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ABSTRACT

This paper proposes a novel approach to enhance the rather reactive

knowledge generation process in Learning Classifier Systems (LCS)

toward a more proactive means. We describe how concepts from

the domain of Active Learning can be adapted to XCS’s algorithmic

structure to introduce ‘curiosity’. The overall goal is to allow LCSs

to build up new knowledge before it is actually requested during the

online learning process. We deem such a methodology meaningful

in scenarios where data samples are distributed non-uniformly and

partially sparse over the input space. Such data imbalances result

in gaps within the knowledge base, i.e. an LCS population. We

underpin the general potential of our approaches by presenting

preliminary results on a realistic data set from the domain ofmedical

diagnosis as well as on a novel toy problem.
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1 INTRODUCTION

Learning Classifier Systems (LCS) have gained plenty of research at-

tention since their invention by John Holland in 1976 [10]. Initially

designed to solve binary encoded reinforcement learning tasks,

today many applications to real-world problems can be found in

the literature. For instance, Goldberg applied LCS to simulated

gas pipeline control [8]. An application to robot arm control was

reported by Stalph and Butz in [28]. Bull et al. proposed the ap-

plication of an LCS to traffic management in [3]. In Prothmann et

al. [22], a strongly modified LCS that changes and constrain the
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generalizing nature of the conventional system is presented and

applied to adapt traffic lights at urban intersections. What such

real-world scenarios typically have in common is the complexity

of the underlying problem space. Not all possible states are known

a priori what necessitates learning during the system’s lifetime.

In consequence, the system has to cope with unforeseen or not

anticipated situations at runtime.

LCSs are flexible, evolutionary rule-based online machine learn-

ing systems. These systems evolve a population [P] of IF-THEN
rules (classifiers) that partition the input space X and thus approxi-

mate the problem space locally. A steady-state niche genetic algo-

rithm (GA) optimizes the classifier coverage ofX globally in terms of

maximum generality andmaximum strength or else accuracy. By na-

ture, LCSs, and more specifically the probably mostly investigated

derivative, Wilson’s Extended Classifier System 1 (XCS) [37], are ca-

pable of dealing with the aforementioned challenges. A mechanism

called covering assures that in any situation at least one matching

IF-THEN production rule (i.e. a classifier) is created. However,

these classifiers are usually initialized with partially predefined

initial but also randomly selected values. Furthermore, the cov-

ering mechanism seems to be a rather reactive behavior. Besides

the covering mechanism, a second component is responsible for

creating new knowledge in form of classifiers – a steady-state niche

GA. Well-proven classifiers are selected to be reproduced, recom-

bined and slightly mutated to search the local neighborhood of the

environmental niche for a more suitable coverage. ‘More suitable’

in this context means that a globally optimal subregion of the in-

put space is found which at the same time yields the maximum

accuracy in predicting the correct (re)action to the observed envi-

ronmental stimulus. Even the latter mechanism can be interpreted

to act rather reactive since it is executed periodically on the basis

of the last time it was invoked in the same environmental niche

and selects already well-performing classifiers to be reproduced

among rules that match the current situation.

Knowledge Gaps. Our overall research goal is to shift the means

of building up novel knowledge within LCSs from a reactive to a

proactive process. Therefore, we enable LCS to be ‘curious’, 2 i.e.

that it can identify gaps in the population, or else its knowledge

base. Hence, we first have to define the term Knowledge Gap (KG):

Definition 1. A Knowledge Gap is a certain region within a

learning algorithm’s knowledge base K̂ that is not covered by any

experience the algorithm made so far.

1We assume a certain degree of familiarity with XCS in this paper and allow us to refer the reader
to [6, 37] for a more detailed description of XCS and all algorithmic steps. We further note that we

make use of a specific extension of XCS to allow for real-valued inputs, called XCSR [38].
2Computational curiosity was recently reviewed more thoroughly elsewhere [41].
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In our work, we formally interpret a knowledge base K̂ as an

approximation of the mapping X → O , i.e. from the input space X
to any output from an output space O , regardless of whether the
output is a scalar reward, an error term or a specific prediction. In a

markov decision processes, X is extended by an action spaceA. Thus,

K̂ is an incrementally learnt approximation of the problem space

PS : X ×A → O . If we solely consider Definition 1, KGs would only

occur at the very beginning of a learning task, when the knowl-

edge bases, e.g. the population of an LCS, is empty. The covering

mechanism in combination with a default generality parameter

initially set to a high value might prevent the appearance and thus

the identification of KGs (according to Def. 1) in later phases of the

learning progress. Accordingly, we have to extend our definition:

Definition 2. We classify a region/niche within K̂ also as KG,

when it is only represented by knowledge of low quality.

Now, not only the disappearance of knowledge k � K̂ determines

a KG, but also does each knowledge element k ∈ K̂ that does not

exceed a threshold θq regarding a quality metric q(k) to be defined.

As stated above, in an LCS, knowledge is represented by a popula-

tion of IF-THEN rules, also termed classifiers, that maintain certain

statistics about their quality. There exist different approaches to

determine quality. Themost investigated variants are: (1) basing the

quality on the predicted reward or strength, e.g. [36]. (2) accuracy-

based LCSs, such as XCS [37] or UCS [2] that judge on the basis

of a classifier’s accuracy in predicting reward. In the LCS context,

using the mean accuracy of the population as a threshold and a

particular classifier’s accuracy as the quality metric is imaginable.

We assume KGs to arise mainly due to the following reasons:

(1) Imbalanced data, resulting in class imbalances [9] and small

disjuncts [35], and (2) Non-uniform input distributions determining

the sampling of the input space X [5]. In dynamic real world en-

vironments, the input space distributions are supposed to change

during the system’s lifetime. This is a specific form of concept drift,

also called virtual/covariate drift [34]. More formally, Pt (Y = y) �
Pt+n (Y = y) holds, where t � t + n are certain points in time, P(·)
denotes the probability distribution and Y is a random variable

whose outcomes y are instances from the underlying input space.

To summarize, we interpret each niche/region within a learning

algorithm’s knowledge base K̂ , that follows at least one of the above
definitions, as KG. So our focus is set on enabling LCSs in general

to better cope with KGs by identifying them during the system’s

lifetime and, on the other hand, allow for a proactive closure of

KGs beforehand the system performance is negatively affected.

Contribution. In this paper, we restrict our consideration to

accuracy-based LCS, more precisely to the XCS. Our goal is to

propose a proactive knowledge creation strategy by endowing XCS

itself with the capability to decide which regions in its knowl-

edge base are only insufficiently represented yet and, thus, to au-

tonomously identify KGs. To achieve this, we borrow concepts from

the domain of Active Learning (AL) [25]. More precisely, we adapt

techniques called Least Confident Uncertainty Sampling [14] as well

as Query-by-Committee [26] to integrate AL into XCS’ algorithmic

structure and thus implement some form of curiosity. A further goal

is to make XCS building up knowledge (i.e. classifiers) proactively,

that is, before it is actually requested. Therefore, we propose to rely

on so-calledQuery Synthesis approaches first presented in [1]. So

far, we limited our investigations to a fully randomized approach.

The remainder of this paper is structured as follows: In Section 2,

we review related work. Section 3 presents our first attempt to

make XCS curious in the sense that it strives to learn more about

regions which define a KG.We demonstrate the promising potential

of our approach based on the results of preliminary experiments in

Section 4. In Section 5, we conclude with a discussion about gained

insights and with an overview of future work.

2 RELATEDWORK

Injecting knowledge from external sources is not a novel means to

enhance the performance of LCS. Urbanowicz et al. propose to use

expert knowledge to guide the discovery processes of LCSs in [32,

33] and applied it to the problem domain of genetic association.

The authors show that using expert knowledge can significantly

improve learning efficiency of UCS. This approach differs from

our work in that probabilities to influence the specificity of newly

generated classifiers are derived in a preprocessing step. In our

work, we strive for guiding the learning process of XCS online.

In [17, 18], Najar et al. presented the Socially Guided XCS and the

Social-Value XCS. The authors introduced a model-based learning

approach, where the task model is supported by a social model, as

well as an contingency model that serves as bridge between the

former two. Their system is applied to a multi-step reinforcement

learning task where a robot is asked to decide which button to press

according to a visual stimulus. A teacher can guide the robot’s

decision by means of teaching signals, e.g. pointing to the correct

button. The authors found that the learning success can be improved

in terms of the total amount of received reward, the number of steps

until the robot finds the correct button, as well as the compactness

of the evolved rule-base. In contrast to the method proposed in

this paper, the Socially Guided XCS is a model-based reinforcement

learner that may, or may not be taught by a human teacher. In our

work, we allow the XCS to be curious about states where it could

not gain a sufficient level of experience so far. Furthermore, the

external source of knowledge is not necessarily assumed to be a

human teacher (cf. Sect. 3).

By allowing XCS to build up knowledge before it is requested,

its input space coverage strategy is affected. Nakata et al. raised the

question of ”How should Learning Classifier Systems cover a state-

action space?” [19]. They introduced various ways to combine the

advantages of accuracy-based LCS and strength-based LCS which

were also investigated by Kovacs in [12]. A learning strategy to

create a so-called weighted complete action map is introduced that

enables XCS to evolve a population that is complete in the sense of

learning the entireX ×A → O mapping, but assigns more classifiers

to the highest-return actions for each state.

The question on the learning capabilities of XCS and UCS on

imbalanced data where thoroughly investigated and theoretically

modeled by Orriols-Puig et al. [21]. In their work, mainly the issues

of rare classes and rare cases are focused and alleviated by online

adaptation of XCS parameters such as the learning rate β and the

threshold determining the GA activation θGA.
Butz and Sigaud propose to change the means of classifier dele-

tion in [5]. The authors introduce local deletion to prevent XCSF
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from detrimental forgetting of certain, already covered subspaces

within the knowledge base ([P]) in non-uniformly and indepen-

dently sampled regression problem domains. From our viewpoint,

such forgotten subspaces constitute KGs.

Another related branch of research can be found in the domain

of evolutionary algorithms (EAs). Lehman and Stanley introduced

the Novelty Search algorithm in [13]. Novelty search replaces the

objective or else fitness function of EAs with a novelty metric

that forces the search for behavioral novelty. A more thorough

investigation of their definition of novelty might be also fertile for

our work. However, in contrast to the work of Lehman and Stanley

we search for KGs in the evolved knowledge bases of learning

algorithms instead of explicitly seeking novel behaviors.

3 ACTIVE LEARNING CLASSIFIER SYSTEMS

Active Learning (AL) [7, 25] is a semi-supervised machine learn-

ing paradigm that has been proven to enhance the efficiency of

supervised learning algorithms in various classification tasks (cf.

e.g. [23]). It is assumed that only a small labeled training set L

is available due to high labeling costs or rather efforts to obtain

training examples of the form (�x ,y). Besides L, there is also a large

unlabeled data set U assumed since obtaining unlabeled samples

is supposed to be inexpensive. With AL, the learning algorithm is

endowed with the decision capability to decide which unlabeled

instance �x ∈ U should be selected to be sent to an omniscient and

omnipresent oracle that obtains the correct label. This setting is a

specific form of AL called pool-based AL. Besides pool-based AL, in

essence there exist two further approaches – stream-based AL and

query synthesis. In this work, we restrict our focus to pool-based

AL, where the match set [M] of XCS serves as pool of ‘unlabeled

samples’ U, as well as on query synthesis to create knowledge in

completely under-explored niches of the input space X .

For the work reported in this paper, a query that might be for-

warded to the oracle is determined by a particular classifier clQ ,
more precisely by its condition clQ .C . Thus, not only a single vector

�x ∈ X gets queried, but rather a certain subspace of the entire input

space. The task of the oracle is to assign the correct label, or action,

for the condition of clQ . If the oracle is not able to answer such a

query with a predefined level of minimum confidence, the query is

rejected and no answer is fed back to XCS.

In case of query rejection, it is assumed that the queried (macro-

)classifier clQ negatively influences the overall learning process and

is thus completely deleted from [P]. On the other hand, when an

oracle answer is received, a new classifier cl∗ is constructed with the
action cl∗.a set to the oracle answer, the condition cl∗.C � clQ .C , a
payoff prediction value of cl∗.p = maxPayoff (here 1000 for correct

classifications), a fitness of cl∗.F � 0.9 (the minimum confidence

level) and an experience set to the XCS parameter θsub to enable

cl∗ to immediately act as subsumer. All remaining attributes are

initialized as usual. cl∗ is then added to [P] and [M] before XCS

continues with its action selection mechanism.

The Omniscient Oracle. The aforementioned assumptions about

the oracle seem to be unrealistic and most often have to be relaxed

when human experts are involved. Humans are not necessarily

omnipresent and certainly not omniscient. Accordingly, the uncer-

tainty of humans as well as the interaction load it is confronted with

have to be considered. In our work, however, we do not restrict the

oracle to be realized as a human annotator. Rather, we assume that

in many real-world scenarios simulation models or heuristics exist

that can be used alongside or instead of humans. For example, in the

adaptive traffic light scenario reported in [22], a microscopic traffic

simulation software was incorporated to optimize adequate reac-

tions to so far unseen situations on demand. In the same scenario,

a heuristic to approximate the average delay at urban intersections

was available which serves as the fitness function for the utilized

evolution strategy. Although such ‘artificial oracles’ might exist,

the situation space is often far too complex to simulate all pos-

sible situations in advance. Hence, machine learning algorithms

are used to generalize over the situation space and learn how to

act correctly in similar (i.e. adjacent in X ) situations. We deem

the occurrence of KGs highly probable in exactly such large and

dynamic real-world scenarios. Another advantage of an artificial

oracle is that omnipresence is given, naturally limited by the com-

putational resources. Nevertheless, either humans nor machines

are omniscient, such that uncertainties must be presumed. On the

other hand, human oracles might be more competent in answering

difficult queries such as very specific and seldom cases. An artificial

oracle that implements a certain heuristic could deliver inaccurate

answers due to weaknesses of the underlying model. It clearly

depends on criticality of the learning task and the according time

constraints whether to take a fast reacting and non-fatiguing artifi-

cial oracle or rather a human oracle with highly accurate domain

competence but reduced availability into the loop.

Figure 1 illustrates a generic two-layer architectural approach to

make online machine learning algorithms proactive, here depicted

for LCS. The bottom layer constitutes the conventional LCS archi-

tecture, where the population [P] serves as the knowledge base

K̂ . The LCS works as usual, i.e. it acts reactively to environmental

stimuli. On the top layer, two components are illustrated: (1) A

Knowledge Gap Identifier, which is responsible for seeking KGs in

the algorithm’s knowledge base K̂ by means of uncertainty sam-

pling or density estimation for instance, and (2) the Knowledge Gap

Closer, which contains the oracle that can be realized by different

means, e.g. by a human expert, a simulation or an interpolation

component as introduced in [30].

LCS

KG Identifier KG Closer

: , , , ,: , , , ,…: , , , ,
[ ]

Query-by-Fitness / Committee

Query Synthesis

Density Estimation 

…
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Figure 1: A two-layer pattern to implement a proactive LCS.

The next paragraphs each briefly render the original concept

from the AL domain and subsequently describe our adaption to be

used with the AL-extended XCS (ALXCS).
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3.1 Curiosity in XCS

Uncertainty Sampling as introduced by Lewis et al. [14] is an AL

technique that aims to query instances from U for which the cur-

rently trained model is most uncertain regarding the correct output.

Least Confident (LC) uncertainty sampling is one straight-forward

approach. The formula (cf. [25]) for LC is given by:

x∗LC � argmax
x

[
1 − Pθ (ŷ |x)

]
, where ŷ � argmax

y

[
Pθ (y |x)

]
. (1)

Pθ denotes the posterior probability of the current model (or hy-

pothesis) θ . ŷ is the label or class that maximizes the posterior

probability for the currently considered unlabeled instance x ∈ U.

Therefore, the formula yields an instance x∗
LC

for which the model

θ is most uncertain about.

It becomes apparent that with the above formula a posterior

probability is needed. However, that is only the case when the

given model is a probabilistic one, such as the naı̈ve bayes classifier.

Because XCS is not a probabilistic model but a space partitioning

local approximator, we have to find another measure that resembles

the posterior probability to judge on the uncertainty.

Intuitively, in this work we used the fitness estimate cl .F to

express confidence of a certain classifier about the subspace it

is responsible for. If the fitness is low, the classifier’s prediction

quality is weak. However, this does not mean that it is incorrect at

all. After generating a classifier its initial fitness is set to a low value,

so that it has to prove itself during the next situations it matches

and is selected for action execution. Accordingly, the prediction is

weak for the moment but also uncertain since it is possible that it

becomes accurate in the future. To be aware of this circumstance,

we also incorporated a classifier’s experience cl .exp. In this work,

we realized the LC uncertainty sampling in the XCS environment

as follows and refer to this method asQuery-by-Fitness (QBF):

clQ � argmax
cl ∈[M ]

[
(1 − cl .F ) · cl .exp

]
(2)

clQ is the selected classifier cl ∈ [M] to be queried. The above

formula makes sure to query a classifier that has a rather low fitness

but has already gained a certain degree of experience. This ensures

that no classifiers are chosen that were just created.

With this approach, we make XCS curious in the sense that it

decides to query particular subspaces of X it is uncertain about, or

it has difficulties to learn the correct action. The latter case might

be due to overgenerals [12] which match in many situations where

different actions would be correct. So, with the KG identification

technique introduced above, XCS is enabled to identify such classi-

fiers and accordingly take certain countermeasures. We could also

identify just created classifiers by inverting cl .exp in Equation 2.

In this case, Equation 2 would yield a classifier from [M] with the

lowest fitness and at the same time the smallest experience. This

method could be used to bootstrap the initial learning phase by ask-

ing the oracle for the correct action at an early stage of a classifier’s

life. The investigation of the latter method is left for future work.

3.2 The Committee of Matching Classifiers

Query-by-Committee (QBC) is a query selection strategy that uses

a variety of independently trained models. The approach was first

introduced by Seung et al. [26]. The collection of models serves

as committee C =
{
θ (1),θ (2), . . . ,θ ( |C |)

}
. The idea behind QBC is

to analyze the models’ outputs to identify conflicts. The conflict’s

extent is determined by a measure of disagreement between the

different models. One approach is to use a so-called vote entropy

as reported in [25] which essentially counts the number of times a

committee member votes for a certain label, derives a probability

for each possible label and subsequently calculates the Entropy [27].

To use QBC within the context of XCS one could decide to train

several XCSs at the same time. However, there is a less costly ap-

proach in terms of computational powerwhich interprets a classifier

as an entire model for the current environmental niche determined

by the match set [M]. Let A[M ] define the set of distinct actions in

[M]. We calculate the vote entropy H[M ] as given by:

H[M ] =
∑

a∈A[M ]

V (a) log2V (a) (3)

with the actual vote for each action a calculated by

V (a) =

∑
cl ∈[M ](a) cl .num∑
cl ∈[M ] cl .num

, (4)

and the subset of [M] containing all classifiers with the currently

considered action a defined by [M](a) : {cl ∈ [M]|cl .a == a}.
After determiningH[M ], we also calculate the maximum entropy

Hmax = log2 |A[M ] | that can be interpreted as the situation of a

fully uniform vote distribution, in the simplest case when each

committee member advocates one of the distinct actions. The closer

H[M ] is to Hmax , the higher is the decision conflict about which

action is most suitable. Based onH[M ] andHmax we decide to send

a query to the oracle only if H[M ] ≥ Hmax · (1 − θsim ). Thereby,

θsim defines a tolerance factor to control the extent of the conflict

necessary to ask the oracle. If the decision is felt to send a query

to the oracle, the query itself is then selected by means of QBF.

Thus, QBC restricts the execution of QBF to match sets where the

classifiers are not certain about the most appropriate action, at all.

This, in the end, is one approach to reduce the interaction load

between the learning algorithm and the oracle.

3.3 Knowledge Generation byQuery Synthesis

Membership Query Synthesis [1] is a special case of query selection

where the unlabeled instance x that is forwarded to the oracle is

generated de novo, i.e. synthesized. There are several approaches

for synthesizing queries. Probably the simplest form is to gener-

ate an instance x completely at random by choosing an arbitrary

vector from the input space X . More sophisticated approaches are

imaginable, such as iteratively estimating the distribution of the

underlying data generating process by means of density estimation

or histogram construction. Our current efforts are targeted at such

forms of query synthesis, however, in this paper, we restrict our

focus to randomized query generation.

Accordingly, we propose the concept of Query-Synthesis-at-

Random (QSR). Here, we create a completely new classifier cl∗

that also serves as the classifier to be queried clQ . A condition is

created by selecting a random vector �x ∈ X ⊆ Rn from the input

space and subsequently create an interval predicate within prede-

fined bounds. For determining these bounds, it is imaginable to use

the default spread parameter r0 [39], so that each interval predicate
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is restricted to [0, r0]. However, we decided to use different spread-

ing bounds smin and smax for the AL process that guarantee an

interval predicate to lie within xi ± s ∈ [smin , smax ],∀i = 1 . . .n.
Generating queries de novo is known to not be suitable in any

kind of learning problem. For example, in handwritten character

classification, completely undefined symbols can be produced [25].

For well defined problem spaces such as the toy problem we present

in Section 4.2, QSR is assumed to be beneficial, whereas in very

domain specific problem types such as medical diagnosis, randomly

created instances are likely to confuse a human oracle since the

attribute combination might be completely arbitrary.

4 PRELIMINARY EXPERIMENTS

The following paragraphs report on the results of so far conducted

preliminary experiments. We evaluated our approach on two dif-

ferent classification scenarios – the well-knownWisconsin Breast

Cancer (WBC) dataset [16] and a novel toy problem. Since XCS is

conventionally a reinforcement learning system, but here applied

to a single-step supervised classification task, we set the immediate

reward to 1000 for correct classifications and to 0 for incorrect ones.

4.1 Wisconsin Breast Cancer Data Set

The WBC data set [16] is available from the UCI Machine Learning

Repository [15] and can be found in the category of life sciences. It

consists of 699 instances each having 9 attributes which show the

results of a fine needle aspiration for the diagnosis of breast cancer.

The class labels are ‘2’ and ‘4’ signaling a benign or malignant tumor,

respectively. The attributes are encoded by integers in the range

[1, 10]. Without loss of generality, we normalized the attributes

to the range [0, 1]. Missing attribute values are marked as ‘?’ and

assumed to be matched in any case. This dataset bears a class

imbalance ratio of 0.655 : 0.345 for the benign and the malignant

class, respectively. We decided to use this data set since it already

has been investigated in the LCS literature before [11, 39].

The oracle was simulated by a rather simple heuristic. The heuris-

tic is realized by a simple nearest neighbor search through the

available instances. Therefore, the Euclidean distance between the

center point of a queried classifier’s condition clQ .C and the data

instance from the dataset was calculated. The label of the instance

with the minimal distance was returned as oracle answer. This

approach implicitly bears a certain degree of oracle uncertainty,

since the nearest neighbor is not guaranteed to yield the correct

classification. We transformed the distance to a similarity measure

defined between [0, 1] by normalizing the Euclidean distance and

subtracting it from 1. Whenever this similarity measure is < 0.9 no

answer is provided by the oracle, i.e. the query is rejected. For the

WBC experiments, we configured XCS according to [39]: N = 6400,

α = 0.1, β = 0.2, δ = 0.1, ν = 5, θGA = 48, ϵ0 = 1, θmna = 2,

θdel = 50, θsub = 50, χ = 0.8, μ = 0.04, pini = 10.0, ϵini = 0.0,

Fini = 0.01, r0 = 0.4,m0 = 0.2. For a detailed description of the

standard parameters the reader is referred to [6, 38, 39]. We used

the unordered bound representation [31] for encoding the conditions.

4.2 Toy Classification Problem: Mario Pixel Art

Our novel Mario environment consists of a 16x16 pixel art repre-

senting the famous video game character Super Mario [20]. The

pixel art is formed using seven different colors. The goal for the

XCS is to learn the correct color for each possible position �x ∈ R2 in

the pixel art. This toy problem resembles the well-known checker-

board problem which was used as an XCS testbed e.g. in [30, 31]. In

contrast to the checkerboard, it allows for more general classifiers,

i.e. the blue trousers of mario, but at the same time entails a more

complex action space A of size |A| = 7 (i.e. the colors of Mario, see

colored version of Fig. 2). The real-valued input space X ⊆ [0, 1]2

is large and infinite.

Figure 2: The Mario Toy Classification Problem: A 16x16

Pixel Art grid showing Super Mario [20]. The inner rectan-

gle shows a queried classifier’s condition that is expected to

be answered by the oracle.

The oracle for this environment was realized as follows: We

determined the fraction of all possible colors (i.e. actions) over all

pixels that are encompassed by the queried classifier’s condition

(see the rectangle on Mario’s trousers on Fig. 2 for an example).

Whenever no color exceeds the certainty threshold of 0.9, the query

is rejected by the oracle. Otherwise, the color with a fraction ≥ 0.9

is returned as answer. XCS was configured as follows: N = 7000,

α = 0.1, β = 0.3, δ = 0.1, ν = 5, θGA = 30, ϵ0 = 10, θmna = 6,

θdel = 50, θsub = 50, χ = 0.8, μ = 0.04, pini = 10.0, ϵini = 0.0,

Fini = 0.01, r0 = 0.1, m0 = 0.1. Again, the unordered bound

representation [31] was used.

4.3 Experimental Setup

All experiments were run over 100.000 alternating explore/exploit

trials each and repeated for 30 i.i.d. runs. Statistical significance

on the differences between ALXCS and XCS was determined using

pairwise t-tests. We used a test-then-train learning strategy for

both scenarios to keep the online learning nature of XCS. Instances

from the WBC dataset are selected uniformly at random and with

replacement. For the synthetic and continuous toy problem, the

input space was sampled using a uniform distribution. Thus, for

both scenarios, KGs and accordingly the potential for improvements

are expected at the beginning of the learning task. For the QBF and

the QSR technique, the oracle is asked every step. Using the QBC

approach, the number of oracle interactions is self-adapting.

For these preliminary experiments, we simulated the oracles by

means of simple heuristics as described in the respective sections.

Additionally, we conducted an experiment with a real human oracle

for the Mario problem over 1000 explore/exploit trials each which

was repeated for ten times.
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(a) QBC with θsim = 0.20 on the first 20k trials
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Figure 3: ALXCS (blue lines) with QBC and two different values for the similarity tolerance θsim vs. XCS (red lines3) on WBC
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Figure 4: ALXCS (blue lines) with QBC (left) and QSR (right) vs. XCS (red lines) on the Mario toy problem

Table 1: Summary of results on WBC dataset. Average values and standard deviations over two phases of the entire learning

task (until 20k trials on the left and 100k exploit trials on the right) from 30 i.i.d runs are shown. * (**) indicates statistically

(highly) significant deviations of the reported metrics compared to XCS, i.e. that for the p-values of paired one-sided t-tests

hold p < α = 0.05 (0.01). ↑ and ↓ indicate whether the value has increased or decreased, respectively, in comparison to XCS.

WBC Data Set Fraction Correct System Error Macro-Classifiers Fraction Correct System Error Macro-Classifiers

Artificial Oracle mean ±1SD mean ±1SD mean ±1SD mean ±1SD mean ±1SD mean ±1SD

Exploit Trials First 20.000 Entire 100.000

ALXCS w/ QBF 987.00↓∗∗ ± 2.03 20.01↓∗∗ ± 2.58 2285.78↓∗∗ ± 32.48 995.32↓∗∗ ± 1.28 9.79↓∗∗ ± 1.76 2345.03↓∗∗ ± 28.81

ALXCS w/ QBC, θsim = 0.01 988.38↓ ± 1.72 27.37↓∗∗ ± 2.26 2906.76↓∗∗ ± 33.90 996.61↓∗∗ ± 0.85 8.68↓∗∗ ± 1.41 2964.57↓∗∗ ± 32.59

ALXCS w/ QBC, θsim = 0.20 987.16↓∗∗ ± 1.98 20.58↓∗∗ ± 2.43 2396.39↓∗∗ ± 28.30 995.72↓∗∗ ± 1.01 9.28↓∗∗ ± 1.55 2417.17↓∗∗ ± 31.07

ALXCS w/ QSR 985.22↓∗∗ ± 1.60 87.36↑∗∗ ± 3.44 5392.15↑∗∗ ± 14.39 988.70↓∗∗ ± 0.76 71.38↑∗∗ ± 3.15 5902.69↑∗∗ ± 9.14

Standard XCS 988.78 ± 1.48 74.30 ± 2.80 3287.55 ± 38.99 997.20 ± 0.55 17.70 ± 0.94 3749.73 ± 32.48
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Table 2: Summary of results on the novel Mario environment. Average values and standard deviations over two phases of the

entire learning task (until 20K trials on the left and 100K exploit trials on the right) from 30 i.i.d runs are shown. Asterisks

* (**) and arrows (↑ and ↓) are to be interpreted as for Table 1.

Mario Pixel Art Fraction Correct System Error Macro-Classifiers Fraction Correct System Error Macro-Classifiers

Artificial Oracle mean ±1SD mean ±1SD mean ±1SD mean ±1SD mean ±1SD mean ±1SD

Exploit Trials First 20.000 Entire 100.000

ALXCS w/ QBF 872.78↑∗∗ ± 4.43 139.57↓∗∗ ± 3.71 2480.61↓∗∗ ± 39.92 889.40↑∗∗ ± 2.92 140.50↓∗∗ ± 2.98 2307.29↓∗∗ ± 33.03

ALXCS w/ QBC, θsim = 0.01 819.32↑∗∗ ± 6.38 238.41↓∗∗ ± 6.09 2788.34↓ ± 36.72 870.25↑∗∗ ± 4.71 188.29↓∗∗ ± 4.27 2296.43↓∗∗ ± 26.02

ALXCS w/ QBC, θsim = 0.20 873.07↑∗∗ ± 4.59 140.37↓∗∗ ± 4.31 2493.43↓∗∗ ± 26.81 898.99↑∗∗ ± 3.12 140.59↓∗∗ ± 3.13 2313.82↓∗∗ ± 27.44

ALXCS w/ QSR 834.02↑∗∗ ± 4.89 195.86↓∗∗ ± 4.79 3094.81↑∗∗ ± 37.62 869.96↑∗∗ ± 3.82 163.09↓∗∗ ± 3.24 2940.72↑∗∗ ± 17.65

Standard XCS 801.00 ± 6.87 276.23 ± 6.46 2784.98 ± 41.92 866.23 ± 5.22 201.14 ± 5.84 2385.95 ± 20.60

Table 3: Summary of results on the novel Mario environment with a human oracle. Average values and standard deviations

over the entire learning task of 1000 explore/exploit trials from the 10 i.i.d. runs are shown. Asterisks * (**) and arrows (↑ and

↓) are to be interpreted as for Table 1.

Mario Pixel Art Fraction Correct System Error Macro-Classifiers

Human Oracle mean ±1SD mean ±1SD mean ±1SD

ALXCS w/ QBF 573.80↑∗∗ ± 18.35 279.44↓∗∗ ± 17.07 1022.11↓ ± 24.38

ALXCS w/ QBC, θsim = 0.01 622.90↑∗∗ ± 26.48 251.06↓∗∗ ± 14.54 1036.67↑ ± 14.71

ALXCS w/ QSR 565.30↑∗∗ ± 29.39 297.49↓∗∗ ± 14.06 1019.90↓ ± 25.12

Standard XCS 503.10 ± 20.16 358.73 ± 7.91 1024.05 ± 24.37

4.4 Results

All results we observed after conducting the experiments are sum-

marized in the Tables 1-3. Examples of plots depicting the learning

progress for both scenarios are given by Figures 3 and 4.3 As as-

sumed, the main benefit of the presented AL techniques appears

at the beginning of the investigated learning tasks. QBF as well

as the related QBC technique can noticeably reduce the number

of needed macroclassifiers to obtain a strongly decreased system

error. This holds true even when we look at the entire learning

tasks over 100k exploit trials for both scenarios. The fraction of

correct classifications, however, is marginally reduced throughout

all WBC experiments when QBF and QBC is incorporated.

For the WBC setting, the QSR technique yields negative impacts

on all three figures of merit. This underpins the known disadvan-

tage of query synthesis in general we discussed in Section 3. The

strongly increased average population size let us suppose that the

randomized queries (i.e. conditions) are too arbitrary to yield a

performance gain. The population seems to be ‘swamped’ with ran-

dom classifiers which, due to the highly set initial values for fitness

and predicted reward, prevents fitness pressure. This resembles the

effect of a cover-delete-cycle [4]. A more deeper investigation on

the impacts on classifier evolution is subject of current work.

For the Mario environment, however, we obtained positive im-

pacts of the QSR technique. Since the problem domain is sampled

uniformly it can be expected that any region of X is visited equally

likely. Thus, a proactive knowledge generation is hypothesized to

be useful. The results reported in Table 2 and shown in Figure 4b

seem to underpin this hypothesis. The average values for the frac-

tion of correct classifications as well as for the system error can

be clearly improved but at the expense of an increased average

3Please note that in Figure 3 the developments regarding the fractions of correct classifications of

both XCS variants are nearly congruent what leads to a hidden (red) curve for standard XCS.

population size. Although the discussed results on QSR seem to

be like a double-edged sword regarding the two scenarios, we still

deem proactive classifier generation as a meaningful approach to

overcome challenges such as drifting input distributions and highly

imbalanced data streams. We currently work on more sophisticated

methods to decide in which region of the knowledge base synthe-

sized classifiers would be helpful. We reported on two different

values for the similarity tolerance θsim that controls the committee

voting conflict necessary to interact with the oracle. Obviously,

the higher value 0.2 yields better results since the oracle is queried

more frequently. We set this value to a reasonable small value 0.01

to provide a first hint on possible improvements when the number

of oracle interactions is drastically reduced. We could retain the

positive impacts on all three figures of merit even if the number of

oracle queries is reduced by ≈ 76% for the WBC setting, and ≈ 92%

for the Mario environment. This is a very promising result since we

were able to show that even with a small fraction of the learning

steps we can obtain significantly performance improvements.

To consider the aspect of human uncertainty, we carried out

another experiment with a human oracle. The results are presented

in Table 3. We observed improved performance throughout all

configurations for all three metrics. Interestingly, the best config-

uration was QBC with a similarity tolerance θsim = 0.01, which

resulted in a low interaction load for the human oracle.

5 CONCLUSION

The overall aim of this work was to present the vision of proactive

learning classifier systems. We showed how to endow XCS with

some form of curiosity that results in the desire to learn more about

uncertain regions of the already evolved knowledge base. Further-

more, we demonstrated that proactive knowledge generation, i.e.

building classifiers in regions of the input space before they are
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actually needed, could have beneficial effects particularly at the

beginning of a learning task, even if these regions are selected

completely at random so far. More sophisticated approaches are

subject of current investigations. Although we showed promising

results, the experiments are preliminary and, thus, limited in at

least two aspects: (1) Non-drifting uniform sampling of the prob-

lem’s input domain, which let us presume that KGs mainly existed

at the beginning of the respective learning tasks. (2) At least for

the reported QBF and QSR query strategies, the AL component

was activated in each step, what results in a noticeable interaction

load with the oracle. The latter aspect mainly constitutes a problem

when a human oracle is taken in the learning loop. However, as

a first countermeasure, we utilized the presented QBC approach,

which resulted in a significant reduction of the oracle load.

Future Work. The promising preliminary results we achieved so

far drive our efforts toward a more thorough investigation of the

presented techniques with a specific attention on: (1) the number

of needed oracle interactions to achieve significant improvements,

(2) the degree of oracle confidence needed, or rather uncertainty

allowed to gain beneficial effects, and (3) the impacts on classifier

evolution in terms of e.g. generality, experience and mean lifetime.

We discussed the role of the oracle in Section 3, where we stated

that not only humans can be taken in the loop. The combination

of proactive knowledge generation outlined in this paper with the

interpolation component reported in previous work [29, 30] used

for the purpose of closing identified knowledge gaps, constitutes a

further top priority on our research agenda.

So far, we applied the ALXCS to classification tasks only. In a

next step, we plan to transfer our techniques to support the function

approximation capability of XCSF – an XCS derivative for regres-

sion tasks [40]. In general, all techniques presented in this paper are

easily transferable to other LCS derivatives such as UCS [2] or ExS-

TraCS [33]. Another branch of investigation is planned to target the

use of ALXCS within delayed reward reinforcement learning tasks

as presented in [17] or on more complex scenarios such as coverage

optimization in self-configuring smart camera networks [24].

We defined the term of knowledge gaps at the beginning of this

paper. It was stated that one reason that supports KGs to arise is

an empty population at the beginning of a learning phase. On the

other hand, KGs might occur due to non-uniform sampling of the

input spaceX or due to abrupt problem space changes regarding the

correct classification, i.e. the complexity of the decision boundary.

We will investigate the impacts of both non-uniform (and drifting)

sample distributions and the presence of small disjuncts or else

complex decision boundaries on the learning capability of XCS in

general and with a certain focus on the improvement potential that

might be achieved by means of proactive knowledge generation

driven by curiosity in LCS. Therefore, we plan to conduct more

experiments on further realistic data sets as well as on synthetic

environments that provoke the aforementioned issues.
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