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ABSTRACT

We address the problem of high-dose-rate brachytherapy treatment

planning for prostate cancer. �e problem involves determining a

treatment plan consisting of the so-called dwell times that a radi-

ation source resides at different positions inside the patient such

that the prostate volume and the seminal vesicles are covered by

the prescribed radiation dose level asmuch as possiblewhile the or-

gans at risk, e.g., bladder, rectum, and urethra, are irradiated as lit-

tle as possible. �e problem is highly constrained, following clini-

cal requirements for radiation dose distributionwhile the planning

process for treatment planners to design a clinically-acceptable

treatment plan is strictly time-limited. In this paper, we propose

that the problem can be formulated as a bi-objective optimization

problem that intuitively describes trade-offs between target vol-

umes to be radiated and organs to be spared. We solve this problem

with the recently-introduced Multi-Objective Real-Valued Gene-

pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA),

which is a promising MOEA that is able to effectively exploit de-

pendencies between problem variables to tackle complicated prob-

lems in the continuous domain. MO-RV-GOMEA also has the capa-

bility to perform partial evaluations if problem structures allow lo-

cal variations in existing solutions to be efficiently computed, sub-

stantially accelerating the overall optimization performance. Ex-

periments on real medical data and comparison with state-of-the-

art MOEAs confirm our claims.
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1 INTRODUCTION

Radiotherapy is a frequently used form of treatment for cancer.

Brachytherapy (BT) [14] is a form of internal radiotherapy where

radiation sources are placed inside, or passed through, the patient’s

body, close to the tumors, as opposed to the External Beam Radi-

ation �erapy (EBRT) where radiation is directed at the tumors

from outside the patient’s body. A potential advantage of BT is

that due to its local nature, the radioactive dose distribution can

be shaped to conform to the shape of the treatment volume be�er,

and healthy surrounding organs/tissues can thus be spared from

undesired radiation risks. Furthermore, the most common way to

apply BT, the so-called High-Dose-Rate (HDR) BT, is by using a ra-

dioactive source with a high strength, resulting in fewer radiation

treatment fractions. In this paper, we focus on HDR-BT treatment

for prostate cancer but the methodology can be straightforwardly

adapted to other types of BT involving radioactive sources with
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a lower strength. To deliver radiation sources to the target vol-

umes (i.e., the prostate, and in some cases, the seminal vesicles),

normally, 14-20 catheters (depending on the prostate size) are in-

serted into patient’s body through the transperineal skin. �ese

catheters are connected to a device, called the a�erloader, which

controls the movement of radiation sources through the catheters.

Each catheter has a certain number of dwell positions where the

source can pause to release radiation for a certain amount of time,

termed dwell time, before moving to the next position. �e longer

the dwell time at a dwell position, the more radioactive dose is dis-

tributed to the surrounding volume. �e list of all dwell times at

all dwell positions comprises an HDR-BT treatment plan. Mak-

ing a clinically-acceptable BT plan is not a trivial task, and in-

volves many clinical requirements that need to be satisfied. On the

one hand, dwell times should be long enough to cover the target

volumes as much as possible with a certain prescribed radiation

dose, effectively sterilizing cancer cells. On the other hand, dwell

times should be as short as possible to keep the radiation deliv-

ered to normal tissues and other nearby Organs At Risk (OARs),

i.e., urethra, rectum, bladder, under certain clinically-acceptable

upper bounds. Aiming to cover the target volumes while sparing

OARs, BT treatment planning is intrinsically amulti-objective opti-

mization problem, where a single utopian solution (i.e., a treatment

plan) that optimizes all objectives at the same time does not exist.

Instead, there exists the Pareto-optimal set of non-dominated solu-

tions, that are optimal in the sense that improving any objective of

these solutions deteriorates their other objectives. �e image set

of the Pareto-optimal set in the objective space forms the so-called

Pareto-optimal front that exhibits the possible trade-offs between

the involved objectives. �e goal then in multi-objective optimiza-

tion is to find a so-called approximation set of solutions that is as

close as possible to the optimal Pareto set of solutions, o�en mea-

sured in the objective space.

Available BT treatment planning so�ware packages, see e.g., [5,

7, 10], however, do not tackle the problem in a truemulti-objective

manner. Instead, all the objectives following from the clinical re-

quirements are combined into a single optimization function by

the weighted-sum approach, obtaining thus a single solution that

corresponds with each se�ing of the weighting coefficient vector.

�e proper se�ing of these weights can hardly be determined a pri-

ori because it involves taking into account the geometry of the pa-

tient’s organs, the configuration of the inserted catheters, and the

preferences of the treating physician. Weighted-sum approaches

with some rule-of-thumb coefficient se�ings o�en return treatment

plans that do not match the trade-off that individual radiation on-

cologists prefer for specific patients. �erefore, BT treatment plan-

ners (i.e., radiation oncologists, radiation therapy technologists,

and clinical physicists) o�en need to spend time to manually ad-

just the treatment plan until satisfied, sometimes up to an hour.

In this paper, we tackle BT treatment planning in the true multi-

objective optimization manner, approximating the set of optimal

trade-offs between target volumes coverage versus OARs sparing.

Such an approximation set explicitly quantifies and exhibits the

compromises that need to be made. Treatment planners can make

use of the obtained approximation set as a decision support tool to

quickly locate the desired trade-off solution, which can be further

adjusted, to arrive at a final plan.

�e HDR-BT treatment procedure is time-constrained, where

the planning task should normally be finalized within one hour.

Optimization algorithms need to spend a certain number of itera-

tions including treatment plan evaluations before acceptable plans

can be obtained. BT treatment plan evaluation is a time-consuming

operation, which involves calculations of the radiation dose dis-

tribution at target volumes and OARs. In this paper, we present

how the dependency structure of dwell positions can be used to en-

hance the efficiency in generating promising candidate treatment

plans. Such dependency knowledge can be acquired online by per-

forming linkage learning during the optimization process or can

be computed offline based on the geometry information of the im-

planted catheters. Always performing a full evaluation of treat-

ment plans is unnecessary, especially if the offspring solutions dif-

fer from parent solutions at only a few dwell times. �erefore, the

solving time can be substantially improved if local changes of treat-

ment plans can be computed. To this end, we use the recently-

introduced Multi-Objective Real-Valued Gene-pool Optimal Mix-

ing EvolutionaryAlgorithm (MO-RV-GOMEA) [2], which has been

shown to have superior performance on benchmark problems due

to its capabilities of exploiting linkage information and perform-

ing partial evaluations in the context of continuous optimization.

Here, we aim to see the impact of the advantages that MO-RV-

GOMEA has to offer in solving the BT treatment planning problem

compared to the well-known Multi-Objective Evolutionary Algo-

rithm (MOEA) NSGA-II [4] and the Multi-Objective Estimation-of-

Distribution Algorithm (MOEDA) MAMaLGaM [1].

2 PROBLEM MODELING

2.1 Clinical Practice

An HDR-BT treatment for prostate cancer starts with the insertion

of a number of catheters through the area between the patient’s

scrotum and anus (i.e., the perineum) aimed at target volumes (i.e.,

the prostate and seminal vesicles). �e implanted catheters (i.e.,

implant) are firmly fixed to avoid displacements. Medical images

(e.g., Computed Tomography (CT) or Magnetic Resonance Imag-

ing (MRI) scans) of the patient’s pelvic area are then acquired to

be employed in the following treatment planning session. Treat-

ment planners first draw the contours of the treatment targets and

OARs on the obtained CT/MRI scans in BT treatment planning so�-

ware. �e inserted catheters are also delineated. Each catheter

is discretized into a number of dwell positions where radiation

sources can dwell, normally by a step size of 2.5 mm beginning

from the first dwell position which is offset 5.0 mm from the tip

of the catheter. To ensure the treatment targets are sufficiently

treated while sparing OARs from radiation risks, only dwell posi-

tions within the target volumes expanded with a margin of 5.0mm

are activated. Dwell positions outside these volumes are kept inac-

tive, which means they will not be considered when the treatment

plan is made. �e longer the time a source dwells at an active posi-

tion (i.e., dwell time), the more radiation is delivered to surround-

ing tissues. A certain dose level is prescribed by radiation oncol-

ogists which is deemed sufficient to sterilize tumor cells for the

specific tumor type. Dwell times should then be configured such

that the entire prostate should receive at least the prescribed dose,
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but not toomuch in order to allow healthy cells, which are less sus-

ceptible to radiation than tumor cells, to recover from being radi-

ated. On the one hand, treatment plans with very long dwell times

can kill all tumor tissues but can also cause undesirable damage to

healthy tissues (i.e., necrosis, which is considered life-threatening).

On the other hand, treatment plans with too short dwell times can

spare healthy tissues, but insufficiently-treated tumor cells can still

grow, making the whole treatment ineffective. BT treatment plan-

ners need to make a proper treatment plan that satisfies general

clinical requirements as well as special criteria for each specific

case. �e approved plan is then used to treat the patient. �e a�er-

loader, which is connected to the inserted catheters, controls the

movements of the radiation source through the catheters such that

the source stays at each dwell position for the amount of time as

indicated in the approved plan.

2.2 Dose Distribution Evaluation

Each treatment plan (i.e., a specific configuration of dwell times)

brings about a dose distribution in the surrounding tissues. A plan

is deemed clinically acceptable if its dose distribution satisfies the

clinical requirements. A utopian plan that radiates all tumor cells

with the prescribed dose while delivering no radiation to OARs

never exists. Clinical requirements therefore o�en indicate the

sufficient lower bounds of radiating target volumes and allowable

upper bounds of radiating OARs. A widely-used set of clinical

requirements, termed Dose-Volume (DV) V o
x criteria (or require-

ments), specify how large the cumulative volume of an organ o re-

ceiving at least the radiation dose level x should be. For example,

it is o�en recommended that V
prostate

100 ≥ 95%, i.e., at least 95% of

the prostate volume should be covered by 100% of the prescribed

dose [6]. To treat tumor cells possibly existing in the vesicles, the

requirement V vesicles
80 ≥ 95% can be employed to indicate that at

least 95% of the volume of the vesicles should receive 80% of the

prescribed dose. To prevent hot spots forming inside the prostate

(i.e., the part of prostate that is radiated too much), it is required

that V
prostate

200 ≤ 20%, i.e., not more than 20% of the prostate volume

should be covered by 200% of the prescribed dose. Similarly, to pro-

tect OARs from radiation risks, there are DV criteria for each organ

that set the upper bounds of the radiation levels that can be allowed

to be delivered to that organ. For example,V rectum
78 ≤ 1 cm3, i.e., the

rectum volume covered by 78% of the prescribed dose should not

exceed 1 cubic centimeter (cm3), or V bladder
74 ≤ 2 cm3, i.e., the blad-

der volume receiving at least 74% of the prescribed dose should

not be more than 2 cm3. Table 1 presents the DV indices and

their corresponding requirements currently employed at the Aca-

demic Medical Center (AMC), the hospital involved in this study.

tf It is impossible to calculate the radiation received by every sin-

Prostate Bladder Rectum Urethra Vesicles

V100 ≥ 95% V86 ≤ 1 cm3 V78 ≤ 1 cm3 V110 ≤ 0.1 cm3 V80 ≥ 95%

V150 ≤ 50% V74 ≤ 2 cm3 V74 ≤ 2 cm3

V200 ≤ 20%

Table 1: BT treatment planning DV criteria at AMC.

gle cell because the number of cells in an organ is prohibitively

large. �erefore, DV index values are o�en approximated by eval-

uating the radiation at a certain number of so-called dose calcula-

tion points. �e strength of the employed radiation source and the

relative position between a dwell position and a dose calculation

point determine the dose rate that indicates the amount of dose ir-

radiated from the source when it resides at that dwell position to

the dose calculation point per second (i.e., Gy/s). Dose rates can be

computed based on the TG-43 protocol (the American Association

of Physicists in Medicine AAPM Task Group No. 43 Report) [12].

�e total radiation at each dose calculation point is the combined

dose delivered from all the active dwell positions corresponding to

the dwell times of the treatment plan. Let D be the set of all dose

calculation points, |D | = nD . LetT be the set of all dwell positions,

|T | = nT . With a certain source strength, R is an nD × nT matrix

where Ri j indicates the dose rate associated with dwell position j

and dose calculation point i . Let t be the vector of dwell times at

all active dwell positions (i.e., t is a treatment plan). �e vector d

of the amounts of radiation received at all dose calculation points

can be computed as:

d = Rt (1)

�e vector d can be seen as representing the dose distribution as-

sociated with the treatment plan t , from which the DV indices (in

Table 1) can be approximated. �e dose calculation points can be

uniformly randomly generated inside each organ. Let Do be the

set of all dose calculation points inside organ o, Do ⊂ D. �e DV

index V o
x in relative terms (%) can then be computed as:

V o
x =

1

|Do |

∑

i ∈Do

χ (di ,x ) (2)

where di is the total amount of radiation received at the dose cal-

culation point i , and χ (di ,x ) is an indicator function:

χ (di ,x ) =

{

1 di ≥ x

0 di < x
(3)

�e DV indexV o
x in absolute terms (cm3) can be straightforwardly

computed by multiplying the result from Equation 2 with the to-

tal volume of the organ o. �e more dose calculation points are

used, themore accurate the approximation of the trueDV indices is

(disregarding uncertainties of delineation). However, using a large

number of dose calculation points incurs a substantial amount of

computing time, which slows down the planning process.

2.3 Optimization Constraints

BT treatment planners normally start the planning process from an

initial plan, which is generated by BT treatment planning so�ware

[7, 10]. Because of the difficulty in directly optimizing DV indices

due to their discrete nature (Equation 2), planning so�ware o�en

solves simpler optimization models of the problem. �erefore, DV

requirements (in Table 1) are not always satisfied by the proposed

plans. Planners need to identify the causes of the violated require-

ments and then manually adjust the plan in a local manner (i.e.,

changing the values of some dwell times). For example, dwell times

at dwell positions inside the under-radiated part of the prostate

volume can be increased if V
prostate

100 < 95%. If the plan causes many

hot spots, then very long dwell times can be decreased to reduce

V
prostate

200 . Planners o�en improve DV indices one by one, giving pri-

ority to the most violated criteria. Making a DV index satisfy its re-

quirement, however, can deteriorate other indices and might make

them violate their requirements. For example, increasing V
prostate

100
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can create new hot spots (i.e., large values of V
prostate

200 ) and cause

other DV indices for OARs to exceed their recommended thresh-

olds. How good the best possible treatment plan is depends on the

quality of the implant (i.e., howwell the catheters are inserted) and

also on the geometry of the surrounding organs. When OARs are

too close to target volumes, it is difficult to achieve good DV in-

dex values for both target coverage and OARs sparing at the same

time. If the catheters are not inserted deep enough, it might be im-

possible to obtain V
prostate

100 ≥ 95% without violating V
prostate

200 ≤ 20%.

In these situations, BT treatment planners need to compromise. To

allow treatment plans that violate some part of the clinical require-

ments to some degree to be obtained in the optimization process,

we relax the thresholds of the DV requirements to enlarge the fea-

sible search space. Specifically, the upper bounds of organ sparing

indices are increased four times. For example, V bladder
74 ≤ 2 cm3 in

the original clinical requirement becomes V bladder
74 ≤ 8 cm3. �e

lower bounds of target coverage indices are also decreased in a

similar manner, e.g., V
prostate

100 ≥ 95% becomes V
prostate

100 ≥ 80%. �ese

relaxed requirements, presented in Table 2, are the constraints in

our optimization model.

Prostate Bladder Rectum Urethra Vesicles

V100 ≥ 80% V86 ≤ 4 cm3 V78 ≤ 4 cm3 V110 ≤ 0.4 cm3 V80 ≥ 80%

V150 free V74 ≤ 8 cm3 V74 ≤ 8 cm3

V200 ≤ 80%

Table 2: DV criteria from Table 1 with relaxed feasibility

thresholds. Because of the relaxation factor, V
prostate

150 has be-

come unconstrained.

2.4 Multi-Objective Optimization

BT treatment planning is a multi-objective optimization problem,

where each DV index criterion can be considered to be an optimiza-

tion objective. Optimizing target coverage indices (i.e., V
prostate

100 ,

V vesicles
80 ) equals making them as large as possible (above the lower

bound thresholds) while optimizing organ sparing indices (the re-

maining indices in Table 1) equalsmaking them as small as possible

(under the upper bound thresholds). �ese two groups of DV in-

dices are conflicting with each other. Each treatment plan can be

seen as a trade-off between all the involved indices. Of key inter-

est is to find the set of optimal trade-offs, termed non-dominated

solutions, where improving any DV index in one group worsens

DV indices in the other group. It is beneficial for the planners to be

informed about these best possible alternatives before approving

a plan to be used for treating the patient.

However, optimizing all DV indices of Table 2 as separate objec-

tives would result in an 8-objective optimization problem, which

is difficult to be efficiently solved. Moreover, its resulting set of

8-dimensional trade-offs is also complicated to be visualized and

interpreted. On the other hand, simply summing all indices of

a group into an objective is also not favorable since this also re-

duces the insight into key information about DV indices, namely

the minimally achieved levels. We therefore propose a bi-objective

optimizationmodel that retains important insights in trade-offs be-

tween DV indices. �e two objectives are: the Least Coverage In-

dex (LCI), which corresponds to the worst-scored DV index in the

target coverage group, and the Least Safe Index (LSI), which corre-

sponds to the worst-scored DV index in the organ sparing group.

For a candidate treatment plan t , its LCI value can be considered

as:

LCI (t ) = min{V
prostate

100 ,V vesicles
80 } (4)

�e value of LCI, that we would like to maximize, is ∈ [0, 1]. �e

value 0 indicates that one target volume (i.e., prostate or semi-

nal vesicles) has no dose calculation point covered by the recom-

mended dose level for that target volume. �e ideal value 1 indi-

cates that the whole volume of each treatment target is covered

by the recommended dose level. �e value 0.95 indicates that both

clinical requirements V
prostate

100 ≥ 95% and V vesicles
80 ≥ 95% in Table 1

are satisfied.

Let V
o,max
x be the upper bound threshold for the dose level x

to the organ o in Table 2. �e further the value of DV index V o
x is

below this threshold, the be�er the organ o is spared from radiation

risk. �e distance of an organ sparing index V o
x value below the

thresholdV o,max
x can be measured and normalized as:

δ (V o
x ) = 1 −

V o
x

V
o,max
x

(5)

�e LSI of a candidate treatment plan t can then be defined as:

LSI (t ) = min{δ (V
prostate

150 ), δ (V
prostate

200 ), δ (V bladder
86 ), δ (V bladder

74 ),

δ (V rectum
78 ), δ (V rectum

74 ), δ (V urethra
110 )}

(6)

�e value of LSI, that we would like to maximize, is ∈ [0, 1]. �e

value 0 indicates that one organ sparing indexV o
x is currently at its

(relaxed) threshold V o,max
x . �e ideal value 1 indicates that there

is no dose calculation point in any organ receiving more radiation

than its relaxed threshold dose level. Since the upper bounds of

all organ sparing indices are increased (i.e., relaxed) by a factor of

4, the value LSI = 0.75 ensures that all clinical requirements for

organ sparing indices in Table 1 are met.

�e objective values of any candidate treatment plan can thus

be evaluated on these two objectives (LCI, LSI), where it can be

inferred that the values of all the other DV indices in a group are

at least as good as the representative index of that group. A treat-

ment plan satisfies all original clinical requirements in Table 1 if

its LCI ≥ 0.95 and LSI ≥ 0.75. We further argue that this model

bears resemblance with the treatment planning process in practice

in the sense that planners o�en try to iteratively improve the most

violated DV index.

3 MO-RV-GOMEA

MO-RV-GOMEA [2] maintains a population of potential solutions

on which selection and variation are performed. Encountered non-

dominated solutions are stored in an adaptive elitist archive [11].

A key strength of MO-RV-GOMEA is the main variation operator

that was first introduced for the discrete GOMEA [13], and was

later adapted to the domain of real-valued variables [2]. �is varia-

tion operator was shown to be able to successfully exploit linkage

structure in a wide range of optimization problems [2, 13].

Each generation of MO-RV-GOMEA starts with the selection

phase, where the selection is based on the ranking of solutions a�er

non-domination sorting [4]. �e selection is then partitioned into a

set of clusters, which will allow different directions of optimization

in different parts of the Pareto front. For each objective of interest,

this set of clusters contains one so-called single-objective cluster
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for which the selection procedure only considers the respective

objective. Apart from the selection, each solution in the population

is also assigned to a nearby cluster, because the Gaussian model of

one specific cluster is used in the variation of the solution.

A linkage model is used to explicitly define dependencies be-

tween subsets of variables. Each linkage model consists of a num-

ber of linkage sets, where each linkage set describes a subset of

variables that are considered to be dependent. �e linkage tree

is a specific hierarchical linkage model that models a range of de-

pendencies ranging from low-level to high-level dependencies. A

linkage tree can be learned during optimization, in which case it

is learned anew at the start of each generation. �e linkage tree is

initialized as a set of ℓ leaves of univariate problem indices. New

nodes are added to the tree by iteratively merging the two non-

merged nodes that are considered the most dependent by a sim-

ilarity metric, for which we use the mutual information metric,

which is derived from the sample Pearson correlation coefficient

[8]. Alternatively, a similarity metric can be defined based on the

structure of the optimization problem, leading to a linkage tree that

is fixed throughout all generations. Merging nodes continues until

the root of the tree has been created, which naturally contains the

indices of all problem variables. Each node of the linkage tree then

defines one linkage set of the linkage model.

�e parameters for variation are estimated as follows. For each

linkage set of each cluster, a multivariate Gaussian probability dis-

tribution is estimated with maximum likelihood based on the se-

lection. �e probability distribution of a certain linkage set covers

only the variables that are included in this linkage set. A distri-

bution multiplier is also maintained for each linkage set, which

allows the dynamic adaptation of the size of each Gaussian kernel

based on the observed direction of improvement. Per linkage set

of each cluster, the variation operation is applied to each solution

in this cluster by sampling new values from the Gaussian distribu-

tion for the problem variables described by the respective linkage

set, and inserting these into the solution. A fraction of the solu-

tions in each cluster is shi�ed by the application of the Anticipated

Mean Shi� (AMS), which shi�s parameters by a factor relative to

the generational difference of means. �e modification of the solu-

tion is then evaluated, but only maintained if this modification is

considered to be an improvement. Otherwise, the modification is

not accepted and the solution is returned to its previous state.

We refer the interested reader to [2] for a full description of MO-

RV-GOMEA.

4 PERFORMANCE ENHANCEMENT

4.1 Exploiting Geometry Information

MO-RV-GOMEA performs variations based on linkage models that

indicate which problem variables (i.e., in this case, dwell times at

dwell positions) exhibit some degree of dependency and should

thus be treated together. In the context of black-box optimiza-

tion, linkage models can be learned from the population. Although

even the most comprehensive linkage model employed byMO-RV-

GOMEA, i.e., the linkage tree, can be efficiently learned, perform-

ing linkage learning in every cluster for each generation can incur

some computing time overhead. It could be beneficial and more

efficient if sufficient problem-specific information is available to

construct the linkage models offline. For the BT treatment plan-

ning problem, it can be argued that dwell positions that are close

to each other have stronger interactions than dwell positions that

are far apart. Dwell times at neighboring dwell positions, therefore,

should be treated together when performing variation. �e coor-

dinates of all active dwell positions, which are determined from

the CT/MRI scans of the patients, can be used to compute the Eu-

clidean distances between all pairs of dwell positions. Such ge-

ometry information can be directly used as a distance/similarity

metric to construct the linkage tree as in Section 3. �is offline-

constructedEuclidean-distance-based linkage tree can be employed

during the optimization process without the need of online linkage

learning in each cluster, potentially improving the effectiveness in

creating promising candidate treatment plans.

4.2 Partial Evaluations

(MO-RV-)GOMEA differs from other evolutionary algorithms in its

genetic-local-search-like variation operator that transforms each

existing (parent) solution into a new (offspring) solution in a step-

wise manner. At each step, a few problem variables’ values (i.e.,

dwell times in this context) are altered, and the changes are only ac-

cepted if they improve the quality of the current solution (i.e., the

candidate treatment plan at hand). Which problem variables are

varied at each step is o�en determined by the linkages described

by the employed linkage model such that variables having some

degree of dependency should be jointly treated. In black-box op-

timization, each partially-altered solution needs to be fully evalu-

ated to check for improvements. If the problem is sufficiently un-

derstood, the impact of such local changes can be efficiently com-

puted/approximated using partial evaluations. �e evaluation of

a treatment plan involves the computing of the radiation dose re-

ceived at each dose calculation point (see Equation 1) and the com-

puting of DV indices (see Equation 2). �e former takes a more

substantial amount of computing time. �e matrix-vector multi-

plication in Equation 1, however, does not need to be calculated

completely anew when the vector of dwell times is changed at

only a few elements (i.e., dwell positions). More specifically, the

impact of such changes on the dose distribution can be efficiently

computed by invoking only the columns of the dose-rate matrix R

corresponding with the dwell positions where the dwell times are

altered. Let t be an evaluated treatment plan with the correspond-

ing dose distributiond . Let t ′ be a treatment plan that differs from

t at only a few dwell positions, i.e., t ′ = t + ∆t , in which ∆t has

many zero elements. �e dose distribution d
′ associated with t

′

can be computed as:

d
′
= Rt

′
= R(t + ∆t ) = Rt + R∆t = d + R∆t (7)

where the i-th index of R∆t can be computed as:

(R∆t )i =

nT
∑

j=1
∆tj,0

Ri j∆tj (8)

which thus only involves the multiplication of the column R∗j of

R with the corresponding non-zero elements ∆tj of ∆t . Note that

in the implementation an entire vector ∆t is not explicitly com-

puted, but rather only the compact vector of non-zero elements in

∆t corresponding to a linkage set in the linkage tree is computed.
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�e step-wise operation of the variation operator of MO-RV-

GOMEA makes it straightforward for partial evaluations to be em-

ployed, if possible. For other existing MOEAs, such as MAMaL-

GaM or NSGA-II, each time a whole offspring solution is created

at once, making partial evaluations impossible.

5 EXPERIMENTS

5.1 Experiment Settings

DICOM files of three anonymized HDR-BT cases for prostate can-

cer from the Academic Medical Center (AMC) were available for

conducting our experiments. DICOM files are loaded into the BT

treatment planning so�wareOncentra Brachy, fromwhich the con-

tours of the involved organs (i.e., prostate, seminal vesicles, blad-

der, rectum, and urethra) and the inserted catheter information can

be exported. �is extracted information is then used as the input

data for ourmulti-objective optimization algorithm. Similar to clin-

ical practice, we activate all dwell positions inside the two target

volumes: the prostate and seminal vesicles, each with an extended

margin of 5mm while dwell positions within 1mm margin of the

urethra should be kept inactive. In each organ, we uniformly ran-

domly generate 4,000 points, i.e., a total of 20,000 dose calculation

points are employed each time. Such a number of random points is

deemed sufficient for the purpose of performing optimization [9].

We perform experiments with three MO-RV-GOMEA variants

employing three linkage models: the Univariate Factorization (UF)

model where all dwell times are deemed independent from each

other, the Linkage Tree (LT) model which is learned from the pop-

ulation in each generation, and the fixed LT which is constructed

a priori based on the geometry information of active dwell po-

sitions. For each MO-RV-GOMEA we run two se�ings: 1) full

treatment plan evaluations are always carried out to assess can-

didate treatment plans, and 2) partial evaluations are enabled to

assess partially-altered treatment plans when performing solution

variation. For the purpose of performance comparison between

MO-RV-GOMEA and state-of-the-art MOEAs, we consider NSGA-

II [4] and MAMaLGaM [1]. NSGA-II employs the Simulated Binary

Crossover (SBX [3, 4]) operator to create offspring solutions in real-

valued optimization. MAMaLGaM estimates a Gaussian mixture

distribution over the 35% best solutions in the population and sam-

ples the learned distribution to generate offspring solutions in each

generation. To eliminate the tuning of the population size param-

eter, for all algorithms, we implement the interleaved multistart

scheme as introduced in [2]. For every patient case, we run each al-

gorithm 30 times independently. Each optimization run is allowed

to operate 1 hour to obtain an approximation set of non-dominated

plans.

We use the hypervolume [15] to compare the performance of

MOEAs. �e hypervolume can be intuitively defined as the volume

(or area in the case of bi-objective optimization) in the objective

space that is covered by a set of non-dominated solutions and a

reference point, which is a point that can be selected such that it

will be dominated by any possible solutions. Here, since the range

of the two objectives LCI and LSI is [0, 1], we can simply choose

(−0.1,−0.1) as the reference point.

5.2 Results

Figure 1 shows the graphs of hypervolume development along the

running time (in seconds) averaged over 30 runs of each optimiza-

tion algorithm for the three patient cases. To support some of our

observations from the figure, we use the Mann-Whitney-Wilcoxon

statistical hypothesis test for equality of medians with p < 0.05 to

see whether the final result obtained by one algorithm is statisti-

cally different from that of another algorithm. When partial eval-

uations are not enabled, i.e., MO-RV-GOMEA carries out a normal

full evaluation every time a candidate solution needs to be assessed,

all MO-RV-GOMEA variants are outperformed by both NSGA-II

and MAMaLGaM. Using totally full evaluations is inefficient for

MO-RV-GOMEA because treatment plan evaluation is a compu-

tationally expensive operation and the algorithm most o�en only

modifies an existing solution in a few variables at each step before

fully constructing a new (offspring) solution, which differs from

otherMOEAs likeNSGA-II andMAMaLGaM that generate awhole

new solution at once. While the slopes of the hypervolume devel-

opment graphs of NSGA-II and MAMaLGaM fla�en out at the end

of the optimization runs, suggesting that both algorithms nearly

converge, the ones of MO-RV-GOMEA variants still steepen up,

indicating that they are still in the middle of the search. Note that

using different linkage models that capture only higher-order de-

pendencies of a certain minimum degree could have a substantial

impact here and make the difference much smaller. However, us-

ing partial evaluations, as is possible here, could make such search

for highly suitable linkage structures superfluous.

Indeed, when partial evaluations are enabled, all variants ofMO-

RV-GOMEAare substantially accelerated, outperformingbothMA-

MaLGaM and NSGA-II in the cases of patients 2 and 3. At the

termination time of one hour, in all three cases, MO-RV-GOMEA

with the fixed LT and partial evaluations is the best algorithm, ob-

taining Pareto fronts with the highest hypervolume values, which

are found to be statistically significantly different from the other

MO-RV-GOMEA variants and the other MOEAs. �erefore, we

consider the fixed LT with partial evaluations as the most suitable

configuration for MO-RV-GOMEA to tackle the BT treatment plan-

ning problem and we only consider this configuration in the fol-

lowing discussion.

Figure 2 shows the Pareto fronts of non-dominated plans ob-

tained by NSGA-II, MAMaLGaM, and MO-RV-GOMEA for the 3

cases. Each Pareto front is the combination of the 30 approxima-

tion sets obtained at the end of the 30 optimization runs of each

algorithm. Our formulations of the two objectives LCI and LSI

(see Section 2.4) imply that treatment plans satisfying all clinical

requirements (in Table 1) should equal to, or (Pareto-)dominate,

the point (0.95, 0.75). Graphically, clinically-acceptable treatment

plans can be located in the top-right corner of the graphs between

(0.95, 0.75) and (1, 1). Pareto fronts shown in Figure 2 indicate that

treatment plans that satisfy all clinical requirements are achievable

in all three cases. �e Pareto fronts obtained by MO-RV-GOMEA

are always be�er than the ones obtained by NSGA-II and MAMaL-

GaM. It can be clearly seen that in the clinically-acceptable cor-

ner, the solutions of MO-RV-GOMEA (Pareto-)dominate the solu-

tions of bothNSGA-II andMAMaLGaM, suggesting that exploiting

the information of linkages between problem variables (i.e., dwell
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Figure 1: �e average hypervolume values of the Pareto fronts of optimization algorithms over time.
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Figure 2: Pareto fronts combined from 30 optimization runs of each algorithm a�er running for 1 hour.

times) benefits the optimization algorithm in reaching treatment

plans of higher quality.

Since the treatment planning process in practice is highly time-

constrained, which should not take more than 1 hour, it is inter-

esting to investigate the results of optimization algorithms with a

shorter time span. Figure 3 shows the Pareto fronts combined from

30 optimization runs of each algorithm a�er running for 10 min-

utes. It can be seen that, in all three cases, MO-RV-GOMEA can ob-

tain Pareto fronts of high-quality treatment plans much faster than

NSGA-II and MAMaLGaM. Especially in the clinically-acceptable

corner, the treatment plans found byMO-RV-GOMEA clearly dom-

inate the results of NSGA-II and MAMaLGaM. Comparing Figure

2 and Figure 3, the improvements of the Pareto fronts of MO-RV-

GOMEA are not as substantial as the improvements of the Pareto

fronts of NSGA-II andMAMaLGaMobtained by an extra 50minute

runtime. �is suggests that MO-RV-GOMEA can simply be run in

only 10 minutes to achieve the results of the other MOEAs running

for 1 hour. Overall, the results appear very promising. As a first

next step, these sets of treatment plans exhibiting natural trade-

offs in BT treatment planning will be analyzed with clinical ex-

perts and rigorously compared with clinically-approved treatment

plans.

6 CONCLUSION

In this paper, we presented how the BT treament planning problem

can be formulated and tackled by a novel multi-objective optimiza-

tion approach in which only two objectives are considered, rather

than having a single objective for each clinical objective that is typi-

cally found in clinical requirements. In particular, those clinical ob-

jectives that express tomaximize irradiation are grouped in one ob-

jective, as are those that express to minimize irradiation. By care-

fully remapping these clinical objectives and using the worst one

in each group as the value in the bi-objective optimization function,

a risk-averse, guaranteed minimal performance model is obtained

such that the results of which are straightforward to interpret. We
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Figure 3: Pareto fronts combined from 30 optimization runs of each algorithm a�er running for 10 minutes.

proposed that the recently-introduced MO-RV-GOMEA, a promis-

ing optimizer that can exploit hierarchical linkages between prob-

lem variables, is an especially promising optimizer to tackle the

problem because MO-RV-GOMEA allows partial evaluations to be

carried out when existing solutions are only locally altered at a

few variables, we suggested that this feature can be exploited us-

ing the dependencies between dwell positions and their geometry

information. Using linkage exploitation and partial evaluations,

MO-RV-GOMEA is capable of outperforming both thewidely-used

MOEA NSGA-II and the state-of-the-art MOEDA MAMaLGaM in

obtaining a set of high-quality treatment plans in a 1/6 fraction of

the planning time budget. �is, together with the fact that Pareto

fronts are obtained that insightfully visualize the main trade-off in

BT treatment planning, leads us to conclude that MO-RV-GOMEA

is a very promising algorithm to develop and use further for the

automated design of BT treatment plans.
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nauer, and H. P. Schwefel (Eds.). Springer Berlin Heidelberg, 292–301. DOI:

h�p://dx.doi.org/10.1007/BFb0056872

1379

http://dx.doi.org/10.1145/1830483.1830549
http://dl.acm.org/citation.cfm?id=559152
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1016/j.brachy.2014.09.006
http://dx.doi.org/10.1016/j.radonc.2013.05.002
http://dx.doi.org/10.1016/S0167-8140(05)81018-7
http://dx.doi.org/10.1103/PhysRevE.69.066138
http://dx.doi.org/10.1118/1.598970
http://dx.doi.org/10.1118/1.1368127
http://dx.doi.org/10.1007/978-3-642-32964-7_8
http://dx.doi.org/10.1118/1.597458
http://dx.doi.org/10.1145/2001576.2001661
http://dx.doi.org/doi:10.1201/b13075-3
http://dx.doi.org/10.1007/BFb0056872

	Abstract
	1 Introduction
	2 Problem Modeling
	2.1 Clinical Practice
	2.2 Dose Distribution Evaluation
	2.3 Optimization Constraints
	2.4 Multi-Objective Optimization

	3 MO-RV-GOMEA
	4 Performance Enhancement
	4.1 Exploiting Geometry Information
	4.2 Partial Evaluations

	5 Experiments
	5.1 Experiment Settings
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

