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ABSTRACT
Booster stations are �uid systems consisting of interconnected
components such as pumps, pipes, valves and ��ings. One of their
main applications is to supply whole buildings or higher �oors with
drinking water if the supply pressure of the water company is not
high enough to guarantee a continuous supply for all consumers.
�is means that a booster station must increase the pressure of
supplied drinking water at a given time-variant �ow rate. �e
consumer’s demands must be matched at any time and the system
operation is restricted by the general laws of �uid mechanics.

A common approach to handle the corresponding optimization
problem is to model it as a mixed integer linear program (MILP) and
to solve this program using a standard MILP solver. �is approach
is not suitable for large problem instances with practical relevance
as it is not possible to obtain good solutions in reasonable time.
Hence, the main obstacle is the optimization speed.

In this work, we present an approach to obtain good solutions
in reasonable time even for large practical relevant instances. We
do this by addressing the problem with heuristics from both the
primal and dual side combined with the use of problem speci�c
and technical knowledge. �is approach is based on modeling the
problem as a MILP as well as a mathematical graph and using both
views simultaneously.
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1 INTRODUCTION
In our research, we investigate an algorithmic system design pro-
cess for technical systems. �e �eld of research we operate in is
called ’Technical Operations Research’ (TOR). TOR is originated
from engineering and developed in cooperation with mathemati-
cians as a part of the German Research Foundation (DFG) founded
Collaborative Research Center SBF 805 ’Control of Uncertainties in
Load-Carrying Structures in Mechanical Engineering’. It combines
technical and mathematical know-how, known from Operations Re-
search, to generate an optimal design of technical systems regarding
speci�c goals like energy consumption or investment costs.

�e TOR approach divides the problem development process
into seven steps which belong to two phases. �e deciding phase
and the acting phase:

DECIDING
(1) What is the function?
(2) What is my goal?
(3) How large is the playing �eld?

ACTING
(4) Find the optimal system!
(5) Verify!
(6) Validate!
(7) Lay Out!

TOR was applied to a various range of technical problems such
as booster stations [14, 15], ventilation systems [7, 18], hydro-
static power transmission systems [11], heating circuits [17], water-
conveying systems [4, 5], pump systemswithmultiple objectives [6],
hydro power stations [16] and the design of gearboxes [3].

In the context of TOR we mostly investigate the design of �uid
systems consisting of components such as pumps, pipes, valves and
��ings. A special member of this class are the so-called booster
stations.

Booster stations are used to supply whole buildings or higher
�oors with drinking water if the supply pressure of the water com-
pany is not high enough to guarantee a continuous supply for all
consumers. A typical area of application are skyscrapers.

A possibility to handle problems like this is to model them as
a mixed integer linear program (MILP) which is solved using a
MILP solver. But usually pratically relevant problems, especially
for booster stations, are too large to be solved in reasonable time
even by a high quality commercial MILP solver like CPLEX [10].

In this paper, we present an approach to �nd ’good’ system
designs for large realistic instances of booster stations regarding
a given objective. �e goal was to develop a new methodology
to solve those realistic instances in reasonable time. In this case
’solving’ means either to �nd a provable optimal solution or to
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�nd a good solution whose quality can be evaluated by providing
a strong quality criteria. We do this by addressing the problem
with heuristics from both the primal and dual side using a special
modeling approach. In this approach we abstract the problem
as a MILP as well as a mathematical graph and use both views
simultaneously. In doing so, we use both views combined with
problem speci�c and technical knowledge to enhance the time
needed to solve the optimization problem.

2 BOOSTER STATIONS
A booster station, also referred to as pressure booster system, is a
network of either one type or di�erent types of single rotary pumps.
Typically, a distinction between three di�erent system concepts is
made. �ese concepts are booster stations with cascade control,
with continuously variable speed control of one pump and with
continuously variable speed control of each pump. In this paper, we
concentrate on the third concept, booster stationswith continuously
variable speed control of each pump. For this concept, the number
of active pumps as well as their speed depends on the required
volume �ow. Because of the continuously variable speed control of
each pump a very constant inlet pressure occurs and it is possible to
compensate high supply pressure �uctuations even if a malfunction
occurs or a pump is failing. �ere is no sudden pressure increase
because the other pumps can step in. Furthermore, we focus on a
connection concept in which the booster station is connected to
the water supply directly and no discharge sided pressure vessels
are used. If necessary, so-called normal zones are implemented.
�ese can be supplied by supply pressure itself and are therefore
not connected to the booster station. �is can be used to avoid
overpressure for lower �oors. For all other �oors overpressure is
avoided by installing reducing valves if necessary.

Booster stations are part of the so-called �uid systems. In the
case of a booster station a �uid system primarily contains four
component groups: Pumps, pipes, pressure reducers and valves.
Furthermore, each system has at least one source and one sink. In
this paper, we focus on the pumps and the pipes of booster stations
and consider the pressure reducers and valves implicitly. Hence,
the presentation is simpli�ed to an interconnection of pumps and
pipes which form a connected network. �e relevant physical
variables are: �e volume �ow Q through the pumps and pipes
which is comparable to the �ow in the classic �ow problem of
theoretical computer science, the pressure increase H generated
by the pumps, their power consumption P and their rotational
speed n. Two of them always de�ne an operation point in the
pump characteristics. For �uid systems in general as well as for
booster stations speci�cally certain physical laws and equations
apply which are presented in the following subsections.

2.1 Continuity Equation
All �uid systems must satisfy the continuity equation: �e trans-
ported mass through a �ow tube remains constant in the case of
steady state �ows. �is criterionmeets the general principal of mass
conservation which says that the inlet mass �ow must be equal to
the outlet mass �ow. In �uid mechanics, this can be expressed as
follows with ṁ representing the mass �ow, i.e. the time derivative
of mass, ρ representing the density of the �uid, c representing the

�ow rate and A representing the cross-sectional area of the �ow
tube:

ṁ = ρ1 · c1 · A1 = ρ2 · c2 · A2 (1)
If the term c1 ·A1 is replaced by the volume �owQ , the equation

can be stated as:
ṁ = ρ1 ·Q1 = ρ2 ·Q2 (2)

In the case of incompressible �uids like water the relation can
be simpli�ed because of the pressure-independent density:

Q = Q1 = Q2 (3)

�is relation holds for ideal �uid systems without losses and is
applicable for the system as well as for single components. It is
more or less similar to the �ow conservation of the classical �ow
problem in computer science.

2.2 Bernoulli’s Equation
Furthermore, Bernoulli’s equation, which is derived from the gen-
eral conservation of momentum, applies: For steady state motions
of frictionless (ideal), incompressible �uids which are not e�ected
by external forces except for gravity a constant mathematical term,
the Bernoulli energy equation, holds:

c21
2д +

p1
ρд
+ z1 =

c22
2д +

p2
ρд
+ z2 = const . (4)

v is the �uid �ow speed at a point on a streamline, д is the
acceleration due to gravity, z is the elevation of the point above a
reference plane, p is the pressure at the chosen point and ρ is the
density of the �uid. If this equation is multiplied by ρ and д, this
results in the Bernoulli pressure equation:

p1 + ρ · д · z1 +
ρ

2 · c
2
1 = p2 + ρ · д · z2 +

ρ

2 · c
2
2 = const . (5)

If a pump is used between the points 1 and 2, the pressure in-
crease ∆pP must be considered additionally:

p1 + ρ · д · z1 +
ρ

2 · c
2
1 + ∆pP = p2 + ρ · д · z2 +

ρ

2 · c
2
2 (6)

2.3 A�nity Laws
All pumps used in �uid systems have an opposite relation between
their volume �ow and pressure increase (H). With increasing vol-
ume �ow the possible pressure increase decreases. Additionally,
the power consumption (P) of pumps increases with increasing
volume �ow. If pumps with variable speed control are used, there
is another relation. For those pumps the possible pressure increase
as well as their power consumption rises with increasing speed (n)
if the volume �ow is held constant. For pumps with continuously
variable speed control, these relations between the physical vari-
ables can be described by the so-called a�nity laws: Q ∼ n, H ∼ n2

and P ∼ n3. For a speci�c pump, these relations can be easily
understood looking at the pump characteristics shown in �gure 1.

2.4 Interconnection of modules
Modules (single pumps or whole subsystems) can be connected
pairwise either in series or in parallel. �e interconnection has
an in�uence on the physical variables similar to the connection of
electrical resistors. If, on one hand, modules are connected in series,
the total pressure increase results as the sum of the single pressure
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Figure 1: Typical characteristic curve of a speed controlled
pump

increases while the �ow through them remains constant. If, on
the other hand, modules are connected in parallel, the pressure
increase remains constant and the total volume �ow through both
modules is the sum of the single volume �ows.

3 OPTIMIZATION
In this section, we present the optimization problem and the corre-
sponding mathematical model as well as our approach to solve this
problem.

3.1 Problem Statement and Approach
Our goal is to implement an algorithmic system design process for
instances of booster stations with a realistic character which can
generate ’good’ systems in reasonable time. �e focus is on the
time aspect as the runtime is essential for the practical usability. At
�rst, we must de�ne the system properties and the problem itself as
well as the aimed approach to generate those systems in reasonable
time.

A system is called a reasonable system if �uid (water) can enter
at any component and can exit somewhere else without violating
any of the physical laws of �uid mechanics.

We assume that all components and their characteristics are
known in advance. �is results in a given pump construction kit
which only consists of speed controlled rotary pumps. For these
pumps, all characteristic curves are known. �e properties of the
pipes and valves like pressure losses and their costs are neglected
to simplify the model.

Furthermore, so-called expected load collectives are considered.
We assume that the transition times and therefore also the transition
costs between the load changes are negligible compared to the total
costs. Hence, the model can be stated as quasi stationary. �e
system must be able to satisfy all loads. Each load out of the load
collective is called a load scenario. A load scenario consists of three
components: An assigned time slice which indicates the excepted

fraction of the system’s operational life this scenario occurs as well
as a demanded volume �ow and a demanded pressure increase.

In this paper, one system is be�er than another if it has lower
life cycle costs. �ese costs are de�ned as the sum of the purchase
costs of each component and their excepted energy costs in all load
scenarios over a given period of time. �erefore, ’good’ systems
distinguish them from low life cycle costs compared to all other
possible systems.

Generally, the problem can be abstracted in two ways. On one
hand, it can be stated using linear constraints as a mixed integer
linear program (MILP) as shown in section 3.2. Hence, the decisions
of the optimization problem can be described by variables: First and
second stage variables. In the �rst stage the optimization program
must decide, whether a component is needed and thus bought. In
the second stage, a bought component can be turned on/o� and
speed controlled to cover all load scenarios during system operation.
On the other hand, the problem can be abstracted as a complete
(mathematical) graph G = (V ,E), with vertices V and edges E.
An edge represents a component from the construction kit and a
vertex represents the possible connections between components.
Furthermore, two additional vertices, the source and the sink, with
corresponding pipes exist. �e complete graph of the construction
kit and two water plugs contains every possible system. �erefore,
each system can be modeled by a sub graph of the complete graph
representing the purchase decisions made for the pumps and pipes.

�e common approach to generate a MILP and to solve it using a
standard MILP solver like CPLEX is not suitable for the investigated
problem. As the instances reach a practically relevant size, large
MILPs are created which cannot be solved in reasonable time by this
approach. �erefore, the special approach we used can be stated
as follows: Use both, the MILP and the graph view simultaneously
and bene�t from both.

On the primal side, we use heuristics, especially local search
algorithms, to obtain good primal solutions. In this paper, we
focus on Simulated Annealing but other local search algorithms,
e.g. Genetic Algorithms or Tabu Search, are possible, too. In this
step, the graph representation is used to de�ne neighborhoods
and the MILP representation is used to evaluate the quality of the
generated systems.

On the dual side, we use a heuristic which is based on prob-
lem speci�c and technical knowledge to relax the generated MILP.
Doing so, we obtain lower bounds.

Finally, both heuristics are combined in a Branch-and-Bound
algorithm to close the optimality gap between the primal and dual
solution. �us, we can obtain provable optimal solutions for the
system design.

3.2 Mathematical Model
As mentioned before the problem can be modeled as a MILP. �e
variables and parameters used are shown in table 1 and 2. �e type
abbreviations stand for ’binary’ (x ∈ {0, 1}) and ’semi-continuous’
(x ∈ [l , r ] ∪ {0}).

min
∑
p∈P

C
pump
p · yp +

∑
s ∈S

(CkWh · As ·
∑
p∈P

(psp ·T )) (7)
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Table 1: Variables of the MILP

Variable Type Description
yp b Buy pump p
yi, j b Buy pipe from pump i to pump j
xsp b Use pump p in scenario s
xsi, j b Use pipe from pump i to pump j in scenario s
nsp sc Speed of pump p in scenario s
qsp sc Volume �ow through pump p in scenario s
hsp sc Pressure increase by pump p in scenario s
psp sc Power consumption of pump p in scenario s
qsi, j sc Volume �ow through pipe from pump i

to pump j in scenario s
hs∗,p sc Pressure before pump p in scenario s
hsp,∗ sc Pressure a�er pump p in scenario s

Table 2: Parameters of the MILP

Parameter Description

C
pump
p Purchase costs for pump p

CkWh Costs per kilowa� hour of electricity
As Share of load scenario s
T Operating life
Qs Volume �ow to be pumped in scenario s
H s
source Inlet pressure in scenario s

H s
sink Outlet pressure in scenario s

Qmin ,Qmax Minimal and maximal volume �ow
Hmin ,Hmax Minimal and maximal pressure
Hp (Q,n) Function for pressure increase H

of pump p
Pp (Q,n) Function for power consumption P

of pump p

y(i, j ) + y(j,i ) ≤ 1 (8)

xsp ≤ yp (9)

xs(i, j ) ≤ y(i, j ) (10)∑
(i, j )∈E

xs(i, j ) ≥ 1 (11)

qsp ≥ Qmin · xsp qsp ≤ Qmax · xsp
hsp ≥ Hmin · xsp hsp ≤ Hmax · xsp
hs∗,p ≥ Hmin · xsp hs∗,p ≤ Hmax · xsp
hsp,∗ ≥ Hmin · xsp hsp,∗ ≤ Hmax · xsp

(12)

qs
(i, j ) ≥ Qmin · xs

(i, j ) qs
(i, j ) ≤ Qmax · xs

(i, j ) (13)

Qs =
∑

(source, j )∈E
qs
(source, j ) Qs =

∑
(i,sink )∈E

qs
(i,sink ) (14)

qsp =
∑

(p, j )∈E
qs
(p, j ) qsp =

∑
(i,p )∈E

qs
(i,p ) (15)

hs∗,p + h
s
p = h

s
p,∗ (16)

±(H s
source − H

s
sink ) ≤ Hmax · (1 − xssource,sink ) (17)

±(H s
source − h

s
∗, j ) ≤ Hmax · (1 − xssource, j )

±(hsi,∗ − H
s
sink ) ≤ Hmax · (1 − xsi,sink )

(18)

±(hsi,∗ − h
s
∗, j ) ≤ Hmax · (1 − xsi, j ) (19)

�e objective function (7) contains two parts, the investment
costs for the system components and their operating costs. �e
investment costs include the purchase costs of the installed pumps.
Pipes have no related costs in this model. �e energy costs result
from the power consumption of each active pump in the corre-
sponding load scenario multiplied by the costs per kilowa� hour
electricity.

Furthermore, constraints exist which ensure that the physical
laws and the general properties of �uid systems are met:

• �e purchase decisions are considered as follows: (8) For
two components (including the source and the sink) there
can be at most one pipe connecting them. (9) A pump
can only be used to satisfy a load scenario if it is installed.
(10) �e same applies for pipes. (11) In each load scenario at
least one pipe must be used to ensure the �ow conservation.

• �e operational bounds must be observed: (12) If a pump is
used, its volume �ow, pressure increase and adjacent pres-
sures must be reasonable. Otherwise they vanish. (13) If a
pipe is used, its volume �owmust be reasonable. Otherwise
it vanishes.

• All valid systems must satisfy the continuity equation:
(14) �e �ow rates at the source and sink must be equal.
(15) �e �ow rate through a pipe must be conserved.

• Bernoulli’s equation must apply: (16)�e pressure increase
of a pump increases the adjacent system pressure behind its
outlet. (17)�e source and the sink can only be connected if
no pressure increase is needed. (18) If a pump is connected
to the source or the sink, the pressure propagates through
the pipe. (19) If two pumps are interconnected, the pressure
propagates through the pipe.

• Additionally, the operation point of each pump must lie on
its characteristic curve. �is can be achieved by generating
a suitable number of points from the empirically known
Hp (Q,n) and Pp (Q,n) functions as base points and forcing
the respective variables on the linearized curves de�ned by
these points. �e used linearization techniques follow [19].

4 FINDING GOOD PRIMAL SOLUTIONS
USING SIMULATED ANNEALING

�e implemented Simulated Annealing algorithm follows [8] with
some modi�cations: Previous calculations are saved and a penalty
term for invalid system topologies is implemented. �e algorithm is
used to �nd good topologies for the �rst stage of the two-staged op-
timization problem (topology problem) as described in section 3.1.
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A�er generating a topology, the binary �rst stage variables are
�xed in the MILP. A�erwards the second stage (operation problem)
is solved optimally for the chosen topology regarding the di�erent
load scenarios using CPLEX. For the topology decision only series-
parallel networks as de�ned in [13] are considered to ensure that
only technically applicable systems are generated.

4.1 Neighborhood Function
�e problem speci�c neighborhood function needed for Simu-
lated Annealing consists of four single neighborhoods: �e replace
(NReplace ), the swap (NSwap ), the add (NAdd ) and the delete neigh-
borhood (NDelete ):

N = NReplace ∪ NSwap ∪ NAdd ∪ NDelete

NReplace : A pump pi of the set of bought pumps is selected
randomly and replaced by a pump pj from the set of unbought
pumps. �e previous predecessors and successors of pi are the new
predecessors and successors of pj. �is neighborhood can only be
created if the network consists of at least one pump and there is at
least one unbought pump.

NSwap : Two di�erent pumps pi and pj of the set of bought
pumps are selected randomly. pi and pj swap positions in the
network. �e previous predecessor and successors of pi are the new
predecessors and successor of pj and vice versa. �is neighborhood
can only be created if the network of bought pumps consists at
least of two pumps.

NAdd : A pump pi of the set of unbought pumps is selected
randomly and it is decided whether pi is connected in series or in
parallel.

If pi is connected in series, a pump out of the set of bought
pumps, the source or the sink is selected. If the source or the sink
is selected, pi is connected in series behind the source and before
the sink, respectively. If a pump pj is selected, pi is connected
before or behind pj . �e source, the sink or pj becomes the new
predecessor and the new successor of pi , respectively and pi adapts
their previous successors and predecessors, respectively.

If pi is connected in parallel, a pump pj of the set of bought
pumps is selected. All predecessors and successors of pj become
the predecessors and successors of pi as well.

�is neighborhood can only be created if the set of unbought
pumps consists of at least one pump and in the case of a parallel
connection if the set of bought pumps consists at least of one pump.

NDelete : A pump pi of the set of bought pumps is selected ran-
domly and is deleted from the network. If a predecessor pi,p or a
successor pi,s of pi only has pi as its successor or predecessor, a
successor and successor of pi , respectively is selected randomly and
becomes the new successor or predecessor of pi,p or pi,s . �is is
necessary to ensure the �ow conservation. Otherwise the connec-
tion is deleted without substitution. �is neighborhood can only
be created if there is at least one pump in the set of bought pumps.

4.2 Generating a starting solution
To generate a starting solution a simple heuristic is used which is
based on the add neighborhood to obtain valid solutions. First, a
minimal network including only a source and a sink is considered.
If this network is already a valid solution, it is accepted as the
starting solution. Otherwise a pump is added to the network. If the

set of unbought pumps is empty and the solution is still not valid,
the whole network will be deleted and the procedure starts again
with a minimal network until a valid topology is found.

4.3 Penalty term
For the considered problem, non-valid solutions have no associated
costs. If the costs were set to +∞, the algorithm would never
accept them as the current solution. In this case, it would not be
possible to reach every solution in the solution space with the
de�ned neighborhood function. To avoid this, a penalty term is
introduced assigning costs to non-valid solutions. If a solution is
non-valid, it is valued with the double costs of the starting solution.
�is factor has two advantages: First the costs are low enough that
non-valid solutions can be used as current solution in the algorithm
and second high enough that they should be higher than the costs
of all valid solutions.

4.4 Saving previous solutions
�e critical step for the runtime of the algorithm are the calculations
for the optimal operation mode for the found topologies performed
by CPLEX. To enhance the runtime of the algorithm a list is created
which holds the last solutions. Every time a calculation is needed,
the list is checked �rst whether this topology has already been
calculated. If not, the system is calculated by CPLEX and added to
the list. If the list reaches the de�ned maximum size, the last entry
will be deleted so that new solutions can be stored.

5 GENERATING TIGHT LOWER BOUNDS
A simple LP-relaxation, i.e. dropping the integrality constraints,
is not suitable to deliver tight lower bounds for realistic instances.
For that reason, an approach is presented which uses problem
speci�c knowledge to obtain tight lower bounds. �e pseudo code
is presented at the end of the section.

In the �rst step the original problem is relaxed by disabling
the coupling constraints which connect the buy- (yp , yi, j ) and the
operation-variables (xsp , xsi, j ), cf. (9) and (10), of the pumps and
pipes for all load scenarios, i. e. only bought components can be
used to satisfy the load scenarios:

xsp ≤ yp (20)

xsi, j ≤ yi, j (21)
A�erwards the problem is split into |S |-many sub problems,

one for every load scenario. �e remaining buy-variables in all
sub problems are substituted by the suitable operation-variables.
A�erwards, each of the |S | sub problems is split again into two sub
sub problems. �ese problems represent the optimization task for
minimizing the energy costs and the investment costs, respectively
for one single load scenario. �e new objective functions for the
sub sub problems are:

min(Ckwh ·
∑
p∈P

As · p
s
p ·T ) (22)

min
∑
p∈P

C
pump
p · xsp (23)
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For each of this 2|S | problems the optimal solution is calculated
by CPLEX. A lower bound arises out of the sum of the energy costs
and the maximum of all investment costs for every load scenario:

z =
∑
s ∈S

(Ckwh ·
∑
p∈P

As · p
s
p ·T ) +max

s ∈S
(
∑
p∈P

C
pump
p · xsp ) (24)

�is is obviously a valid way to achieve lower bounds: �e
energy costs for one load cannot be lower than those which arise
for the decoupled case because this is also the con�guration with
minimal costs for the original problem in the given load scenario.
�erefore, the sum of these energy costs cannot be higher than in
the original problem. Given the fact, that the optimal system for
the original problem must be able to operate in every load scenario,
the investment costs cannot be lower than the maximum of the
investment costs for every decoupled load scenario because this is
the con�guration with minimal costs to serve the ’most challenging’
load scenario.

Let P0 be the original problem
Let f be the objective function
Disable coupling constraints for P0
Split P0 into P1, ..., P |S | one for each load scenario s
Lower Bound LB ← 0
Energy-Costs EC ← 0
Invest-Costs IC ← 0
for each k ∈ {1...|S |} do

Replace buy- with operation-variables for Pk
Generate topology problem Tk for Pk
Generate operation problem Ck for Pk
EC ← EC + f (Tk )
if IC < f (Ck ) then
IC ← f (Ck )

end if
end for
LB ← EC + IC

6 CLOSING THE GAP USING
BRANCH-AND-BOUND

Based on the basic Branch-and-Bound algorithm, as described in [9],
a method using problem speci�c knowledge to obtain optimal so-
lutions is presented. �e Simulated Annealing algorithm is used
to obtain a good starting solution and by relaxing the problem we
generate lower bounds (bounding function). During the procedure,
the disabled coupling constraints were restored successively.

�e calculation and selection of the nodes are based on the eager
strategy combined with the best-�rst-search (BeFS) strategy for the
Branch-and-Bound algorithm.

If a new valid solution is found, it is checked whether it is a new
upper bound. In a valid solution only those pumps are used for
operation which are also bought and therefore their purchase costs
are part of the investment costs of the system.

Unexplored (active) nodes are branched based on the following
branching rule. For these nodes so-called con�icting pumps exist.
�ese are pumps which are used for operation but are not bought
and their costs are not part of the investment costs. �e branching
rule for the active nodes is de�ned as follows: A pump out of the set

of con�icting pumps is selected randomly. For the �rst sub problem,
the selected con�icting pump is not bought and therefore not used
for operation. Hence, the values of its binary buy-variable and
operation-variables are �xed to 0. For the second sub problem, the
selected con�icting pump is bought and can be used for operation.
Hence, its buy-variable is �xed to 1. �e operation-variables are
not e�ected in this case because the pump might or might not be
used for operation.

A�er exploring all active nodes, the current upper bound is the
provable optimal solution of the original problem.

Calculate global Upper Bound UB
Let n0 be the original problem
Calculate Lower Bound of n0 LB (n0)
Let RELAX (n0) be the optimal solution for relaxed n0
ActiveNodes AN ← AN ∪ {n0}
while AN , ∅ do

Take ni ∈ AN with LB (ni ) ≤ LB (nj ) ∀ nj ∈ AN
Take a pump pp from ni which is used but not bought
Split ni into two child nodes cn0, cn1
Fix buy-variable of pp to 0 for cn0 and to 1 for cn1
for each cnk ∈ {cn0, cn1} do
AN ← AN ∪ {cnk }
Calculate LB (cnk )
if LB (cnk ) ≥ UB then
AN ← AN \{cnk }

else if RELAX (cnk ) is a valid solution for n0
AN ← AN \{cnk }
UB ← LB (cnk )
end if

end for
AN ← AN \{ni }

end while
Optimal Solution OS ← UB

7 TEST CASES
To test the developed approach, test cases with a realistic character
were designed. In all test cases a booster station was used which
was directly connected to the water supply. Hence, the required
pressure increase supplied by the booster station was the total
pressure increase needed minus the supply pressure. If necessary,
normal zones and reducing valves were used to avoid overpressure.
All calculations are based on the DIN standards 1988-3 and 1988-5
described in [1, 2, 12]. Furthermore, the usage period was set to
10 years with assumed mean energy costs of 0.3 Euro per kWh.

To generate the test cases, di�erent characteristics were varied
and combined:

• �e height and usable area of the buildings
• �e usage of the building with the corresponding load

pro�le
• �e conditioning of hot water
• �e available pump kit

�is results in 24 di�erent test cases. �e names of the test cases
are derived from the abbreviations for the respective characteristics.
In the following, these characteristics are speci�ed.
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7.1 Buildings
Two di�erent �ctional buildings are used. Both are skyscrapers but
vary in two characteristics. �e �rst building (B15) is 15 �oors high
and each �oor has a usable area of 350 sq. m. �e second building
(B10) is 10 �oors high and has a usable area of 700 sq. m for each
�oor. �is means that di�erent pressure increases and maximum
volume �ows are required as the building’s height and usable area
e�ect the pressure losses and demanded volume �ows.

7.2 Usage
�e buildings are either used as a so-called hospital (H ), residential
(R) or o�ce building (O ). All usage types di�er regarding their
furnishing and consumption behavior. Hence, di�erent maximum
volume �ows, pressure losses and load pro�les occur. Depending
on the usage four or �ve load scenarios were distinguished.

7.3 Hot water conditioning
�e conditioning of hot water either occurs in so-called centralized
storage water heaters (C ) or decentralized group water heaters (D).
�ese concepts result in di�erent pressure losses along the piping.

7.4 Available pump kit
For each test case one of two disjoint pump kits (including �ve
pumps each) is available. All of them are speed controlled single
rotary pumps and taken from the Wilo Economy MHIE model se-
ries. �e �rst kit includes the types from 203 to 403 of the model
series (1) and the second kit the types from 404 to 1602 (2) with
di�erent prices and characteristics.

8 RESULTS
All calculations were performed on a MacBook Early 2015 with a
2.7 GHz Intel Core i5 and 8 GB 1867 MHz DDR3 memory.

For the Simulated Annealing a cooling schedule with an expo-
nential cooling function,T (t ) = T0 ·α t , was used. For the parameter
α we chose a value of 0.9. �e initial temperature T0 was set to
10, 000 and 100 iterations were performed at each temperature. �e
algorithm stopped when T reached the threshold Tstop of 1.

8.1 Solutions
In this section, the quality of the solutions found by the Simulated
Annealing algorithm and the lower bounds is presented.

8.1.1 Simulated Annealing. Table 3 shows the objective values
of the best solutions found by Simulated Annealing (zSA). Also, the
optimality gap (дapz ) between the objective value and the lower
bound (z) is presented as well as the real gap (дapz∗ ) between the
found primal solution and the optimal solution (z∗) obtained by
Branch-and-Bound. �e mean optimality gap for all test cases was
9.27% with a standard deviation of 6.37%. In 14 out of 24 cases
the optimal solution was found by the implemented Simulated
Annealing algorithm. �e actual mean deviation was 0.69% with a
standard deviation of 1.08%. However, if the optimal solution was
not found, the mean deviation was 1.65% with a standard deviation
of 1.1%.

8.1.2 Lower Bounds. Furthermore, the lower bounds were com-
pared to the optimal solution. �e mean deviation between the

Table 3: Simulated Annealing, lower bounds, optimal solu-
tion - solutions and gaps

Test case zSA z дapz z∗ дapz∗

B10 O D 1 6007.54 5962.32 0.76% 6007.54 0.00%
B10 O D 2 6492.46 6026.12 7.74% 6492.46 0.00%
B10 O C 1 4370.36 4024.15 8.60% 4370.36 0.00%
B10 O C 2 4712.02 4224.70 11.54% 4712.02 0.00%
B15 O D 1 10069.90 10015.90 0.54% 10069.90 0.00%
B15 O D 2 9115.01 8 116.26 12.31% 9115.01 0.00%
B15 O C 1 6571.15 6162.81 6.63% 6571.15 0.00%
B15 O C 2 7002.53 6288.44 11.36% 7002.53 0.00%
B10 R D 1 24601.00 24004.30 2.49% 24518.10 0.34%
B10 R D 2 23516.20 22215.40 5.86% 23516.20 0.00%
B10 R C 1 12711.90 12334.20 3.06% 12711.90 0.00%
B10 R C 2 13968.60 12157.00 14.90% 13968.60 0.00%
B15 R D 1 29360.00 27570.20 6.49% 29319.40 0.14%
B15 R D 2 28407.00 24457.10 16.15% 28407.00 0.00%
B15 R C 1 20505.40 19750.90 3.82% 20486.40 0.09%
B15 R C 2 19909.10 17315.50 14.98% 19909.10 0.00%
B10 H D 1 25068.10 23912.40 4.83% 24607.60 1.87%
B10 H D 2 23704.70 22127.50 7.13% 23287.70 1.79%
B10 H C 1 13315.10 12659.00 5.18% 13070.80 1.87%
B10 H C 2 13946.80 11168.80 24.87% 13946.80 0.00%
B15 H D 1 27936.80 26651.30 4.82% 27210.70 2.67%
B15 H D 2 28186.40 25001.00 12.74% 27377.30 2.96%
B15 H C 1 21380.80 18942.90 12.87% 20974.60 1.94%
B15 H C 2 21649.00 17637.20 22.75% 21041.10 2.89%

lower bounds and the optimal solution was 7.45% with a standard
deviation of 5.23%. �e maximum deviation was 19.92% while the
minimum was just 0.54%.

8.2 Runtime
In this section, the runtime of all three procedures is presented. It
should be noted that the runtime of the Branch-and-Bound algo-
rithm includes the runtime of Simulated Annealing as it generates
the starting solution for the Branch-and-Bound.

8.2.1 Simulated Annealing. �e Simulated Annealing algorithm
needed a mean of 475.37 seconds to terminate. High deviations
occurred. �e maximum runtime was 2 411.58 seconds, while the
minimum runtime was only 85.34 seconds. �is results from the
fact that CPLEX needs much more time to solve the operation
problem if the created neighborhood is large in terms of many
bought components.

8.2.2 Lower Bounds. Generating lower bounds took 660.97 sec-
onds in mean. In most cases this was slightly more time than the
Simulated Annealing algorithm needed to �nd good solutions. �e
highest runtime was 1 582.3 seconds while the lowest runtime was
only 207.86 seconds.

8.2.3 Branch-and-Bound. �e mean runtime for generating op-
timal solutions was 9 968.8 seconds. �e maximum runtime was
21 472.9 seconds and the minimum runtime only 4 148.12 seconds.
If the initial upper bound found by the Simulated Annealing was
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already the optimal solution, the mean runtime was 8 804.11 sec-
onds and therefore 31.75% faster than in the opposite case where
the mean runtime was 11 599.36 seconds.

9 CONCLUSIONS
In this paper, we presented an approach to optimize booster stations
in reasonable time. Using primal and dual heuristics, we are able
to �nd good primal and dual solutions for the system design in
an appropriate amount of time even for relatively large instances.
Furthermore, we presented a Branch-and-Bound algorithm which
combines both heuristics to obtain provable optimal system designs
regarding a given objective. �e presented approach was validated
for test cases with practically relevant size and di�erent demands
for the pressure increase at time-variant �ow rates with four to �ve
di�erent load scenarios. �e runtime in the range of minutes to one
hour for the primal and dual heuristics as well as the range of one
to six hours for obtaining optimal solutions was quite reasonable in
both cases and of practical relevance. In further research, we plan
to test our approach with other primal heuristics such as Genetic
Algorithms or Tabu Search. �is will allow us to investigate their
in�uence on the runtime. Additionally, we plan to expand our
approach to other technical applications.
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