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ABSTRACT
Classi�er systems with an e�cient learning process are capable
of producing a compact set of accurate rules, and therefore have
the potential to play the role as a knowledge collector for other
systems. In this paper, the accuracy-based Learning Classi�er Sys-
tem (XCS) is guided to build the membership function and the rule
set commonly owned by a fuzzy logic controller (FLC). Initialized
with empty knowledge, an agent responds to real-valued inputs and
learns to compose a knowledge using XCS. Results obtained from
extensive experiments show that a�er a number of learning cycles,
classi�er systems can actually compose a set of rules similar to the
mapping mechanism designed by humans for FLC’s operation.
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1 INTRODUCTION
In the area of Machine Learning (ML), the classi�er systems are one
of the classical methods for �nding a suitable response of a learning
system to incoming inputs. Since being introduced by Holland
in 1976, various modi�cations and improvements were published,
with two major sub-groups namely Pi�sburgh and Michigan styles.
�e main di�erence between them is that the former considers
collections of rules as individuals, while the la�er sees each clas-
si�er (this term is interchangeably used with “rule”) as an entity.
In 1995, Wilson introduced a Michigan-style variant called the
accuracy-based Learning Classi�er System (XCS) [17], which has
received a lot of a�ention due to its simplicity and applicability. Im-
proved from the early version that only handles binaries, in 2000 the
algorithm was developed into tackling continuous (real) inputs [19].

XCS has been applied to various cases where an agent conducts
continuous interaction with the environment, e. g., multi-agent sys-
tems (as in [12, 13]), tra�c light controller (in [14]), robotics (in [16]).
Not only contributions focusing on the practical aspect, several
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theoretical developments have been investigated, including im-
provement in handling real values [15], generalization concept [6]
and state representation [4]. �ese advances, from one point of
view, enrich the learning system in guiding an agent to behave well
in the environment. However, XCS’s complex calculations o�en
cause a slow learning rate. As a response to that, a novel method
called Rule Combining (RC) was introduced in 2010 [11].

A�er a series of improvements in [10] and [9], the results ob-
tained by XCS with Rule Combining (known as XCS-RC) opens up
the possibility for several directions of development. It successfully
provides a superior learning speed and a compact population of
rules, in comparison to the classical version of XCS. �erefore, as
a stepping stone for further contribution in the applied ML area,
we propose an implementation of XCS-RC that learns to perform
an FLC operation. �is is a role that can only be played by a classi-
�er system capable of building a set of accurate rules in a timely
manner, where the classical XCS (or XCSR) requires a considerably
longer time in reaching a similar level of performance.

Investigations on the capability of (classical) classi�er systems
in performing fuzzy operations have been published in a number
of works. In [1], Bonarini proposes a so-called Learning Fuzzy
Classi�er Systems (LFCS) that processes fuzzi�ed real input based
on the provided membership function and sends an output using
defuzzi�ed values. �is work was carried on in [7] by employing a
mobile robot, and also its accuracy-based variant called FIXCS [2].
Di�erent approaches were also introduced, e. g., using subset of
output candidates as in [8], and also in [3] that equips fuzzi�ed XCS
with neural functions. From those investigations, one can argue
that all of them have made advancement on modi�ed classi�er
systems without any real a�empt to integrate the functions of FLC
into the algorithm. Instead, extra components were added, causing
even a higher complexity. �is does not only make the system more
di�cult to handle, but also increases ine�ciency.

�erefore, our paper aims to introduce a native capability of
XCS-RC in performing FLC operation. Here, the term native is used
to emphasize the absence of additional component to the system.
Continuous values fed to the system go through a set of normal
learning steps, before executing one of the available XCS outputs.
By equipping it with a properly designed reward mechanism, the
system is able to solve FLC’s task in guiding an agent to make
adequate decisions. �e rest of this paper is structured as follows.
Section 2 describes XCS brie�y, followed by an explanation of XCS-
RC in Section 3. �en, the scenario used for guiding the learning
system is provided in Section 4, while Section 5 provides the results
of the experiments. Finally, Section 6 concludes the investigation
along with some outlooks.
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2 XCS
�e accuracy-based Learning Classi�er System (XCS) is a genetic-
based ML algorithm that stores its knowledge in a population of
“IF-THEN” rules. Each classi�er (symbolized by cl) comprises of
an input-output pair along with a number of other a�ributes. �e
“IF” part of a classi�er cl is named Condition (cl .C), expressing one
or more input states that may cause the rule to be �red. When it
occurs, the system executes the “THEN” part using the value of the
a�ribute Action (cl .A) as a response to the obtained input.

A classi�er’s condition contains an array of information, similar
to a chromosome in Genetic Algorithm (GA). Each element of the
array is independent from the others. In the early versions of XCS,
cl .C can only work with binaries. Later a�erward, its capability is
extended to covering various types of data, e. g., real values. When
a classi�er’s condition matches the current environmental state,
XCS considers the rule’s action as the system output. Commonly,
cl .A is expressed using an integer, representing a speci�c output
of the system (e. g., ”0” represents ”TURN OFF”, ”1” means ”TURN
ON”). �e third a�ribute is called Prediction (cl .P ), which keeps the
judgment value of the IF-THEN pair. �is means, that a suitable
pair of cl .C and cl .A would be denoted by a high value of cl .P .

A classi�er is commonly represented using ”cl .C : cl .A→ cl .P”
which is similar to the illustration depicted in Figure 1a. �e relation
among its three main a�ributes can be described using a sentence
”IF the input state matches cl .C AND the chosen output is cl .A, THEN
the predicted payo� is cl .P”.

(a) Speci�c (b) Generalized, 1 wildcard

Figure 1: Classi�er in XCS

In performing its tasks, XCS runs a series of processes that is
derived from the common Reinforcement Learning (RL) cycles.
Every time the system receives an input x , the state is compared
with all existing cl .C in the population [P]. �en, matching rules
are collected in a so-called Match Set [M]. A�erward, XCS selects
one of the available actions owned by the classi�ers in [M]. Rules
advocating the winning action are stored into a so-called Action
Set [A]. A�er executing cl .A by using it as the system output,
a payo� will be obtained from the environment. �e received
feedback is used to update the rules in [A], and then those classi�ers
are stored back to [P].

�e number of learning cycles indicates the “lessons” gained by
XCS. As a consequence, the number of rules grows over time and an
issue of overpopulation arises at some point. To reduce the e�ect of
such problem, XCS employs the concept of wildcard (symbolized by
”#”), that is capable of matching a wider range of input. For instance,
in systemswith binary input, a “#”may act as both a ”0” and a ”1”. So,
a rule with a generalized condition cl .C = ”01001#” (as in Figure 1b)
is capable of matching the inputs ”010010” and ”010011”.

Using wildcards, a huge amount of learned knowledge can be
stored into a compact set of generalized rules. However, the issue
shi�s from overpopulation to another ma�er: the adequacy of wild-
card placement. Increasing the generality of a rule adds the risk

Figure 2: A full learning cycle of XCS

of making a classi�er inaccurate, especially when the information
contained by a signi�cant bit is disregarded. In response to this
ma�er, XCS is equipped with two mechanisms in placing the wild-
cards: covering and Darwinian genetic operators. Figure 2 depicts a
full learning cycle of XCS with those two processes.

Covering occurs at the early phase of a learning cycle, i. e., di-
rectly a�er an input x is received. When no classi�ers in [P] can
match x (including when the population is empty), additional rules
are created and directly chosen to enter [M]. Wildcards are inserted
in the new classi�ers’ conditions based on a random process, lead-
ing to a result that always matches x . Such randomized decision
making it possible to produce a new classi�er having a speci�c
condition cl .C = x , or at the contrary, creating a rule whose condi-
tion only consists of wildcards. For instance, an input x = ”010010”
has the possibility to be covered with a wide variation ranging
from “010010”, “01001#”, “0100#0”, “0100##” to an extreme result
like “######”. However, determining a proper probability value for
the random process is di�cult (e. g., in [6]). �is means, that there
is a signi�cant possibility for the wildcards to be misplaced and the
rule becomes inaccurate.

(a) Mutation
(b) Selected parents before a
crossover operation

(c) A�er a one-point crossover (d) A�er a two-point crossover

Figure 3: Mutation and crossovers

XCS a�empts to minimize such misplacement by employing
Darwinian genetic operators, i. e., crossovers and mutations. �ey
are applied to classi�ers in [A] when some user-de�ned criteria are
ful�lled (e. g., crossover period). �is process starts by selecting one
or a pair of parent classi�ers using either �tness-proportionate [17,
18] or tournament [5] selection. As shown in Figure 3, o�spring
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are created based on the value of the parents. By modifying the
genetic information, XCS is able to reduce the negative impact of
the random process, with an expectation of ge�ing be�er results.

3 RULE COMBINING
Since proposed by Wilson in 1995, a number of XCS variants were
published where most of them used the “conventional” crossover
and mutation for discovering generalized accurate rules. In 2010,
Fredivianus et al.introduced a novel mechanism namely Rule Com-
bining (RC)[11], aiming to place wildcards properly using the in-
duction concept, which in the end leading to a faster learning rate.
�e variant, called XCS with Rule Combining (XCS-RC), does not
insert any wildcards while performing covering, and no Darwinian
genetic operators are involved. Instead, generalizations are made
based on the existing knowledge. �e following subsection explains
the concept using XCS-RC with binary input.

3.1 Binary Input
In RC, wildcards are inserted a�er comparing experienced rules
and making conclusions (generalizations) accordingly. Based on
a number of classi�ers that is considered as existing knowledge,
the system seeks any existing pa�erns available and then creates
generalized o�spring. �ere are three prerequisites of performing
the generalization: a pair of experienced rules, similar values of cl .P
owned by the parents, and no disproving classi�ers. An instance of
a combining process is provided in Figure 4.

Firstly, Figure 4a depicts a set of four rules where none of them
currently has any wildcards. �en, the system a�empts to perform
induction by picking a pair of parents. Suppose cl1 and cl4 are
picked to be combined, the system seeks a pa�ern by comparing
their values. Figure 4b shows the result, i. e., a so-called child can-
didate symbolized with cl∗. A number of wildcards are placed in
some elements of cl∗.C where the parents have di�erent values.
�e identical ones are simply inherited by the o�spring.

(a) A set of classi�ers before a
combining attempt

(b) Combining cl1 and cl4 into
cl∗

(c) �e child candidate cl∗ is disproved by cld

Figure 4: Combining

�e result of the combining process is a rule with two wildcards,
making the o�spring cover a larger state space than any other
classi�ers that currently exist. In other words, the coverage of each
parent (in this case cl1 and cl4) is always a subset of the child’s.
Later when cl∗ enters the population, it becomes a full classi�er
and no longer be regarded as a candidate. At the same time, since

the parents’ coverage are already handled by the child, they are
subsumed and no longer exist in the population.

However, cl∗ is not always accepted as a full classi�er, e. g.,
in a di�erent situation illustrated by Figure 4c. Suppose another
rule (i. e., cld ) exists in the population, it will become a disproval
to the candidate. A�er creating cl∗, an examination is executed,
comparing it all member of [P] including cld . At this point, the
system �nds out that both cld and cl∗ are able to cover a similar in-
put ”010110”. Since their values of cl .P is signi�cantly di�erent (i. e.,
100 to 5), accepting cl∗ in the population has a risk of unclarity
to the system. It would be “confusing” whether responding to an
input x = ”010110” with the action ”0” deserves a high payo� as
suggested by cl∗ or a low one as in cld ’s prediction. In such case,
the term “disproval” is used to explain the role of cld in the combin-
ing process. �erefore, every generalization should satisfy all the
system’s existing knowledge, otherwise no o�spring is created. An-
other issue regarding the disproving mechanism is the possibility
that a candidate is being examined when the actual disproval has
not been learned yet. To tackle the possibility, a set of knowledge
correction mechanism is provided in XCS-RC (see [11] for more
details).

3.2 Real-Valued Input
Performing a machine learning algorithm using binary inputs can
be considered arti�cial. �erefore, an improvement of XCS-RC that
is capable of handling real-valued input is introduced in [10] and
improved in [9]. �is advanced work opens up several possibilities
to develop XCS in general into performing various classi�cation
operation, including FLC that will be discussed in Section 4.

(a) Binary input (b) Real input

Figure 5: Input for each element of a cl .C

�e �rst issue that distinguishes between binary and real inputs
is the coverage. As depicted in Figure 5, binaries are easier to handle
since the values are either ”0” or ”1” while wildcard is basically
a concept that covers both values (see Figure 5a). Di�erent from
that, handling a continuous input means that the system should
be able to deal with varying representations, ranging from the
lower and upper limit (e. g., from 0.000 to 1.000). So, the concept of
generalization should also be changed, making it possible to operate
a so-called partial wildcard as depicted in Figure 5b. Such coverage
tackles more than one input value, but it is not a full wildcard that
handles the whole range of possible input. Partial wildcards do
not exist in binaries, but play a major role in handling real-valued
inputs.

Like the way it learns binary inputs, XCS-RC does not create
wildcards in covering continuous values. It covers all inputs specif-
ically at the received value, i. e., using a dot. Since the state space
of the input can be extremely high, such covering has a greater
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risk of overpopulation compared to the binaries. �erefore, gen-
eralizations are performed by XCS-RC using the same paradigm
of induction. At the very �rst combining a�empt, the system only
owns classi�ers with speci�c coverages. �is is performed using
a mechanism illustrated in Figure 6, where a child candidate cl∗
is created from a pair of rules. Each parent covers a dot in their
jth element of the condition (cl .C[j]). In short, the smaller value
becomes the lower limit, while the other is taken as the upper.

(a) Dots with pj < qj (b) Dots with pj > qj

(c) Subset (d) Overlapping

(e) Separate

Figure 6: Combining in XCS-RC

In situations illustrated by Figure 6a, the value of pj is picked as
the lower bound of the interval, while qj is taken as the upper limit.
Like in handling binaries, the candidate will be examined before
entering the population as a full classi�er. So, when no disproval
is found for cl∗, the interval covered by cl∗.C[j] will match the
jth element of the input within the range of [pj ; qj ]. Figure 6b
illustrates the situation when the value of qj is taken as the lower
limit while pj becomes the upper.

A�er some time, XCS-RC may have an a�empt to combine a pair
of generalized classi�ers, leading to other situations. For instance,
the process may involve values which is actually a subset of the
other party like in Figure 6c. �ere is also a possibility that a pair
with overlapping coverages is being processed, as depicted in Fig-
ure 6d. While those cases have a lower probability of becoming an
issue, the third example illustrated by Figure 6e should be handled
carefully. Both intervals have no shared area, meaning that there is
a chance of producing an over-general rule which may lead to in-
accuracy. Similar to combining a pair of two dots, the examination
process plays an important role to detect any sign of inadequate
generalization and to prevent misleading knowledge, as described
in the following subsection.

3.3 Combining Steps
Before entering [P], all child candidates are checked whether any
disprovals exist. A disproving rule is a classi�er with a shared
input coverage with cl∗ but having a signi�cantly di�erent predic-
tion (the �ag of signi�cance is user-de�ned). Figure 7 depicts the
whole process of combining, where the examination is performed
in Step 1. Previously in the preparative Step 0, all rules are grouped
in a so-called CombininдSet (symbolized by [C]) based on their ac-
tions (denoted by the color in the illustration). �e aim is to simplify
further processes, since rules with di�erent cl .A would not a�ect
the running process at all.

Figure 7: Combining Steps

A�er passing the examination, the a�ributes of the o�spring are
calculated in a way that it would operate like a normal classi�er,
which is created via covering and being executed several times (a
comprehensive overview is presented in [9]). Also, this Step 2 lets
the o�spring to recruit all subsumable classi�ers which are expe-
rienced, and remove the inexperienced ones. �e a�ribute values
owned by the subsumed rules are used to calculate the o�spring’s.
Finally, in Step 3, cl∗ enters the population while at the same time
being inserted to the corresponding [C].

�e process of producing o�spring continues until no more com-
bining is possible. �ese steps let XCS-RC compose a compact
and accurate set of rules, which is also signi�cantly e�cient com-
pared to the classical version of XCS that uses Darwinian genetic
operators to place wildcards (comparisons are available in [9]).

4 FUZZY TEST SCENARIO
Fuzzy Logic Controller (FLC) is a well-known and widely-used ap-
plication for automatic control strategy, especially in the industrial
area. �e system classi�es its inputs using a so-called membership
function based on the fuzzy logic approach. An example is pro-
vided in Figure 8a, where a distance function is depicted using a
diagram representation. �e green, blue and red lines represent
the linguistic variable using the terms “Near”, “Medium” and “Far”,
respectively. For instance, a distance of 17 km would be classi�ed
into “Far” by the function, while another input value at 8 km is
considered as “Medium-Near” with a proportion of 60:40. Figure 8b
shows another instance that classi�es the time le� to reach the
destination, i. e., “Short”, “Medium” and “Long” for the lines in red,
blue and green, respectively.
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(a) Distance function

(b) Time function

(c) Rule set for vehicle speed

Figure 8: Fuzzy membership functions and the correspond-
ing rule set

A�er determining the proper membership for each input, FLC
will decide the action to be executed using a decision making logic,
commonly called as the rule set. �is component contains a num-
ber of “IF-THEN” rules that use the linguistic variable like “Near”,
“Medium” and “Far” in determining the output. An instance of a
rule set is provided in Figure 8c, where a pair of inputs coming
from both membership functions is used to decide the speed of
vehicle, i. e., “Slow”, “Medium” and “Fast”. �e table can be inter-
preted using a total of 35 rules, each for one output. For instance, a
statement “IF Distance is F and Time is L then Speed is M” describes

the output at the cell on the bo�om right. Another example, a rule
“IF Distance is MN and Time is LM then Speed is S” represents the
cell with an underlined decision.

4.1 Learning Scenario
A�er being proven to be superior from the classical XCS (and XCSR)
in handling the multiplexer and checkerboard cases (see [9]), an-
other test is performed to XCS-RC in this investigation. �e use of
the induction concept extends the capability of the classi�er system
by opening up the possibility to perform an FLC task that is more
challenging. As the initial test, a simple obstacle avoidance scenario
called “Fuzzy Bug” is chosen due to its simplicity and applicability
in representing the problem.

Figure 9a depicts an example of situation that occurs during the
investigation. �e red bug (beetle) should be guided to avoid an
obstacle by performing a rotation further from it. When the black
circle is within the bug’s limited vicinity (depicted by the light
green color), it records the angular position α and distance d , and
then transform them using the functions illustrated in Figure 9b
and 9c.

To control the behavior of the bug, a rule set with 18 combina-
tions of distance and angular values depicted in Figure 9d is applied.
�e values for the distances are “Near”, “Medium”, “Far” while the
combinations of “Small”, “Medium”, “Large” and “Le�”, “Right” are
used to classify the angular position of the obstacle. When a speci�c
pair of input occurs, the expected output will be a combination
of rotating either 2, 6 or 10 degree, counterclockwise (“Le�”) or
clockwise (“Right”). For instance, a pair of linguistic values (d = N ,
α = SL) will control the bug to rotate 10◦ to the right (10R). �e
task of guiding the bug in making appropriate decisions can be
easily made by human using FLC, but not necessarily for a learn-
ing system. �erefore, a proper reward mechanism is prepared as
follows.

4.2 Reward Mechanism
Since the suitability judgment of each response to a state is de-
termined by the received reward value, composing an adequate
reward map for XCS-RC that performs FLC is an important ma�er.
�e feedback should be able to represent the provided fuzzy rule
set while also su�ciently simple in terms of calculation. In other
words, employing XCS to perform FLC operation should be easier
than designing a suitable system that comprises of membership
functions and rule set. �e roles of two membership functions will
be played by the pairing elements in the input, respectively repre-
senting the angle and the distance. �en, every input is mapped
and the system responds to it with an available action advocated
by the chosen rules. In short, the learning result should let XCS-RC
to perform similarly to FLC.

Following the Fuzzy Bug’s rotation rule set, the reward map
employed in this investigation is designed based on two aspects:
avoidance and adequacy. �e former is ful�lled when the bugmakes
a rotation away from the obstacle, while the la�er considers the
distance (as indicated in Figure 9d) in making decision. �is means
that a maximal rotation of 10◦ is considered less suitable when
the obstacle is in a relatively larger distance, but preferable for the
smaller ones. Figure 10 illustrates the pairs of angle and distance
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(a) A situation, angle (α ) and distance (d )

(b) Angle function for FCL

(c) Distance function for FCL

(d) Rotation rule set

Figure 9: Fuzzy Bug scenario

and its relation to the prepared reward. �e horizontal axis is the
obstacle’s angle (α ) within the bug’s vicinity that spreads from 45◦
to 135◦, while the vertical value represents distance in pixels. �e
red and blue shades can be directly related to the fuzzy rotation rule

Figure 10: Fuzzy Bug reward map for XCS-RC

set in Figure 9d where areas with darker color are more suitable to
be responded with a bigger rotation.

In the practice, performing a “10R” rotation when the obstacle
is located at the cross “A” gains a high reward. Similar to that,
responding to inputs located at the crosses “B” and “C” with the
decisions “6L” and “2R”, respectively, will also earn a maximal feed-
back. Contrary to that, rotations that make the obstacle’s angular
position smaller then the previous one are judged with a low feed-
back. �e adequacy of the output is determined using the euclidean
distance of the input point to (α = 90, d = 0). It is calculated in a
way so that responding an input (α = 45, d = 45) with “2R” receives
a reward 1000 but “10R” gets a 500. On the other hand, the feed-
back for the outputs “10R” and “10L” a�er a state (α = 90, d = 0)
is 1000 while the actions “2R” or “2L” gains only 500. �e maximal
feedback for “6R” and “6L” lays somewhere in the middle of the
area. In the following, the experimental results of our investigation
are discussed, using the described feedback mechanism.

5 EXPERIMENTAL RESULTS
Discussing a population of classi�ers that resembles FLC’s member-
ship functions and rule set requires a thorough examination on the
classi�ers. �erefore, to simplify the explanation, only a set of deci-
sive rules is presented in this paper. In order to maintain a balance
between learning new lessons and strengthening good rules, the
investigation uses an “old regime” of action selection mechanism
with alternating explore-exploit mode. �e bug is placed in a world
with an obstacle (see Figure 9a) and it should learn to move away
from it. For e�ciency purposes, the obstacle is intentionally always
placed in front of the bug at some random position, making it ob-
servable by the bug during the whole runs. �e results presented
here are an average from 20 simulations, where each run consists
of 25 000 explorative and 25 000 exploitative learning cycles.

Table 1 shows that the average number of classi�ers owned by
the bug by the end of the simulations is around 593.70, including
180.40 (around 30.385%) experienced ones. Also, 23.85 rules were
removed from the knowledge due to inadequate combining pro-
cesses. Despite losing some learning result, these occurrences verify
that the knowledge correction mechanism does its assignment in
preventing the system from keeping inaccurate rules (more details
in [9]).
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Table 1: Average Population in Fuzzy Bug

Trial Population Size Experienced Deletion
0 0 0 0

5000 571.50 171.85 4.75
10000 574.30 178.10 8.10
15000 580.80 181.65 11.20
20000 580.00 181.20 14.00
25000 583.75 179.35 15.80
30000 584.40 178.70 17.60
35000 582.55 179.60 19.90
40000 587.55 181.00 21.15
45000 589.10 181.70 22.45
50000 593.70 180.40 23.85

To get a deeper impression on the results, we pick an example
from one of the simulations to be discussed here, as seen in Ta-
ble 2. Among a total of 587 rules, 186 of them are experienced and
only 21 individuals are actually required for always obtaining the
maximal reward. �ese rules can be considered as a representation
of the whole learning result a�er 50 000 cycles, covering (almost)
the whole input space. In other words, these 21 rules are su�cient
for the purpose of making comparison to FLC. All other rules do
not provide a higher reward, and therefore less signi�cant in this
ma�er.

�e classi�ers are grouped into six categories following their
cl .A, each with di�erent level of red and blue colors. �e number of
rules advocating the 10◦ rotation is less than the others, while ”6L”
and ”6R” have the greater share. Rule with the lowest reward is cl6
with 875.330, which can be considered very high from the minimum
value at 0. �e highest reward value is 973.352, owned by cl2. No
classi�ers reach the maximal feedback at 1000 since each of them is
a result from a combining process that requires taking an average
value from the involved rules.

Before comparing those 21 rules in the bug’s population with
FLC rule set, they should be �rstly transformed into a decision map
shown in Figure 11. Here, the angular position and the distance
of the obstacle are mapped into the decision with highest possible
reward. For instance, when the bug sees an obstacle at 60.0◦ and
10.0px away, responding it with the action “6R” will receive the
best feedback possible, which is 926.820 provided by cl17. Another
example can be given using an input (120.0, 40.0), where the system
has learned that “2L” is the most suitable output (cl7 with 923.549).
�e other 165 classi�ers are not shown here, since they are less
desired due to lower payo�s.

In comparison to the FLC’s rotation rule set shown in Figure 9d,
the discussion will focus on the similarities and di�erences. Firstly,
FLC and XCS-RC suggest that obstacles on the le� hand side should
be responded by turning right and vice versa. Secondly, both also
advocate that every combination of smaller angular position and
smaller distance deserves a greater rotation. From these two indi-
cations, one can argue that in general both FLC and XCS-RC are
capable of guiding the bug to avoid collisions in a considerably
similar way. In short, equipping the bug using only these 21 rules
will make it behave like being controlled using FLC.

Table 2: �e bug’s population of rules

No. Angle Distance Rot Reward
1. [90.068;113.626] [0.014;18.594] 10L 894.724
2. [109.923;126.559] [0.193;27.516] 6L 973.352
3. [109.626;135.815] [0.124;22.511] 6L 951.490
4. [90.026;126.901] [10.772;37.417] 6L 934.550
5. [90.111;114.555] [18.358;44.881] 6L 910.560
6. [126.952;135.851] [22.828;43.044] 6L 875.330
7. [111.304;133.684] [31.187;42.954] 2L 923.549
8. [110.132;135.889] [42.601;44.991] 2L 920.612
9. [130.237;135.924] [5.914;43.699] 2L 915.376
10. [45.024;89.955] [37.465;44.991] 2R 906.131
11. [45.045;50.599] [0.182;44.308] 2R 901.240
12. [46.835;63.961] [25.537;37.191] 2R 883.947
13. [53.821;89.989] [13.185;34.405] 6R 967.265
14. [54.325;88.567] [11.827;44.098] 6R 939.546
15. [66.283;89.837] [12.625;44.998] 6R 939.059
16. [45.806;87.117] [11.827;22.325] 6R 931.090
17. [45.077;73.002] [0.164;23.747] 6R 926.820
18. [45.063;55.322] [0.09;22.648] 6R 911.394
19. [50.929;53.78] [22.489;32.971] 6R 891.439
20. [89.117;89.977] [0.499;10.23] 10R 960.967
21. [65.666;89.117] [0.043;12.702] 10R 905.096

Figure 11: �e bug’s decision map

�e di�erence between both maps are mainly due to the propor-
tion of areas that are not actually identical. XCS-RC produces a set
of knowledge with hundreds of rules where the highest rewards
are provided by around 20 to 30 classi�ers. From those individuals,
using Figure 11 as an instance, the outputs “6L” and ”6R” share a
greater coverage compared to the others. Such occurrence is caused
by at least two factors: rectangular representation of the rules and
reward calculation. For the former, an “ideal” learning result is that
shown in Figure 10, where the areas are covered in a circular degra-
dation instead of rectangular. �e second cause is mainly due to the
value of the prediction tolerance parameter (predTol) in XCS-RC,
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which is a minimal constraint for cl .P owned by two classi�ers to
be combined. A smaller predTol will rules tend to cover narrower
areas which is more accurate, but also making the system requires
more individuals to operate in an expected manner.

Another important issue also arises in running the experiments,
i. e., �nding an adequate se�ing for the classi�er system. Although
the number of parameters in XCS-RC is already reduced from that
owned by the original XCS, a set of proper values should be han-
dled carefully. In our case, the parameters predTol and prediction
error tolerance (predErrTol ) needs to be adjusted several times. An
inadequate se�ing for the former would cause the rules either very
di�cult or too easy to be combined, which in turn may cause a
high number of deletions particularly when the la�er parameter is
not set well. A�er several less adequate results, it is concluded that
the values predTol = 40 and predErrTol = 80 are able to ful�ll the
requirements.

6 CONCLUSIONS AND OUTLOOK
Among all a�empts in modifying classi�er systems to behave like
FLC, so far XCS-RC is the only variant capable of performing it in
a native manner. No additional functions required, internally nor
externally. A�er receiving a “normal” input in real value, the system
responds to each state appropriately following the results from a
series of learning cycles. With a set of proper parameters, XCS-RC
produces a set of knowledge that is capable of playing the roles
of membership functions and rule set of a common FLC without
human intervention. As other RL algorithms, there are two ways
of applying our approach: perform online learning mechanism
that lets an agent makes mistakes while collecting knowledge, or
conducting a training session to build the population before le�ing
an agent �nish its assignment.

Despite some minor issues regarding parameters and the non-
identical reward map, the results provided in this paper are promis-
ing and certainly useful for further development. Some improve-
ments can be proposed, e. g., using radial coverage instead of rect-
angular which can be useful for this Fuzzy Bug reward mechanism
and similar scenarios. Furthermore, an improvement on the reward
calculation might guide the system in building a reward map with
a higher resemblance to the one used in FLC. Obviously, investiga-
tions involving non-arti�cial entities (e. g., motors, robots) would
signi�cantly contribute to the scienti�c advances.
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