
Simulating the Evolution of So� and Rigid-Body Robots
Sam Kriegman

MEC Lab§
University of Vermont
Burlington, VT, USA

sam.kriegman@uvm.edu

Collin Cappelle∗
MEC Lab

University of Vermont
Burlington, VT, USA

collin.cappelle@uvm.edu

Francesco Corucci
�e BioRobotics Institute

Scuola Superiore Sant’Anna
Pisa, Italy

Anton Bernatskiy
MEC Lab

University of Vermont
Burlington, VT, USA

Nick Cheney
Creative Machines Lab
Cornell University
Ithaca, NY, USA

Josh C. Bongard
MEC Lab

University of Vermont
Burlington, VT, USA

ABSTRACT
In evolutionary robotics, evolutionary methods are used to optimize
robots to di�erent tasks. Because using physical robots is costly
in terms of both time and money, simulated robots are generally
used instead. Most physics engines are wri�en in C++ which can
be a barrier for new programmers. In this paper we present two
Python wrappers, Pyrosim and Evosoro, around two well used
simulators, Open Dynamics Engine (ODE) and Voxelyze/VoxCAD,
which respectively handle rigid and so� bodied simulation. Python
is an easier language to understand so more time can be spent
on developing the actual experiment instead of programming the
simulator.

KEYWORDS
Physical simulation; Evolutionary robotics.
ACM Reference format:
Sam Kriegman, Collin Cappelle, Francesco Corucci, Anton Bernatskiy, Nick
Cheney, and Josh C. Bongard. 2017. Simulating the Evolution of So�
and Rigid-Body Robots. In Proceedings of GECCO ’17 Companion, Berlin,
Germany, July 15-19, 2017, 4 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082051

1 INTRODUCTION
Physical simulation provides a relatively inexpensive, surrogate
medium for the optimization of robot controllers and hardware.
Simulation is particularly important in evolutionary robotics which
generally makes fewer assumptions concerning the structure of a ro-
bot’s ‘brain’ (its controller) and body plan. Unfortunately, however,
physics simulators are not well maintained, and can be di�cult to
learn and extend by modifying existing code which raises the bar-
rier of entry, particularly for students. For this reason we introduce
∗�e �rst two authors contributed equally to this work.
§�e Morphology, Evolution & Cognition Laboratory (www.meclab.org).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082051

here two high-level Python wrappers around two di�erent simula-
tors: Open Dynamics Engine (ODE) and Voxelyze. Our goal in this
paper is to convey from experience what kinds of things are di�-
cult/easy to instantiate in physics engines in general and how our
user-friendly modules at least partially alleviate this, and how they
may be extended in the future through open-source collaborations.

2 RIGID BODY ROBOTS
Rigid body dynamics engines are generally what is most thought
of when one thinks of a simulator. �ey are 3D engines where
every body in the simulation is ‘rigid’, meaning the body cannot
bend, break or change as a result of contact with other bodies in
the system. �ese simulators usually provide methods for creating
di�erently shaped bodies (i.e. cylinders, spheres, boxes, etc.), joints
between the bodies, and ways to actuate the motors. �is makes
them ideal for most robot simulation because most real world robots
are still made of hard materials like metal.

ODE is an open source rigid body simulator wri�en in C++ used
prevalently in the robotics community because of its speed and
stability [13]. �ere are many other simulators who use ODE’s
collision detection and response as the basis for their engines. How-
ever, most of these extensions of ODE continue to use C++ which
makes them di�cult to pick up quickly for new users or people
who are unfamiliar with simulators. �ere is a lack of easy-to-use
simulators for 3D rigid body dynamics.

2.1 Pyrosim
Pyrosim is a Python package used to send robots to an ODE simu-
lation and get back the resulting sensor data of that robot [1]. �e
goal of Pyrosim is to limit how much the user has to deal with ODE
and C++ code. By focusing on ease of use, Pyrosim can greatly limit
the amount of developmental time spent building di�erent robots
while still maintaining evaluation speed because the underlying
simulation runs on ODE. �is is especially useful for users who
are new to simulators or to coding in general because Python is an
easier language to learn than C++. For example, �gure 1 shows the
necessary code to make a simple two cylinder robot connected by
a hinge joint and moves based on response to touch sensors in the
cylinders. �e corresponding simulated robot is shown in �gure 2.

A�er evaluation, the user can collect the results of the simulation
in the form of a numpy matrix which contains the value of each
sensor in the robot at every time step of simulation meaning a wide

1117

http://www.meclab.org/

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Kriegman et al.

from pyrosim impor t PYROSIM

ARM LENGTH = 0 . 5
ARM RADIUS = ARM LENGTH / 1 0 . 0

c r e a t e s imu l a t i o n i n s t a n c e
sim = PYROSIM (p layPaused = F a l s e , eva lT ime = 1000)
#Make c y l i n d e r s in ODE
sim . S end Cy l i nde r (o b j e c t ID = 0 , x =0 , y =0 , z=ARM LENGTH

/ 2 . 0 + ARM RADIUS , r1 =0 , r2 =0 , r3 =1 , l e ng t h =
ARM LENGTH , r a d i u s =ARM RADIUS)

sim . S end Cy l i nde r (o b j e c t ID = 1 , x =0 , y=ARM LENGTH / 2 . 0 , z
=ARM LENGTH + ARM RADIUS , r1 =0 , r2 =1 , r3 =0 , l e ng t h =
ARM LENGTH , r a d i u s =ARM RADIUS)

J o i n t between the c y l i d e r s
sim . S e n d J o i n t (j o i n t I D = 0 , f i r s t O b j e c t I D =0 ,

s e condOb je c t ID =1 , x =0 , y =0 , z=ARM LENGTH +
ARM RADIUS , n1 =1 , n2 =0 , n3 =0 , l o = − 3 . 1 4 1 5 9 / 4 . 0 , h i
= + 3 . 1 4 1 5 9 / 4 . 0)

touch s en s o r s on each c y l i n d e r
sim . Send Touch Sensor (s enso r ID = 0 , o b j e c t ID = 0)
sim . Send Touch Sensor (s enso r ID = 1 , o b j e c t ID = 1)
s en so r neurons f o r each s en so r
sim . Send Sensor Neuron (neuronID =0 , s enso r ID =0)
sim . Send Sensor Neuron (neuronID =1 , s enso r ID =1)
#motor neuron which moves the h inge j o i n t
sim . Send Motor Neuron (neuronID=2 , j o i n t I D =0)
Synapses d i r e c t l y connec t s en so r neurons to motor neuron
sim . Send Synapse (sourceNeuronID = 0 , t a rge tNeuron ID = 2

, weight = 1 . 0)
sim . Send Synapse (sourceNeuronID = 1 , t a rge tNeuron ID = 2

, weight = −1.0)

s t a r t the s imu l a t i o n and ge t back touch s en so r da t a
sim . S t a r t ()
sim . Wa i t To F i n i s h ()
s e n s o r d a t a = sim . C o l l e c t S e n s o r D a t a ()

Figure 1: Pyrosim demo code

range of evaluation functions can be performed. Built-in sensors
include touch sensors, position sensors, light sensors, and many
more. By using a class structure, e.g. objects to represent robots
in Python, a user can easily send multiple di�erent robots into the
same environment as seen in �gure 3. Here di�erent individuals
in the population were competing in the same environment to see
which one moved the furthest 1. While Pyrosim can easily handle
small swarms of robots it should not be used for very large (40+)
swarms of robots due to limits to the number of bodies, synapses,
and neurons which can be sent to ODE and ODE’s own constraints
on the number of objects in simulation.

Pyrosim contains most of what is necessary to create arbitrary
robot morphologies, within the limits of ODE. Controllers in Py-
rosim are more limited. �ey must be neural networks made up of
sensor, motor, hidden and bias neurons whose activation function
is detailed by Eq. 1.

y
(t)
i = tanh ©«y(t−1)i + τ

∑
j ∈J

w jiy
(t−1)
j

ª®¬ (1)

Where
• y
(t)
i is the value of neuron i at time step t

• w ji is the weight of the synapse from neuron j to i
• τ is the learning rate in the network

1https://youtu.be/ecSI9CqZI1E

�is limits the type of network can be used without editing the C++
code.

Extending Pyrosim is relatively straightforward assuming the
user knows C++ and ODE. Pyrosim exchanges strings with the C++
code through standard input and output. On the Python side, the
subprocess module is used to communicate with the simulator. �e
C++ side reads in commands using std::cin. �ese commands are
then compared with prede�ned strings to �nd the corresponding
C++ process that needs to be run to change the simulation. �us,
extending Pyrosim to implement a new feature amounts to creating
a new output command on the Python side, a corresponding input
catch on the C++ side, and whatever function implements the new
feature in C++.

Pyrosim is a rigid-body simulator with a focus on being easy to
develop new robots. It is particularly useful for users who are new
to simulators or programming. Many more features are available
in Pyrosim than what is presented here which help a user to eas-
ily make complex robots in order to evolve interesting behaviors.
Pyrosim also provides a framework for relatively easy expansion
provided the user has some experience with ODE and C++. Further
development for Pyrosim will aim at creating a ‘starter kit’ for
evolutionary robotics, which will provide a user all they need to
start their own experiments simulating evolving robots.

3 SOFT ROBOTS
So� robots provide numerous advantages over their rigid coun-
terparts including many more (theoretically in�nite) degrees of
freedom and compliant structures which facilitate unloading expen-
sive computation from the controller to the body, i.e. morphological
computation [9]. Beyond morphological computation, this struc-
tural �exibility enables so� robots to continuously modify their
form while they behave which in turn allows so� robots to perform
tasks that rigid bodies could not— such as conforming to uneven
surfaces, dampening or amplifying vibrations, e�ciently distribut-
ing stress, morphing to meet di�erent tasks, and squeezing through
small apertures (�gure 4). However there are several challenges to
the �eld of so� robotics, including limited simulation and design
automation tools [12].

�e dynamics of so� materials are di�cult and computationally
expensive to simulate given their many degrees of freedom and
nonlinear geometric deformations. Standard nonlinear �nite ele-
ment solvers fall short of quantitatively simulating all but relatively
small deformations. To address this, Hiller & Lipson [10] developed
a computationally e�cient approach based on nonlinear relaxation,
and introduced the open-source Voxelyze, a voxel-based so� ma�er
physics engine and the corresponding (and also open-source) graph-
ical user interface, VoxCAD. Voxelyze simulates elastic voxels based
on an internal la�ice of discrete points (with mass and rotational
inertia) connected by spring-like beam elements (with translational
and rotational sti�ness) generating realistic, and possibly very large
deformations under applied forces. Henceforth, we will refer to
both the GUI and the underlying physics engine as simply VoxCad.

Robots in VoxCad are constructed from voxels — analogous to the
cubic building blocks used in Minecra� — with speci�ed material
properties such as sti�ness and volume. Robots may be volumetri-
cally actuated with an arbitrary phase o�set (at the voxel level) from

1118

https://youtu.be/ecSI9CqZI1E

Simulating the Evolution of So� and Rigid-Body Robots GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: Pyrosim demo in simulation. �e robot consists of two cylinders connected by a hinge joint controlled by a simple
neural network. �e behavior was not evolved so the robot simply actuates and falls over.

Figure 3: Multiple evolved quadrupeds in the same Pyrosim
simulation

Figure 4: A so� robot, simulated in VoxCad, escaping from
a cage (reprinted from Cheney et al. [3]).

Figure 5: Four di�erent so� robots moving with various
gaits from le� to right (reprinted from Cheney et al. [5]).

Figure 6: Seven di�erent so�-bodied creatures evolved un-
derwater, swimming from top to bottom (reprinted from
Corucci et al. [7]).

1119

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Kriegman et al.

an oscillating global signal. In previous work2, robots have been
designed to locomote either with patches of voxels composed of
‘muscle’ material that actuates in counter-phase with complemen-
tary patches of ‘muscle’ [5], or via propagating waves of actuation
[4, 7]. Robots can also stretch and reach towards an object by
changing voxel volumes [8, 11] which could in principle induce
locomotion via peristalsis.

3.1 Evosoro
While it is relatively easy to read a �xed body plan of a robot
into VoxCad, it can be tedious to edit these blueprints and there
are a several algorithmic caveats in their automated optimization.
VoxCad, like ODE, is a general-purpose physics engine and thus
does not include any optimization tools which are inherently job-
speci�c. Moreover, controlling so� robots is non-trivial, as motion
at one location can propagate in unanticipated ways to other parts
of the body [2]. For these reasons, in a similar fashion as Pyrosim,
we created a Python wrapper around Voxelyze. Evosoro, as the
name implies, is a module3 facilitating the evolution of so� robots
(for a brief overview on the evolution of so� robots see [6]).

Evosoro supplies a powerful evolutionary algorithm, developed
by Cheney et al. [5] which is highly modularized and adjustable.
Various examples using the default subprocesses are provided so
the user can immediately begin, out-of-the-box, to optimize run-
ning, swimming, and growing so�-bodied creatures. �e wrapper
primarily maintains an indirect encoding via Compositional Pat-
tern Producing Networks (CPPNs, [14]) which, by default, dictate
the placement of voxels as building blocks and their material prop-
erties. Multi-network-CPPN genotypes are wri�en to individual
robot �les which are sent in batch to Voxelyze for headless simula-
tion. In addition to the wrapper, we have empowered the physics
engine with new features like a �uid model for evolving swimming
creatures [7] and developmental models for adapting morphology
during the evaluation, both in open-loop [11] and based on pro-
prioceptive/exteroceptive stimuli [8]. For now, we have adopted a
plug-and-play model in which multiple versions of Voxelyze are
included and may be referenced by the single wrapper in di�erent
scripts. �e plug-and-play model is not ideal, but it keeps the repos-
itory up to date while avoiding complications related to merging
code in development across many di�erent research projects; and
the wrapper uni�es these di�erent version under a single system.

Entire experiments can be wri�en in short scripts which are
easily adjustable and may be stopped and restarted at any gener-
ation, thanks to a built-in checkpointing mechanism. Open loop
controllers dictating phase o�set can be evolved without touching
the simulator (completely in Python), but closed loop controllers
or any mid-simulation changes to the robot’s brain or body plan
need to be manually added (in both C++ and Python) at this point.
However we provide a few examples of this. Crucially, there is
no mechanism (yet) for automatically sending neural networks
from Python to Voxelyze. Future work will involve incorporating a
mechanism for easily adjusting closed-loop controllers and further
working to limit the frequency with which a user would have to
touch VoxCad’s C++ code.
2https://goo.gl/YHBG0U links to a YouTube playlist featuring a variety of examples
of so� robots evolved with VoxCad.
3https://github.com/skriegman/evosoro contains the Evosoro repository.

4 CONCLUSION
Physical simulation is critical in evolutionary robotics but there
can be a high bar of entry for experts and students alike. To address
this, we introduced two high-level, open-source Python libraries
— Pyrosim and Evosoro — which facilitate the automatic design
and optimization of both so� and rigid-bodied robots. �ey retain
most of the speed because the underlying engine remains the same
meaning the bo�leneck in total evaluation time is still the actual
simulation of the robot. �e real trade-o� in these simulators is
usability verses control and features. �ese simulators impose
some restrictions and do not retain all features in order to make the
developmental start-up cost low and simulators more accessible.

5 ACKNOWLEDGEMENTS
NSF awards PECASE-0953837 and INSPIRE-1344227, as well as the
Army Research O�ce contract W911NF-16-1-0304, provided �nan-
cial support to develop both simulators described herein. F. Corucci
is supported by grant agreement #604102 (Human Brain Project)
funded by the European Union Seventh Framework Programme
(FP7/2007-2013). N. Cheney is supported by NASA Space Technol-
ogy Research Fellowship #NNX13AL37H. We also acknowledge
computation provided by the Vermont Advanced Computing Core.

REFERENCES
[1] Josh Bongard. 2017. Pyrosim. (2017). h�ps://jbongard.github.io/pyrosim/
[2] Josh C Bongard. 2013. Evolutionary robotics. Commun. ACM 56, 8 (2013), 74–83.
[3] Nick Cheney, Josh Bongard, and Hod Lipson. 2015. Evolving so� robots in

tight spaces. In Proceedings of the 2015 annual conference on Genetic and
Evolutionary Computation. ACM, 935–942.

[4] Nick Cheney, Je� Clune, and Hod Lipson. 2014. Evolved electrophysiological
so� robots. In ALIFE, Vol. 14. 222–229.

[5] Nick Cheney, Robert MacCurdy, Je� Clune, and Hod Lipson. 2013. Unshackling
evolution: evolving so� robots with multiple materials and a powerful gener-
ative encoding. In Proceedings of the 15th annual conference on Genetic and
evolutionary computation. ACM, 167–174.

[6] Francesco Corucci. 2017. Evolutionary Developmental So� Robotics: Towards
Adaptive and Intelligent So� Machines Following Nature’s Approach to Design.
In So� Robotics: Trends, Applications and Challenges. Springer, 111–116.

[7] Francesco Corucci, Nick Cheney, Hod Lipson, Cecilia Laschi, and Josh Bongard.
2016. Evolving swimming so�-bodied creatures. In ALIFE XV, �e Fi�eenth
International Conference on the Synthesis and Simulation of Living Systems,
Late Breaking Proceedings. 6.

[8] Francesco Corucci, Nick Cheney, Hod Lipson, Cecilia Laschi, and Josh Bon-
gard. 2016. Material properties a�ect evolution’s ability to exploit morphologi-
cal computation in growing so�-bodied creatures. In ALIFE XV, �e Fi�eenth
International Conference on the Synthesis and Simulation of Living Systems.
MIT press, 234–241.

[9] Helmut Hauser, Rudolf Marcel Füchslin, and Rolf Pfeifer. 2014. Opinions and
Outlooks on Morphological Computation. Zürich. 244 pages.

[10] Jonathan Hiller and Hod Lipson. 2014. Dynamic simulation of so� multimaterial
3d-printed objects. So� Robotics 1, 1 (2014), 88–101.

[11] Sam Kriegman, Francesco Corucci, Nick Cheney, and Josh Bongard. 2017.
A Minimal Developmental Model Can Increase Evolvability in So� Robots.
In Proceedings of the 2017 annual conference on Genetic and Evolutionary
Computation. ACM.

[12] Hod Lipson. 2014. Challenges and opportunities for design, simulation, and
fabrication of so� robots. So� Robotics 1, 1 (2014), 21–27.

[13] Russell Smith. 2006. Open Dynamics Engine. (2006). h�p://www.ode.org
[14] Kenneth O. Stanley. 2007. Compositional pa�ern producing networks: A novel

abstraction of development. Genetic Programming and Evolvable Machines 8,
2 (2007), 131–162.

1120

https://goo.gl/YHBG0U
https://github.com/skriegman/evosoro
https://jbongard.github.io/pyrosim/
http://www.ode.org

	Abstract
	1 Introduction
	2 Rigid Body Robots
	2.1 Pyrosim

	3 Soft Robots
	3.1 Evosoro

	4 Conclusion
	5 Acknowledgements
	References

