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ABSTRACT
�is research presents a novel framework for evolving Multi-Objective
Neural Networks using Di�erential Evolution (MONNDE). In re-
cent years, the Di�erential Evolution algorithm has shown to be an
e�ective and robust global optimisation algorithm. �e algorithm
uses evolutionary operators to optimise complex and continuous
problem spaces and has been applied to a range of problems, re-
cently including neural networks. �is research continues this
trend by utilizing di�erential evolution to evolve neural networks
capable of addressing dynamic problems with multiple objectives.
�e proposed MONNDE framework is applied to the Dynamic Eco-
nomic Emission Dispatch (DEED) problem. �is problem consists
of scheduling a group of power generators in a manner that min-
imises both cost and emissions produced by the generators. �e
power generators must also meet a series of constraints relating
to their power output, power demand and network loss. �e pro-
posed MONNDE is performs very competitively when compared
to algorithms such as NSGA-II, PSO, PSOAWL and MARL.
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1 INTRODUCTION
In recent years, Di�erential Evolution (DE) has shown to be an
e�ective and robust global optimisation algorithm. It is a relatively
new algorithm �rst proposed in 1997 by Storn and Price [32] and
has had success in many areas since its �rst proposal, from energy
[12] to robotics [7]. �e algorithm uses evolutionary principles to
iteratively search for the best solution to complex and continuous
problems.

One such problem that di�erential evolution is well suited for is
the training of Neural Networks (NN). Neural networks are biolog-
ically inspired function approximators that are routinely used in
machine learning research [6]. �ey consist of layers of connected
neurons that propagate an input signal through the network to
produce some output. By training the weights of these networks,
they can be used to approximate functions. �is is useful for a wide
range of problems, e.g. classi�cation, control, forecasting, etc. [11].
�is research will focus on applying di�erential evolution to train
neural networks.

Much research has already been conducted applying di�eren-
tial evolution to both feed forward [1, 14] and recurrent neural
networks [10, 26]. �ere has been no research however applying
di�erential evolution to neural networks to address multi-objective
problems. In standard single objective optimisation, optimisation
algorithms are concerned with �nding the single best solution that
maximises or minimises some �tness function. Multi-objective op-
timisation is concerned with �nding the range of solutions that
optimise each objective with varying levels of signi�cance. �is
solution set is known as the Pareto optimal set [16]. Multi-objective
control is then concerned with dynamic problems where the envi-
ronment is changing.

�e problem that is the focus of this research is the Dynamic Eco-
nomic Emission Dispatch (DEED) problem [5]. �e DEED problem
is a dynamic multi-objective scheduling problem in which power
generators must be scheduled in a manner that both minimises
operations cost and emission of harmful atmospheric pollutants.
�e task of power generation is signi�cant for utility companies.
It is vital that electricity is produced both in a cost-e�ective and
environmentally friendly manner. It is also a very di�cult task due
to many di�erent factors in the power generation process. �ese
include: variation in the power demand throughout the day, power
loss within the transmission lines, varying e�ciency levels for dif-
ferent power generators with regard to cost and emissions, each
generator has a di�erent power generation limit and also a di�erent
ramp limit for increasing and decreasing its power output from
hour to hour [5]. It is critically important that these power gener-
ators are scheduled e�ciently due to the large potential increase
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in cost which would be incurred as a result of sup optimal power
generator scheduling.

When generating electricity, the environmental cost must also
be considered in addition to the �nancial cost. �e emission of
harmful atmospheric pollutants such as sulphur dioxide (SO2) and
nitrogen oxide (NO) is a familiar and heavily discussed problem in
the world today [36]. Many countries world wide have pledged to
reduce their negative impact on the environment [35]. Minimising
the emissions of pollutants resulting from power generation can
signi�cantly contribute towards achieving this. �e optimisation of
both cost and emission from power stations is a con�icting problem
however.As the optimisation algorithm approaches the optimal
solution for each objective a trade o� must be made. A solution
that improves upon the cost of power generation will result in a
deterioration in terms of the emissions produced and visa versa.
Approaches to addressing these sorts of problems involve producing
the Pareto Optimal set of solutions which are all considered equally
optimal [16].

�is research lies at the intersection between many di�erent
areas: evolutionary computing, multi-objective optimisation, ma-
chine learning and energy generation. �e contributions of this
paper are as follows:

(1) �e proposal of a novel Multi-Objective Neural Network
trained with Di�erential Evolution (MONNDE) framework.
�is framework will allow for the generation of the optimal
set of solution for dynamic multi-objective problems.

(2) �e application of the proposed MONNDE framework to
the problem of power generation, in particular the DEED
problem. �e proposed MONNDE framework will be com-
pared to current state of the art approaches.

�e rest of this paper will be structured as followed: Section 2
will describe the Di�erential Evolution algorithm. Section 3 will
give an overview on Neural Networks. Section 4 will outlined
the area of Multi-Objective optimisation. Section 5 will detail the
Dynamic Economic Emission Dispatch problem. Section 6 will
describe the implementation of the proposed MONNDE framework
�e results of these experiments conducted will be presented in
Section 7. Finally, Section 8 will draw conclusions based on these
results and outline potential future research.

2 DIFFERENTIAL EVOLUTION
Di�erential Evolution is a state of the art global optimisation algo-
rithm. �e algorithm was �rst proposed by Storn and Price in 1997
[32]. DE was proposed for optimizing large and continuous problem
spaces. An advantage of DE over more traditional gradient based
methods is that DE does not rely on any gradient information and
is applicable to noisy problems. �e robustness and e�ectiveness of
DE makes it a natural choice for optimizing network weights. DE
has been applied to many real world problems such as robotics [7]
and energy systems [12]. DE has previously been applied to neural
network weight optimisation [1, 10, 14, 26] but not in a dynamic
multi-objective se�ing. Di�erential evolution uses evolutionary
methods to �nd the optimum solution.

At each iteration, the current position (solution) is combined
with three other distinct positions to produce a new position yi .
�is is described further in Algorithm 1. If the new position has a

be�er �tness than the previous position, the previous position is
replaced. �is process is repeated for a predetermined number of
iterations. Algorithm 1 outlines the algorithms operation where
CR is the crossover probability and F is the di�erential weight.

Initialize X agents with random positions
while Iteration t <Tmax do
for Agent = 1 to N do

Select 3 other agents A,B and C
Select random dimension index R
for dimension = 1 to D do

generate random number r ∈ [0,1]
if r < CR Or i = R then

new position yi = ai + F × (bi − ci )
else

yi = xi
end if

end
if �tness(y) < �tness(x) then

replace x with y
end if

end
end
Return best solution
Algorithm 1: Di�erential Evolution (DE) Algorithm

3 NEURAL NETWORKS
Neural Networks (NN), is a sub�eld of research within the �eld of
Machine Learning and are inspired by the biological brain [6, 11].
Since their �rst proposal, NNs are have been applied to a range
of problems such as classi�cation, regression, control, online and
o�ine learning and robotics. �e standard feed forward network
consists of an input layer of neurons, one or more hidden layer of
neurons and an output layer. �e network receives information in
the form of a normalised signal into the input layer. �is signal
is carried through the connected layers of neurons via weighted
synapses, or connections. �e network then outputs the signal
through the output layer. �e most commonly used algorithm used
to train the network weights is the backpropagation method [13].
However this method is only suitable for supervised learning as
it requires a set of labelled data. �is research will implement a
particular type of neural network known as a Recurrent Neural
Network (RNN), illustrated in Figure 1. Recurrent networks di�er
from the more standard feed forward networks in that they have
recurrent connections between hidden neurons. �ese recurrent
connections give the system memory which makes them partic-
ularly well suited to the DEED problem, which will be outlined
later.

Information is fed into the network through the input layer of
neurons. �is signal is then passed to the neurons in the hidden
layer of the network and is then outpu�ed from the �nal output
layer. �is process is commonly referred to as a forward pass. At
each forward pass, the hidden neurons retain information from
the previous forward pass which is incorporated in their recurrent
connections. By conducting parameter sweeps, it was found that
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a network con�guration of 5 hidden neurons provided good per-
formance for the DEED problem. �is con�guration consists of
80 network weights which must be optimised, i.e. 15 connections
between the input and hidden layer, 20 recurrent connections and
45 connections between the hiddne and output layer.

Figure 1: Recurrent Neural Network. �is �gure depicts the
structure of a fully connected recurrent neural network. Neurons
are connected by weighted connections (or synapses) that pass
signals between neurons. �e recurrent connections between the
hidden neurons give the network memory.

As the signal is propagated through the network, its strength is
adjusted by the weights between neurons. Aside from the input
layer, a neuron in any other layer will have as input, the sum of the
weighted signals that are outpu�ed from other connected neurons.
A neurons input is described in Equation 1.

vj =
N∑
i=1

wi, jai (1)

Where vj is the input to a neuron in the jth layer, layer i is the
preceding layer to j that contains N neurons, each neuron in layer
i has output ai and each of these output signals are weighted by
the value wi, j as they are passed to each neuron in layer j.

Each neuron ai outputs a value between 0 and 1. �is output
value is determined by the activation function of the neuron. �e
most commonly used action function is the sigmoid (or logistic)
outlined in Equation 2

aj =
1

1 + exp−vj
(2)

4 MULTI-OBJECTIVE OPTIMISATION
Multi-objective optimisation is a sub�eld within optimisation re-
search that is concerned with problems that contain two or more
objectives. �ese problems have increased complexity due to the
con�ict that arrives when optimising these objectives. As the prob-
lem is optimised, there comes a point where by improving upon
one object will result in a deterioration of the other objectives. Each
of the solutions optimise the di�erent objective with a varying level
of signi�cance. �ey are all considered equally optimal as long as

they optimise at least one of the objectives be�er than any other
solution. �ese optimal solutions are referred to as Pareto optimal
solutions [16]. Figure 2 illustrates the Pareto optimal set.

Figure 2: Pareto Optimal Front. �is graph illustrates the loca-
tion of the Pareto optimal front when two objectives F1 and F2 are
being minimised. All of the solutions in grey are sub optimal and
are dominated by the red Pareto optimal solutions.

4.1 Applications
�e multi-objective framework has proven to be very popular in re-
cent years. It has found a wide range of applications including: stock
portfolio management [3], economics [33] and design [20]. �e
multi-objective paradigm presents the decision maker with a range
of potential solutions rather than just a single optimal solution. �e
ability to present the decision maker with choice is advantageous,
and even crucial, in many domains. A natural example would be
for investment �rms. Investing a clients �nances is a balancing
act between risk and potential pro�t. Multi-objective optimisation
allows the investor to examine the expected returns if a high risk
investment policy is implemented versus a safer investment policy.

4.2 Algorithms
Since the multi-objective paradigm came about, many of the well
known single objective algorithms have been modi�ed to �t the
multi-objective framework. One of the most well known multi-
objective algorithms is the Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [8] which is an extension of commonly used genetic
algorithms [4]. �e Di�erential Evolution algorithm described in
the previous section has been extended for multi-objective optimisa-
tion with the Pareto-frontier Di�erential Evolution (PDE) algorithm
[2]. �e well known Particle Swarm Optimisation algorithm [15]
has been extended with the Multi Objective Particle Swarm Optimi-
sation (MOPSO) variant [25]. �ere are numerous other examples
such as Multi Objective Reinforcement Learning [34], Pareto Ant
Colony Optimisation [9], Multi Objective Simulated Annealing [28],
etc.
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5 DYNAMIC ECONOMIC
EMISSION DISPATCH

�e DEED problem is a large and dynamic multi-objective opti-
misation problem and is therefore suitable to test the proposed
MONNDE algorithm. �e problem contains multiple constraints
which makes the problem more di�cult to solve. �ese include both
hard and so� constraints. �e problem also has equality constraints
such as the power demand, and also inequality constraints such as
the generator operation limits and ramp limits. �e problem con-
sists of optimising the scheduling of a group of power generators
over a length of time in a manner that minimises both cost and
emissions [5]. �e cost function f1 in Equation 3 represents the
hourly running cost of all power generators.

f1 =
N∑
i=1
[ai + biPim + ciP2

im + |disin{ei (P
min
i − Pim )}|] (3)

Where M = 24 is the number of hours, N = 10 refers to the
number of power generators, ai , bi , ci , di and ei are all cost coef-
�cients associated with each generator i , the power output from
generator i at timem is de�ned as Pim and the minimum possible
power of generator i is de�ned as Pmin

i . �e emissions function f2
in Equation 4 represents the amount of emissions produced by all
power generators per hour.

f2 =
N∑
i=1
[αi + βiPim + γiP2

im + η expδPim ] (4)

Here αi , βi , γi , ηi and δi are the emission coe�cients associated
with each generator i . All solutions are subject to the equality
constraint in Equation 5 that the total power output must be equal
to the sum of the power demand and transmission loss.

N∑
i=1

Pim = PDm + PLm (5)

Where PDm represents the total power demand at time M and
PLm represents the power loss within the transmission lines at
time M . �ere are two inequality constraints which any potential
solutions are subject to: generator operating limits and generator
ramp limits. �e operating limits are de�ned in Equation 6.

Pmin
i ≤ Pim ≤ Pmax

i (6)

Here Pmax
i and Pmin

i refer to the maximum and minimum power
output of each generator, i ∈ N and m ∈ M . �e ramp limits of
each generator are outlined in Equation 8.

Pim − Pi(m−1) ≤ URi (7)
Pi(m−1) − Pim ≤ DRi (8)

Here URi and DRi are the ramp up and ramp down limits for
each generator respectively, i ∈ N and m ∈ M . �e �rst power
generator (i = 1) will be the slack generator, which will react to
�uctuations in the power demand. �e power output of the slack
generator, P1m , can be calculated by solving the quadratic equation
9.

0 = B11P
2
1m+(2

N∑
i=2

B1iPim − 1)P1m+

(PDm +
N∑
i=2

N∑
i=2

PimBi jPjm −
N∑
i=2

Pim )

(9)

Further details of the derivation of Equation 9 along with all
coe�cient values can be found in the work of M. Basu [5].

Each neural network output represents a power generator output
at a given time. �e slack power generator is not a network output
as it is a reactive variable calculated using Equation 9. �e power
demand for the 24 hour period is illustrated in Equation 3.

Figure 3: 24 Hour Power Demand. �is graph illustrates the
power demand that must be met by the power generators over a 24
hour period.

5.1 Constraint Handling
Balancing the generated power with the power demand and power
loss is self constrained due to the slack power generator (Equation
5).

�e power generator operating limits for the 9 non slack gen-
erators (Equation 6) will be handled by normalising the network
outputs between the maximum and minimum possible generator
outputs.

�e slack generator operation limits constraint and generator
ramp limit constraints will be enforced using the static penalty
method [29] outlined in Equation 10. �is penalty function will
be incorporated into the objective function in order to train the
network to avoid solutions which are not valid.

fp =
N∑
i=1

C(|hi + 1|δi ) (10)

WereN = 11 is the number of constraints per hour handled using
this method (1 slack generator operation limits and 10 generator
ramp limits), C = 10E6 is the violation constant, hi is the violation
of each constraint and δ = 0 if there is no constraint violation in a
given dimension and δ = 1 if a constraint is violated. �e violation
constant C = 10E6 was selected so that violations would have a
signi�cant impact on the �tness of the solution produced by the
network.
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6 MONNDE
�is section will outline the proposed MONNDE framework (Multi-
Objective Neural Network trained with Di�erential Evolution). �e
neural network implemented in this research is a fully connected
recurrent neural network with 5 hidden neurons, as determined by
parameter sweeps. �e network will receive 3 inputs and have 9
outputs. �e 3 inputs correspond to: 1) �e current power demand.
2) �e power demand at the previous time step. 3) �e current
value objective weight value w . �e weight w will change from 0
to 1 in increments of 0.1. �is will train the network to produce
the Pareto optimal set of solutions that vary the importance of cost
and emissions. �e 9 outputs correspond to the 9 non slack power
generators. �e network will consist of a total of 80 connections,
i.e. 80 weights that must be optimised by di�erential evolution.

In order for the deed problem to be optimised, the cost, emissions
and penalty functions will be combined using a linear combination
to form a single objective function to be minimised [27]. By varying
the value of the objective weight w , the neural network will be
trained to produce the Pareto optimal set.

F = w f1 + (1 −w)λf2 + fp (11)

�e �tness function F is the hourly �tness function. Where f1
is the cost function, f2 is the emissions function, fp is the penalty
function, w is the weight and λ = 10 is the scaling factor [5]. �e
purpose of λ is to ensure each objective has equal in�uence.

�e MONNDE algorithm will run for 106 iterations, to ensure
that the network is fully trained. Each iteration will consist of eval-
uating 24 distinct states (power demands) as the objective weightw
is varied from 0 to 1 for each state. A candidate position for the DE
algorithm will be of size 80 and will correspond to a con�guration
of network weights. �e �tness of a position corresponds to the
cumulative �tness F (Equation 11) over the range of w over 24
hours. �e crossover probability CR = 0.9 and di�erential weight
F = 0.5, as determined by parameter sweeps.

7 RESULTS
In this section, the results of the conducted experiments will be
presented. �ese will then be discussed and the performance of
the proposed MONNDE will be compared to other state of the art
approaches. �e two tailed t-test was conducted to establish if the
performance di�erence between any two algorithms is statistically
signi�cant. �is is conducted using a signi�cance level of 5%.

As depicted in Figure 4 shows the average 24 hour Pareto front.
�is �gure clearly demonstrates that MONNDE is capable of suc-
cessfully producing a range of solutions with varying levels of
signi�cance a�ributed to each objective. As previously mentioned,
each solution along the Pareto front presented in Figure 4 is con-
sidered equally optimal.

Figures 5 & 6 illustrate the locations of the Pareto fronts pro-
duced by MMONDE on an hourly basis for hours 1 - 12 and 13 - 24
respectively. It can be seen how the locations of the Pareto optimal
sets change hourly depending on the current demand for power.
�e large variance in power demand result in large variance in cost
and emissions produced. �e advantage of MONNDE over many
of the previous methods in the literature, is its ability to produce

Figure 4: 24 Hour Pareto Front Averaged Over 10 Runs. �is
graphs illustrates the average Pareto front produced by the MON-
NDE over the total 24 hour period. Each point represents the total
24 hour cost and emissions for a particular weighting of each ob-
jective.

Figure 5: Locations of Pareto Fronts (Hours 1-12). �is graph
illustrates the locations of the Pareto optimal fronts for the cost
and emissions for hours 1 - 12.

these hourly Pareto fronts as needed without any further optimisa-
tion needed. �e proposed MONNDE approach approximates the
problem as opposed to optimisation methods which simply �nd the
optimum solution for the problem in its current form. �is means
that once MONNDE is trained to �nd the Pareto optimal solution
of historic power demand information, it is capable of producing
solutions as needed with no further training.

Table 1 presents the best solution produced by MONNDE when
an equal weighting is given to cost and emissions ,i.e. w = 0.5
in Equation 11. In this table, the unit of power P is the megawa�
(MW), cost is $ × 106 and emissions are lb × 105. �is table clearly
demonstrates how MONNDE discovered that it is favorable to run
particular power generators at maximum capacity constantly. Table
1 reveals that MONNDE found it to be optimal for power generators
7, 8, 9 & 10 to be maximising their outputs. �is is consistent with
previously observed results [5, 23].

Table 2 presents the best and average performance of MON-
NDE when objective weight w = 0.5. �e average cost produced
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Table 1: Best Solution forw = 0.5

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost Emission Violations
1 150.3707 135.0034 77.1484 90.3745 96.3520 121.5794 130.0000 120.0000 80.0000 55.0000 0.0626 0.0387 0
2 150.2386 135.0813 86.0664 114.6077 115.0397 146.4500 130.0000 120.0000 80.0000 55.0000 0.0659 0.0427 0
3 159.5925 140.5467 126.5353 164.3432 152.7878 157.8043 130.0000 120.0000 80.0000 55.0000 0.0742 0.0545 0
4 186.9033 169.7496 167.8469 195.5288 177.5522 159.5007 130.0000 120.0000 80.0000 55.0000 0.0842 0.0703 0
5 202.8397 190.0110 185.3834 208.4108 188.8184 159.8111 130.0000 120.0000 80.0000 55.0000 0.0895 0.0795 0
6 242.0817 226.1754 218.9330 234.0979 211.2370 159.9879 130.0000 120.0000 80.0000 55.0000 0.1005 0.1016 0
7 248.9272 246.7317 241.5329 250.5879 223.6012 159.9989 130.0000 120.0000 80.0000 55.0000 0.1063 0.1151 0
8 259.9971 268.0293 264.4474 265.5643 232.5495 159.9999 130.0000 120.0000 80.0000 55.0000 0.1127 0.1303 0
9 289.2804 322.5159 308.2810 288.6871 241.3566 160.0000 130.0000 120.0000 80.0000 55.0000 0.1257 0.1668 0
10 332.9179 360.7606 325.0965 295.4547 242.6199 160.0000 130.0000 120.0000 80.0000 55.0000 0.1381 0.1971 0
11 383.6473 391.3601 333.0023 298.1316 242.9070 160.0000 130.0000 120.0000 80.0000 55.0000 0.1493 0.2344 0
12 418.2559 402.7020 335.0032 298.7371 242.9498 160.0000 130.0000 120.0000 80.0000 55.0000 0.1568 0.2650 0
13 377.0143 368.3784 327.3842 296.2660 242.7218 160.0000 130.0000 120.0000 80.0000 55.0000 0.1452 0.2174 0
14 308.0193 313.6257 302.1461 285.8633 240.6315 160.0000 130.0000 120.0000 80.0000 55.0000 0.1262 0.1657 0
15 262.6231 268.3902 263.0722 264.5555 231.9882 159.9999 130.0000 120.0000 80.0000 55.0000 0.1129 0.1301 0
16 203.8970 216.4342 206.6278 224.1218 202.5693 159.9575 130.0000 120.0000 80.0000 55.0000 0.0942 0.0904 0
17 194.3953 192.9490 187.6793 210.0715 190.2678 159.8354 130.0000 120.0000 80.0000 55.0000 0.0892 0.0797 0
18 242.6655 226.1275 218.7349 233.9216 211.0837 159.9875 130.0000 120.0000 80.0000 55.0000 0.1006 0.1016 0
19 261.7306 267.1480 263.9773 265.3165 232.4293 159.9999 130.0000 120.0000 80.0000 55.0000 0.1128 0.1303 0
20 303.9873 343.9613 318.9194 293.1247 242.2643 160.0000 130.0000 120.0000 80.0000 55.0000 0.1312 0.1811 0
21 306.5244 314.2489 302.6769 286.1182 240.7018 160.0000 130.0000 120.0000 80.0000 55.0000 0.1262 0.1658 0
22 226.5929 234.3029 222.7162 236.1577 212.6291 159.9898 130.0000 120.0000 80.0000 55.0000 0.0998 0.1019 0
23 150.6551 157.4325 155.2731 186.4686 170.0162 159.1512 130.0000 120.0000 80.0000 55.0000 0.0778 0.0625 0
24 150.3991 136.1200 104.7717 142.3995 135.8462 154.8303 130.0000 120.0000 80.0000 55.0000 0.0698 0.0479 0

Cost 2.5518 Emission 2.9704

Figure 6: Locations of Pareto Fronts (Hours 13-24). �is graph
illustrates the locations of the Pareto optimal fronts for the cost
and emissions for hours 13 - 24.

Table 2: NN-DE Average Cost and Emissions (w = 0.5)

Algorithm Cost Emissions
MONNDE (Best) 2.5518 2.9704
MONNDE (Avg) 2.5706 3.0005

SPSO [23] 2.6044 3.1075
PSOAWL [23] 2.5463 2.9455
NSGA-II [5] 2.5226 3.0994
MARL [18] 2.6641 3.3255

by MONNDE is 2.5706 ± 0.0146 while the average emissions is
3.0005± 0.0168. �e performance of MONNDE is compared to both

pure optimisation approaches (i.e., SPSO [15], PSOAWL [22, 24]
and NSGA-II [8]) and a similar model based approach (i.e., MARL
[19]). MONNDE is similar to MARL (Multi Agent Reinforcement
Learning) in the sense that each approach involves developing a
model of the dynamic optimisation problem. Each of these methods
involve training a model to approximate the problem so that a�er
a training period has been completed, the model can produce a
solution for a given power demand with no further optimisation
required. MONNDE performs signi�cantly be�er than MARL in
terms of both cost and emissions. Both the average and best solution
produced by MONNDE dominates the best MARL solution.

When comparing the results of MONNDE to pure optimisation
approaches, MONNDE performs be�er than SPSO, worse than
PSOAWL and equal to NSGA-II. In multi-objective terms, the MON-
NDE solution dominates that of SPSO while being dominated by
PSOAWL. MONNDE is non domimant when compared to NSGA-II,
i.e., they are equally optimal. �is demonstrates that the proposed
MONNDE is highly competitive when compared to state of the art
optimisation algorithms.

8 CONCLUSION
�is research aimed to investigate developing a model capable of
handling multiple objectives in a dynamic environment such as
power generation. In particular, this research applied di�erential
evolution to a recurrent neural network in order to approximate
the dynamic economic emission dispatch problem. �e proposed
MONNDE framework (Multi-Objective Neural Network trained
using Di�erential Evolution) is capable of producing the range of
optimal solutions known as the Pareto optimal set. A�er training,
the model developed by MONNDE is capable of producing a Pareto
optimal solution set for any given power demand with no further
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optimisation required. �is is not the case when simply applying
optimisation algorithms. �e proposed MONNDE performs signif-
icantly be�er than other model based approaches such as Multi
Agent Reinforcement Learning (MARL) and produces highly com-
petitive solutions when compared to state of the art optimisation
algorithms such as Particle Swarm Optimisation (PSO) and Genetic
Algorithms (GA). In summary, the contributions of this research
are:

(1) A novel multi-objective neural network modelling frame-
work is evolved using di�erential evolution. �e proposed
MONNDE has many potential applications such as sequen-
tial decision making, control and optimisation.

(2) �e performance of the proposed MONNDE performs sta-
tistically be�er than other model based approaches such
as MARL. When compared to solutions produced by state
of the art optimisation algorithms (SPSO, PSOAWL and
NSGA-II), MONNDE produces highly competative solu-
tions.

8.1 Future Work
As a result from the research presented in this paper, there are
many potential routes for future research. It is hoped than in future
research, the proposed MONNDE framework can be applied to
other multi-objective dynamic optimisation and control problems
such as process optimisation, portfolio optimisation and production
management.

Future research would also include evaluating the performance
of the proposed multi-objective neural network framework with
other optimisation algorithms for network weight optimisation,
e.g., PSO [15] and Simulated Annealing [17].

It would be of interest in future work to evaluate the performance
of other evolutionary approaches, in particular those that evolve
the topology and weights of the network, e.g. NEAT [30, 31] and
NDE [21]. By evolving the network topology in addition to the
network weights, it may be possible to evolve networks with fewer
weights capable of providing similar or increased performance.
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