as a
measure of the evolutionary algorithm’s performance and try
to configure the hyperparameters of the evolutionary algo-
rithm as to achieve an optimal trade-off between exploration
and exploration for the scenario at hand [15]. This measure
can then be used to interact with the evolutionary process by
adjusting its parameters [16] and/or actively altering the cur-
rent population, for example via episodes of “hypermutation”
[6] or migration of individuals from other (sub-)populations
[11, 15]. On top of that, there exist a few approaches that
include diversity into the evolutionary algorithm’s objective
function allowing us to use evolution’s optimization abilities
to explicitly achieve higher diversity of solutions [2].

1572

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

An extensive overview of current approaches to increase
diversity in evolutionary algorithms is provided in [14], which
also defines a helpful taxonomy of said approaches. Whenever
a diversity objective can be quantified, it can be used to build
a classic multi-objective optimization problem and to apply
the vast amount of techniques developed to solve these kinds
of problems using evolutionary algorithms [7, 8, 10, 13].

The authors of [17] address the very important issue of
how to efficiently compute diversity estimates requiring to
compare every individual of a population to every other.
They develop an approach to reduce the complexity of said
computation to linear time. However, it might still be inter-
esting to analyze how well certain metrics scale even beyond
that, as for example in the present paper we chose to sample
the test set for diversity from the population to further save
computation time.

3 EVOLUTIONARY EDIT DISTANCE

As described in the previous Section, there exists a vast
amount of approaches to compute a population’s diversity
(and an individual’s diversity with respect to that population).
We found, among other things, that from an engineering
point of view, many (if not most) of these approaches require
the designer of the evolutionary algorithm to adjust certain
functions or parameters based on the problem domain [5].
This gave rise to the idea of using the genetic operators
already programmed for the problem domain to define a
domain-independent notion of diversity.

The concept this line of thought is based on could be called
evolutionary edit distance: Given two individuals x1 and x2
we want to estimate how many applications of a genetic
operator it would take to turn one of these individuals into
the other.1 First, we start off by defining a lower bound
on the number of operator applications, i.e., the minimal
evolutionary edit distance.

We can assume that a given evolutionary process provides
the genetic operator o : D∗ → D where D is the problem do-
main in which our individuals live and D∗ is a list of arbitrary
many elements of D. Most evolutionary algorithms define
exactly two instances of genetic operators called mutation
m : D → D and recombination c : D × D → D, but we
describe the more general case for now. However, in the gen-
eral case genetic operators perform in a probabilistic manner,
meaning that their exact results depend on chance. We de-
scribe this behavior mathematically by adding an index s ∈ S
to o which represents the seed of a pseudo-random number
generator (using seeds of type S). Then, we can define the
minimal evolutionary edit distance mdist : D × D → N as
follows:

mdist(x1, x2) =

{
0 if x1 = x2

min
s∈S

1 + mdist(os(x1), x2) otherwise

1Because of the probabilistic nature of evolutionary algorithms, the
evolutionary edit distance would actually be a distribution over inte-
gers. If a scalar value is needed, we could then compute the expected
evolutionary edit distance.

Note that as long as we assume the genetic operator o to
be symmetric (which they usually are), mdist is symmetric
as well.

The minimal edit distance is not an accurate estimate of
the actual effort it would take the evolutionary process to
turn x1 into x2 since the required indexed instances os of the
genetic operator o may be arbitrarily unlikely to occur in the
process. Instead, we want to estimate the expected amount
of applications of o given a realistic occurrence of instances of
the genetic operator. Sadly, the complexity of this problem
is equal to running an evolutionary algorithm optimizing
its individuals to look like x2 and thus potentially equally
expensive regarding computational effort as the evolutionary
process we are trying to augment with diversity.

However, if we want to use mdist to compute the diver-
sity of individuals for a given evolutionary process, we never
want to compare arbitrary solution candidates x1, x2 ∈ D
but will only ever compare individuals within the current
population P ⊆ D or at most individuals from the set X
with P ⊆ X ⊆ D, which is the set of all individuals ever
generated by the evolutionary process. Each of those in-
dividuals has been generated through the repetitive appli-
cation of the genetic operators already and so we have a
set of concrete instances of o instead of having to reason
about all os that could be used by the evolutionary process.
We write the set of all actually generated instances of o as
O = {(x0, os0 , x′0), (x1, os1 , x

′
1)..., (xk, osk , x

′
k)} where k + 1

is the total amount of evolutionary operations performed
and for all (xi, osi , x

′
i) ∈ O the evolutionary process actually

constructed x′i ∈ X by computing osi(xi).
We can thus define the factual evolutionary edit distance

edist : X × X → N as the total amount of operations it
actually took to turn x into x′:

edist(x1, x2) =

0 if x1 = x2

1 if ∃s ∈ S : (x1, os, x2) ∈ O
1 if ∃s ∈ S : (x2, os, x1) ∈ O
edist′(x1, x2) otherwise

edist′(x1, x2) = min
x∈X

1 +

min
s∈S,(x,os,x1)∈O

edist(os(x), x1) +

min
s∈S,(x,os,x2)∈O

edist(os(x), x2))

Note that edist can only be defined this way when we
assume that its parameters x1 and x2 have actually been
generated through the application of genetic operators from a
single base individual only. This is an unrealistic assumption:
Completely unrelated individuals can be generated during
evolution. Furthermore, defining the evolutionary edit dis-
tance this way requires multiple iterations through the whole
set of X since we neglect many restrictions present in most
genetic operators o.

1573

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

4 PATHS IN THE GENEALOGICAL
TREE

In the context of evolutionary processes it seems natural to
think of individuals as forming genealogical relationships be-
tween each other. These relations correspond to the genetic
operators applied to an individual x to create the individual
x′. Connecting all individuals (of all generations of the evolu-
tionary process) to their respective children yields a directed,
acyclic and usually non-connected graph. Starting from a
single individual x, recursively traversing all incoming edges
in reverse direction yields a connected subgraph containing
all of x’s ancestors. We call this graph the genealogical tree
of x.

Formally, we write G(x) = (Vx,Ex) for the genealogical
tree of x consisting of vertices Vx and edges Ex. For an
evolutionary process producing (over all generations) the set
of individuals X, it holds for all x1, x2 ∈ X that (x1, x2) ∈
Ex2 iff x2 is the result of a variation of x1. If we consider an
evolutionary process with two-parent recombination as its
only variation operator, our notion of a genealogical tree is
exactly the same as in human (or animal) genealogy.

However, most evolutionary algorithms also feature a mu-
tation operator that works independently from recombination.
For the genealogical tree, we treat it like a one-parent re-
combination in that we consider a mutated individual an
ancestor of the original one. This approach does not reflect
the fact that a single mutation usually has a much smaller
impact on the genome of an individual than recombination
has. We tackle this issue in Section 5.

Given these graphs, we can then trivially define the ances-
tral distance from an individual x1 ∈ X to another individual
x2 ∈ X as follows:

adist(x1, x2) =

∞ if x1 /∈ Vx2

0 if x1 = x2

min
x∈X,(x,x2)∈Ex2

1 + adist(x1, x) otherwise

Note that adist as defined here is still not symmetric, i.e.,
it returns the amount of variation steps it took to get from
x1 to x2, which is a finite number iff x1 is an ancestor of
x2. This also usually means that if adist(x1, x2) is finite,
adist(x2, x1) =∞.

Given two individuals x1 and x2, we can use these defini-
tions to compute their latest common ancestor L(x1, x2), i.e.,
the individual with the closest relationship to either x1 or x2
that appears in the respective other individual’s genealogical
tree. Formally, if a (latest) common ancestor exists it is given
via:

L(x1, x2) = argmin
x∈Vx1

∩Vx2

min(adist(x, x1), adist(x, x2))

Note that L is symmetric, so L(x1, x2) = L(x2, x1). For
our definition of genealogical distance we consider the ances-
tral distance from the latest common ancestor to the given
individuals. However, we also want to normalize the distance

values with respect to the maximally achievable distance for a
certain individual’s age. The main benefit here is that when
normalizing genealogical distance on a scale of [0; 1], e.g.,
we can assign a finite distance to two completely unrelated
individuals. For this reason we define a function E which
computes the earliest ancestor of a given individual:

E(x) = argmax
x′∈Vx

adist(x′, x)

Note that for all x′ ∈ Vx it holds that adist(x′, x) is finite.
We can now use the ancestral distance to an individual’s ear-
liest ancestor to normalize the distance to the latest common
ancestor with respect to the age of the evolutionary process.
Note that if x1 and x2 share no common ancestor, we set
gdist(x1, x2) = 1 and otherwise:

gdist(x1, x2)=
min(adist(L(x1, x2), x1), adist(L(x1, x2), x2))

max(adist(E(x1, x2), x1), adist(E(x1, x2), x2))

This genealogical distance function gdist then describes for
two individuals x1, x2 how close their latest common ancestor
is in comparison to their combined “evolutionary age”, i.e.,
the total amount of variation operations they went through.

Following up from the previous Section, we claim that
this genealogical distance correlates to the factual evolu-
tionary edit distance between two individuals. It is not an
exact depiction, though, because for cousins, e.g., we choose
the minimum distance to their common ancestor instead of
adding both paths through which they originated from their
ancestor. Our reason for doing so is that we want to treat the
comparison of cousins to cousins and of parents to children
the same way, but the ancestral distance from child to parent
is ∞. In the end, we are not interested in the exact values
but only in the comparison of various degrees of relatedness,
which is why lowering the overall numbers using min instead
of summation seems reasonable.

In effect, the metric of gdist still appears to be needlessly
exact for the application purpose inside the highly stochastic
nature of an evolutionary algorithm. And while a lot of
algorithmic optimizations and caching of ancestry values can
help to cut down the computation time of the employed
metric, comparing two individuals still takes linear time with
respect to the node count of their ancestral trees, which in
turn is likely to grow over time of the evolutionary process.
We tackle these issues by introducing a faster and more
heuristic approach in the following Section.

5 ESTIMATING GENEALOGICAL
DISTANCE ON THE GENOME

At first, it seems impossible or at east overly difficult to esti-
mate the genealogical distance (or for that matter, the evo-
lutionary edit distance) of two individuals without knowing
about their ancestry inside the evolutionary process. How-
ever, life sciences are facing that problem per usual and have
found a way to estimate the relationship between two differ-
ent genomes rather accurately. They do so by computing the
similarity in genetic material between two given genomes.

1574

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

To most artificial evolutionary processes, this approach is
not directly applicable for a few reasons:

(i) Most evolutionary algorithms use genomes that are
much smaller than that of living beings. Thus, it is
much harder to derive statistical similarity estimates
and the analysis is much more prone to be influenced
by sampling error.

(ii) In many cases, the genomes used are not homogeneous
but include various fields of different data types. Com-
paring similarity between different types of data requires
a rather complex combined similarity metric.

(iii) The way genomes are usually structured in evolutionary
algorithms means that most to all parts of the genome
are subject to selection pressure reducing the variety
found between different genomes.

The last point may seem odd because, obviously, genomes
found in nature are subject to selection pressure as well.
However, biology has found that, in fact, most parts of the
human genome are not expressed at all when building the
phenotype (i.e., a human body) [12] and are thus not directly
subjected to selection pressure.

We can, however, mitigate these problems making a rather
simple addition to an arbitrary evolutionary algorithm: Add
more genes. As these additional genes do not carry any
meaning for the solution candidate encoded by the genome,
they are not subjected to selection pressure (iii). We can
choose any data type we want for them, so we can adhere to a
type that allows for an easy comparison between individuals
(ii). And finally, we can choose a comparatively large size
for these genes so that they allow for a subtle comparison
(i). For the lack of a better name, we call these additional
genes by the name trash genes to emphasize that they do
not directly contribute to the individual’s fitness.

For our experiments thus far, we have chosen a simple bit
vector of a fixed length τ to encode the added trash genes.
Choosing τ too small (2τ < n where n is the population
size) can obviously be detrimental to the distance estimate,
but choosing very large τ (2τ � n) has not shown any
negative effects in our preliminary experiments. Using bit
vectors comes with the advantage that genetic operators like
mutation and recombination are trivially defined on this kind
of data structure.

Formally, to any individual x ∈ X we assign a bit vector
T (x) = 〈t0, ..., tτ−1〉 with ti ∈ {0, 1} for all i, which is ini-
tialized at random when the individual x is created. Every
time a mutation operation is performed on x, we perform
a random single bit flip on T (x).2 For each recombination
of x1 and x2, we generate the child’s trash bit vector via
uniform crossover of T (x1) and T (x2).

We can then compute a trash bit distance tdist between
two individuals x1 and x2 simply by returning the Hamming
distance between their respective trash genes:

2Note that this works for typical mutation operators on the non-trash
genes, which tend to change very little about the genome as well. If
more invasive mutation operators are employed, a likewise operation
on the bit vector could be provided.

tdist(x1, x2) =
1

τ
∗ H(T (x1), T (x2))

=
1

τ
∗
τ−1∑
i=0

|T (x1)i − T (x2)i|

This metric clearly is symmetric. Again, we normalize
the output by dividing it by τ . Furthermore, trash bit
vectors allow for a more detailed distinction between the
impact of various genetic operators: The expected distance
between two randomly generated individuals x1 and x2 is
E(tdist(x1, x2)) = 0.5. However, the distance between par-
ents and children is reasonably lower: If x is the result
of mutating x′, we expect their trash bit distance to be
E(tdist(x, x′)) = 1/τ . The trash bit distance between a
parent x′ of a recombination operator and its child x is
E(tdist(x, x′)) = 0.25 since the child shares about half of its
trash bits with this one parent x′ by the nature of crossover,
resulting in a Hamming distance of 0 on this subset, and
the other half with the other parent, say x′′, with which the
first parent x′ naturally shares about half of its trash bits
when no other assumptions about the parents’ ancestry apply.
This means that for the subset of trash bits inherited from
x′′, x and x′ have a trash bit distance of 0.5, resulting in a
0.25 average for the whole bit vector of x.3 If the parents
are related (or share improbable amounts of trash bits by
chance), lower numbers for tdist can be achieved.

These examples should illustrate that the computed trash
bit diversity is able to express genealogical relations between
individuals. It stresses recombination over mutation but in
doing so reflects the impact the respective operators have on
the individual’s actual genome. We thus propose trash bit
vectors as a much simpler and more efficient implementation
of genealogical diversity.

As is clear from the usage of the “expected value” E in
these computations, the actual distance between parents and
offspring is now always subject to random effects. However,
so is their similarity on the non-trash genes as well.4 This
kind of probabilistic behavior is an intrinsic part of evolu-
tionary algorithms. However, it may make sense to base the
recombination on the trash bit vector on the recombination
of the non-trash genes so that probabilistic tendencies are
kept in sync. This is up to future research.

Finally, the computational effort to compute the trash
bit distance is at most times negligible. Computing the
distance between two individuals is an operation that can be
performed in O(τ) and while we expect there to be a lose
connection between population size and the optimal τ , for
a given evolution process with a fixed population size, this
means that trash bit diversity can be computed in constant
time. Trivially, this also means the concept scales with
population size and age.

3These numbers correspond closely to the degrees of genetic relation-
ship mentioned in [3].
4For example, a child generated via uniform crossover has very slim
chance of not inheriting any gene material from one parent at all. The
same effect can now happen not only on the fitness-relevant genes but
also on the genes used for diversity marking.

1575

Genealogical Distance as a Diversity Estimate
in Evolutionary Algorithms GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: Illustration of the setup of the scenario.
Marked in red is the starting position of the agent.
The green area defines the goal which the agent is
supposed to drive to. The gray area is the main
obstacle the robot needs to drive around.

6 EXPERIMENT

To verify the practical applicability of the concept of genealog-
ical diversity and its realizations presented in the previous
Sections 4 and 5, respectively, we constructed a simple ex-
perimental setup: We define a simple routing task in which
a robot has to choose a sequence of 10 continuous actions
a ∈ R×R to reach a marked area. Each action takes exactly
one time step and can move the robot across a Manhattan
square of 0.5 at most. For each time step the robot remains
inside the designated target area, it is rewarded a bonus of
+1. In order to reach that area, the robot has to find a path
around an obstacle blocking the direct way. Figure 1 shows
a simple visualization of the setup described here.

We solved this scenario with four different evolutionary
algorithms. All of these use a population size of 20 individuals
and have been executed for 1000 generations. For this kind
of continuous optimization problem, that is not enough time
for them to fully converge. We constructed a standard setup
of an evolutionary algorithm with a continuous mutation
operator working on a single action at a time and activated
with a probability of 0.2. We employ uniform crossover with a
probability of 0.3 per individual. A recombination partner is
selected from a two-player tournament and offspring is added
to the population before the selection step. Furthermore, 2
new individuals per generation are generated randomly.

Within this setup, we define a standard genetic algorithm
using a fitness function that simply returns the aforemen-
tioned bonus for each individual. It performs well but seems
to suffer from premature convergence in this setup (see
Figure 2 for all plots). This is the baseline approach all
diversity-enabled versions of the genetic algorithm can be
tested against.

To introduce the diversity of the solutions to the genetic
algorithm, we choose the approach to explicitly include the

Figure 2: Average fitness achieved over time by
the the non-diverse genetic algorithm (black), the
domain-specific diverse genetic algorithm (blue), the
genealogically diverse algorithm based on the ge-
nealogical tree distance (green) and the genealogi-
cally diverse genetic algorithm using the trash bit
distance (red). To mitigate random effects a bit, the
fitness values have been averaged over 10 complete
evolution runs.

distance of the individual x to other individuals of P in x’s fit-
ness. But we do not construct a multi-objective optimization
problem (as in [10, 13], e.g.) but simply define a weighting
function to flatten these objectives. Formally, given the orig-
inal fitness function f and an average diversity measure d of
a single individual with respect to the population P ⊆ X, we
define an adapted fitness function f ′ as follows:

f ′(x, P) = f(x) + λ ∗ d(x, P)

It is important to note that while we use f ′ for the purpose
of selection inside the evolutionary algorithm, all external
analysis (plotting, e.g.) is performed on the value of f only
in order to keep the results comparable. Also note that we
reduce the computational effort to calculate any distance
metric d used in this paper by not evaluating a given indi-
vidual’s diversity against the whole population P but only
against a randomly chosen subset of 5 individuals. In our
experiments, this approach has been sufficiently stable.

Furthermore, we determined the optimal λ for each algo-
rithm using grid search on this hyperparameter. In a scenario
like this, where higher diversity yields better results overall,
it appears reasonable to think that λ could be determined
adaptively during the evolutionary process. This is still up
to further research.

For evaluation purposes, we provided a domain-specific
distance function. In this simple scenario, this can be defined
quickly as well and we chose to use the sum of all differences
between actions at the same position in the sequence. Figure 2
shows that this approach takes a bit longer to learn but can

1576

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Gabor and Belzner

then evade local optima better, showing a curve that we
would expect from a more diverse genetic algorithm.

Finally, we implemented both genealogical distance metrics
presented in this paper. We can see in Figure 2 that both
approaches in fact perform comparably, even though trash
bit vectors require much less computational effort. For this
experiment, we used τ = 32.

7 CONCLUSION

In this paper, we have introduced the expected evolution-
ary edit distance as a promising target for diversity-aware
optimization within evolutionary algorithms. Having found
that it cannot be reasonably computed within another evolu-
tionary process, we developed approaches to estimate that
distance more efficiently. To do so, we introduced the notion
of genealogical diversity and presented a method to estimate
it accurately using very little computational resources.

The experimental results show the initial viability of the
approach used here and allow for many future applications.
Some of these have been realized in [5]. Other promising
directions for future work have been mentioned throughout
and include plans to omit the hyperparameter λ by using
genealogical diversity within a true multi-objective evolu-
tionary algorithm or by opening λ for self-adaptation by
the evolutionary process. Furthermore, from a biological
point of view, a genealogical selection process is less common
in survivor selection than it is in parent selection. Testing
if the metaphor to biology holds in that case would be an
immediate next step of research.

REFERENCES
[1] Lenz Belzner, Michael Till Beck, Thomas Gabor, Harald Roelle,

and Horst Sauer. 2016. Software engineering for distributed
autonomous real-time systems. In Proceedings of the 2nd Inter-
national Workshop on Software Engineering for Smart Cyber-
Physical Systems. ACM, 54–57.

[2] Markus Brameier and Wolfgang Banzhaf. 2002. Explicit control
of diversity and effective variation distance in linear genetic pro-
gramming. In European Conference on Genetic Programming.
Springer, 37–49.

[3] Richard Dawkins and others. 2016. The selfish gene. Oxford
university press.

[4] Agoston E Eiben and James E Smith. 2003. Introduction to
evolutionary computing. Vol. 53. Springer.

[5] Thomas Gabor. 2017. Preparing for the Unexpected: Diversity
Improves Resilience in Online Genetic Algorithms. In Proceedings
of The 14th IEEE International Conference on Autonomic
Computing (ICAC2017). Submitted.

[6] John J Grefenstette and others. 1992. Genetic algorithms for
changing environments. In PPSN, Vol. 2. 137–144.

[7] Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. 1994. A
niched Pareto genetic algorithm for multiobjective optimization.
In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE
Conference on. Ieee, 82–87.

[8] Abdullah Konak, David W Coit, and Alice E Smith. 2006. Multi-
objective optimization using genetic algorithms: A tutorial. Reli-
ability Engineering & System Safety 91, 9 (2006), 992–1007.

[9] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz
Mostaghim, and Matthias Steinbrecher. 2016. Computational
intelligence: a methodological introduction. Springer.

[10] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart
Zitzler. 2002. Combining convergence and diversity in evolution-
ary multiobjective optimization. Evolutionary computation 10,
3 (2002), 263–282.

[11] Chengjun Li and Jia Wu. 2017. Subpopulation Diversity Based
Selecting Migration Moment in Distributed Evolutionary Algo-
rithms. arXiv preprint arXiv:1701.01271 (2017).

[12] Ryan E Mills, E Andrew Bennett, Rebecca C Iskow, and Scott E
Devine. 2007. Which transposable elements are active in the
human genome? Trends in genetics 23, 4 (2007), 183–191.

[13] Carlos Segura, Carlos A Coello Coello, Gara Miranda, and Coro-
moto León. 2016. Using multi-objective evolutionary algorithms
for single-objective constrained and unconstrained optimization.
Annals of Operations Research 240, 1 (2016), 217–250.

[14] Giovanni Squillero and Alberto Tonda. 2016. Divergence of char-
acter and premature convergence: A survey of methodologies for
promoting diversity in evolutionary optimization. Information
Sciences 329 (2016), 782–799.

[15] M Tomasini. 2005. Spatially structured evolutionary algorithms.
(2005).

[16] Rasmus K Ursem. 2002. Diversity-guided evolutionary algorithms.
In International Conference on Parallel Problem Solving from
Nature. Springer, 462–471.

[17] Mark Wineberg and Franz Oppacher. 2003. The underlying
similarity of diversity measures used in evolutionary computation.
In Genetic and Evolutionary Computation Conference. Springer,
1493–1504.

1577

	Abstract
	1 Introduction
	2 Related Work
	3 Evolutionary Edit Distance
	4 Paths in the Genealogical Tree
	5 Estimating Genealogical Distance on the Genome
	6 Experiment
	7 Conclusion
	References

